Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾泰琳(Tai-Lin Tseng)
dc.contributor.authorHsuan-Sho Liangen
dc.contributor.author梁軒碩zh_TW
dc.date.accessioned2021-06-07T17:48:40Z-
dc.date.copyright2013-02-21
dc.date.issued2013
dc.date.submitted2013-02-07
dc.identifier.citationAmmon, C. J. (1991), The isolation of receiver effects from teleseismic P-waveforms, Bull. Seismol. Soc. Am., 81(6), 2504-2510.
Ammon, C. J., G. E. Randall, and G. Zandt (1990), On the nonuniqueness of receiver function inversions, J. Geophys. Res., 95(B10), 15303-15318.
Argand, E. (1924), Le tectonique de l’Asie. Proceedings of the 13th International Geological Congress, 7, 171-372
Beaumont, C., R. A. Jamieson, M. H. Nguyen, and S. Medvedev (2004), Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen, J. Geophys. Res., 109(B6).
Berteussen, K. A. (1977), Moho depth determinations based on spectral-ratio analysis of Norsar long-period P-waves, Phys. Earth Planet. Inter., 15(1), 13-27.
Cassidy, J. F. (1992), Numerical experiments in broadband receiver function-analysis, Bull. Seismol. Soc. Am., 82(3), 1453-1474.
Chen, W. -P., and P. Molnar (1981), Constraints on the seismic-wave velocity structure beneath the Tibetan Plateau and their tectonic implications, J. Geophys. Res., 86(Nb7), 5937-5962.
Chen, W. -P., M. Martin, T. -L. Tseng, R. L. Nowack, S. -H. Hung, and B. -S. Huang (2010), Shear-wave birefringence and current configuration of converging lithosphere under Tibet, Earth Planet. Sci. Lett., 295(1-2), 297-304.
Chen, Y. L., F. L. Niu, R. F. Liu, Z. B. Huang, H. Tkalcic, L. Sun, and W. Chan (2010), Crustal structure beneath China from receiver function analysis, J. Geophys. Res., 115.
Christensen, N. I. (1996), Poisson's ratio and crustal seismology, J. Geophys. Res., 101(B2), 3139-3156.
Christensen, N. I., and W. D. Mooney (1995), Seismic velocity structure and composition of the continental crust - a global view, J. Geophys. Res., 100(B6), 9761-9788.
Dahlen, F.A. and J. Tromp (1998), Theoretical Global Seismology, Princeton University Press, Princeton , NJ.
Demets, C., R. G. Gordon, D. F. Argus, and S. Stein (1994), Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions, Geophys. Res. Lett., 21(20), 2191-2194.
Dueker, K. G., and A. F. Sheehan (1997), Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track, J. Geophys. Res., 102(B4), 8313-8327.
Eaton, D. W., and J. F. Cassidy (1996), A relic Proterozoic subduction zone in western Canada: New evidence from seismic reflection and receiver function data, Geophys. Res. Lett., 23(25), 3791-3794.
Fu, Y. Y. V., Y. J. Chen, A. B. Li, S. Y. Zhou, X. F. Liang, G. Y. Ye, G. Jin, M. M. Jiang, and J. Y. Ning (2008), Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements, Geophys. Res. Lett., 35(2).
Griffin, J. D., R. L. Nowack, W. -P. Chen, and T. -L. Tseng (2011), Velocity structure of the Tibetan lithosphere: constraints from P-wave travel times of regional earthquakes, Bull. Seismol. Soc. Am., 101(4), 1938-1947.
Houseman, G. A., D. P. Mckenzie, and P. Molnar (1981), Convective instability of a thickened boundary-layer and its relevance for the thermal evolution of continental convergent belts, J. Geophys. Res., 86(Nb7), 6115-6132.
Huang, W. C., et al. (2000), Seismic polarization anisotropy beneath the central Tibetan Plateau, J. Geophys. Res., 105(B12), 27979-27989.
Hung, S. -H., W. -P. Chen, and L. -Y. Chiao (2011), A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to P and S wave data from central Tibet, J. Geophys. Res., 116.
Hung, S. -H., W. -P. Chen, L. -Y. Chiao, and T. -L. Tseng (2010), First multi-scale, finite-frequency tomography illuminates 3-D anatomy of the Tibetan Plateau, Geophys. Res. Lett., 37.
Julia, J., J. Vila, and R. Macia (1998), The receiver structure beneath the Ebro Basin, Iberian Peninsula, Bull. Seismol. Soc. Am., 88(6), 1538-1547.
Julia, J., C. J. Ammon, and R. B. Herrmann (2003), Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities, Tectonophysics, 371(1-4), 1-21.
Julia, J., C. J. Ammon, R. B. Herrmann, and A. M. Correig (2000), Joint inversion of receiver function and surface wave dispersion observations, Geophys. J. Int., 143(1), 99-112.
Kind, R., J. Ni, W. J. Zhao, J. X. Wu, X. H. Yuan, L. S. Zhao, E. Sandvol, C. Reese, J. Nabelek, and T. Hearn (1996), Evidence from earthquake data for a partially molten crustal layer in southern Tibet, Science, 274(5293), 1692-1694.
Kosarev, G., R. Kind, S. V. Sobolev, X. Yuan, W. Hanka, and S. Oreshin (1999), Seismic evidence for a detached Indian lithospheric mantle beneath Tibet, Science, 283(5406), 1306-1309.
Lai, Y. -C. (2009), Seismic anisotropy beneath the orogeny from surface-wave analyses: The observations in Taiwan and the Tibetan Plateau, Ph. D. thesis, National Central University, Jhongli,Taiwan.
Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84(Nb9), 4749-4762.
Last, R. J., A. A. Nyblade, C. A. Langston, and T. J. Owens (1997), Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities, J. Geophys. Res., 102(B11), 24469-24483.
Levin, V., and J. Park (1998), P-SH conversions in layered media with hexagonally symmetric anisotropy: A cookbook, Pure and Applied Geophysics, 151(2-4), 669-697.
Liang, C. T., and X. D. Song (2006), A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography, Geophys. Res. Lett., 33(22).
Ligorria, J. P., and C. J. Ammon (1999), Iterative deconvolution and receiver-function estimation, Bull. Seismol. Soc. Am., 89(5), 1395-1400.
Mcnamara, D. E., T. J. Owens, and W. R. Walter (1995), Observations of regional phase propagation across the Tibetan Plateau, J. Geophys. Res., 100(B11), 22215-22229.
Mcnamara, D. E., T. J. Owens, P. G. Silver, and F. T. Wu (1994), Shear-wave anisotropy beneath the Tibetan Plateau, J. Geophys. Res., 99(B7), 13655-13665.
McNamara, D. E., W. R. Walter, T. J. Owens, and C. J. Ammon (1997), Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography, J. Geophys. Res., 102(B1), 493-505.
Mejia, J. A. (2001), Lithospheric structure beneath the Tibetan Plateau using simultaneous inversion of surface wave dispersion and receiver functions, Ph. D. thesis, Saint Louis University, St. Louis, Missouri, United States.
Molnar, P. (1988), A review of geophysical constraints on the deep-structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications, Phil. Trans. R. Soc. Lond., 326(1589), 33-88.
Molnar, P., and P. Tapponnier (1975), Cenozoic tectonics of Asia - effects of a continental collision, Science, 189(4201), 419-426.
Molnar, P., and J. M. Stock (2009), Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics, Tectonics, 28.
Nabelek, J., G. Hetenyi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. P. Su, J. Chen, B. S. Huang, and Hi-CLIMB Team (2009), Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment, Science, 325(5946), 1371-1374.
Nelson, K. D., et al. (1996), Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results, Science, 274(5293), 1684-1688.
Nowack, R. L., W. -P. Chen, and T. -L. Tseng (2010), Application of gaussian-beam migration to multiscale imaging of the lithosphere beneath the Hi-CLIMB array in Tibet, Bull. Seismol. Soc. Am., 100(4), 1743-1754.
Owens, T. J., and G. Zandt (1997), Implications of crustal property variations for models of Tibetan plateau evolution, Nature, 387(6628), 37-43.
Ozalaybey, S., M. K. Savage, A. F. Sheehan, J. N. Louie, and J. N. Brune (1997), Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves, Bull. Seismol. Soc. Am., 87(1), 183-199.
Rapine, R., F. Tilmann, M. West, J. Ni, and A. Rodgers (2003), Crustal structure of northern and southern Tibet from surface wave dispersion analysis, J. Geophys. Res., 108(B2).
Searle, M. P., et al. (1987), The closing of Tethys and the tectonics of the Himalaya, Geol. Soc. Am. Bull., 98(6), 678-701.
Sella, G. F., T. H. Dixon, and A. L. Mao (2002), REVEL: A model for Recent plate velocities from space geodesy, J. Geophys. Res., 107(B4).
Shaw, P. R., and J. A. Orcutt (1985), Waveform inversion of seismic refraction data and applications to young Pacific crust, Geophys. J. R. Astr. Soc., 82(3), 375-414.
Styron, R., M. Taylor, and K. Okoronkwo (2010), Database of active structures from the Indo-Asian Collision, EOS, 91(20), 181.
Tseng, T. -L., W. -P. Chen, and R. L. Nowack (2009), Northward thinning of Tibetan crust revealed by virtual seismic profiles, Geophys. Res. Lett., 36.
Wang, Q., et al. (2001), Present-day crustal deformation in China constrained by global positioning system measurements, Science, 294(5542), 574-577.
Willett, S. D., and C. Beaumont (1994), Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision, Nature, 369(6482), 642-645.
Wittlinger, G., V. Farra, G. Hetenyi, J. Vergne, and J. Nabelek (2009), Seismic velocities in Southern Tibet lower crust: a receiver function approach for eclogite detection, Geophys. J. Int., 177(3), 1037-1049.
Woodhouse, J., Seismological Algorithms, chap. The Calculation of Eigenfrequencies and Eigenfunctions of te Free oscillations of the Earth and the Sun, Academic Press Limited, 1988.
Xu, Z. J., X. D. Song, and L. P. Zhu (2012), Crustal and uppermost mantle S velocity structure under Hi-CLIMB seismic array in central Tibetan Plateau from joint inversion of surface wave dispersion and receiver function data, Tectonophysics, 584, 209-220.
Yang, Y. J., M. H. Ritzwoller, Y. Zheng, W. S. Shen, A. L. Levshin, and Z. J. Xie (2012), A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet, J. Geophys. Res., 117.
Yin, A., and T. M. Harrison (2000), Geologic evolution of the Himalayan-Tibetan orogen, Annu. Rev. Earth. Planet. Sci., 28, 211-280.
Yuan, X. H., J. Ni, R. Kind, J. Mechie, and E. Sandvol (1997), Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment, J. Geophys. Res., 102(B12), 27491-27500.
Zhang, H., J. M. Zhao, and Q. Xu (2012), Crustal and upper mantle velocity structure beneath central Tibet by P-wave teleseismic tomography, Geophys. J. Int., 190(3), 1325-1334.
Zhang, Z. J., and S. L. Klemperer (2005), West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data, J. Geophys. Res., 110(B9).
Zhao, W. L., and W. J. Morgan (1987), Injection of Indian crust into Tibetan lower crust - a two-dimensional finite-element model study, Tectonics, 6(4), 489-504.
Zhou, L. M., W. -P. Chen, and S. Ozalaybey (2000), Seismic properties of the central Indian shield, Bull. Seismol. Soc. Am., 90(5), 1295-1304.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15605-
dc.description.abstract西藏為印度與歐亞兩個大陸板塊經過約5千萬年的碰撞而生成的高原,是全球地殼最厚、平均海拔最高且面積最廣之地質區塊。本研究中,我們將接收函數與頻散曲線兩種地震資料結合在一起來逆推,以求得南北向的Hi-CLIMB線性陣列下方之速度構造。接收函數對垂直速度變化為較敏感,但面臨地層速度與厚度之間的權衡 (trade-off) 問題,表面波資料的加入可以有效增加絕對平均S波速度 (VS) 的約束,得到更可靠的解。對於表面波頻散資料,我們直接採用Lai (2009) 以雙站法所量測的雷利波相速度值;至於接收函數,我們將Z分量對R分量進行解迴旋計算接收函數波形,並採用高斯低通濾波 (Gaussian filter width) 為1.0與2.5之兩種不同頻寬,最後將各測站之頻散曲線與依據方位角以及慢度疊加後之接收函數同時進行逆推。研究結果顯示拉薩地區之莫荷面深度約為75公里,上部地函80至120公里深之平均速度約為4.6公里/秒。相對的,羌塘地區之莫荷面較淺,約為65公里,而上部地函平均速度約為4.3公里/秒,比拉薩地區明顯慢了約7%,此南北上部地函的速度差異比Hung et al. (2011) 在層析成像中的結果5%更強。莫荷面沿著Hi-CLIMB剖面的變化與前人研究Tseng et al. (2009) 和Nowack et al. (2010) 一致。我們從結果中還觀察到一層5至10公里厚且較連續的低速帶分布在Hi-CLIMB下方15至20公里處,伴隨著斷續出現的30公里深低速層,此外還有一個明顯的低速層在50公里下部地殼分布於雅魯藏布縫合帶附近。此區域包含三種深度的低速帶,中間層較不明確,但整體與Hung et al. (2011) 的地殼低速層尺度相符,推測可能與隆格爾裂谷 (Lunggar rift) 有所關連。zh_TW
dc.description.abstractTibetan Plateau is a product of the continental collision between India and Eurasia beginning about 50 million years ago. The crust under Tibet has been greatly thickened and the Moho depth is the deepest of the world. In this study, we use joint inversion of receiver functions and surface wave dispersion curves to estimate the velocity structure under each seismic station along a north-south array of Hi-CLIMB experiment. Receiver functions highlight the P-to-S conversions generated by layered discontinuities under a station of sub-vertical waves, thus the results are sensitive to depth of velocity contrast in fine structures. The trade-off between absolute velocity and depth of the discontinuity is eliminated by including independent constraints from the surface wave dispersion. For the surface wave constraints, we use phase velocities of the fundemantal Rayleigh wave measured under Hi-CLIMB by Lai (2009) using two-station method. As for the receiver functions, we select teleseismic earthquakes and deconvolve Z from R components for each station for two different frequency conditions (Gaussian width of 1.0 and 2.5) . Because of the azimuthal variations, we focus on the earthquakes coming from the southeast quadrant. The results show that the average depth of Moho undersouthern-central Lhasa terrane is about 75km, and the corresponding shear wave velocity (VS) in the upper mantle is about 4.6 km/s at the depth between 80 and 120 km. In contrary, the average Moho depth beneath Qiangtang terraneis about 10 km shallower and the upper mantle VS is slower by nearly 7% (i.e., VS of ~ 4.3 km/s) . Such contrast in VS between the two terranes is also observed in the finite frequency tomography by Hung et al. (2010, 2011) but the intensity is more prominent in our model. The variation of Moho depths along the array is in good agreement with the previous estimates using virtual seismic reflection profiling of SsPmp (Tseng et al., 2009) and Gaussian beam imaging (Nowack et al., 2010) . We also detect several thin layers (~5-10 km) of low velocity zone at different depths within the Tibetan crust. The shallowest one is at the depth of about 15-20 km, which extends almost continuously under Lhasa and Qiangtang terranes accompanied with some snatchy low velocity layers at depth of ~30 km. Another low velocity layer is clearly identified at the depth of about 50 km beneath the southernmost Lhasa near the Yarlung-Zanbo suture. In this region, the crustal structure contains a total of three low velocity layers that coincide with the crustal-scale, low-velocity anomaly in the tomography (Hung et al., 2011) and could be associated with the active Lunggar rift.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:48:40Z (GMT). No. of bitstreams: 1
ntu-102-R99241314-1.pdf: 24632749 bytes, checksum: 57ccc0a5df150c1789e4cbbcaae978bf (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 研究區域介紹 1
1.2 西藏岩石圈的前人研究和主要結果 3
1.3 研究動機與目的 5
1.4 本文論文內容 5
第二章 研究原理與方法 11
2.1 接收函數法原理 11
2.2 接收函數之計算 13
2.2.1 頻率域相除之解迴旋法 13
2.2.2 時間域迭代之解迴旋法. 13
2.3 表面波頻散原理 15
2.4 聯合逆推原理 16
2.4.1 接收函數之逆推 16
2.4.2 聯合逆推之矩陣設置 18
第三章 資料篩選與分析 26
3.1 聯合逆推之接收函數設定 26
3.1.1 地震資料來源與篩選 26
3.1.2 接收函數之資料處理 27
3.1.3 時間域解迴旋之穩定度測試及參數設定 27
3.2 聯合逆推之頻散曲線 29
3.3 聯合逆推法之初始模型與參數設定 30
3.3.1 初始模型之設定 30
3.3.2 逆推參數之設定 31
3.4 模擬測試 33
第四章 研究結果 53
4.1 地殼厚度沿著Hi-CLIMB的變化 53
4.2 羌塘與拉薩地塊之速度差異 55
4.3 地殼中之低速層分布 56
4.4 地震分組之影響 58
4.4.1 結合同方位角但不同慢度之接收函數 (東南,group1+group2) 58
4.4.2 不同方位之地震 (東北,group3) 58
第五章 比較與討論 72
5.1 Hi-CLIMB下方的莫荷面深度變化 72
5.2 S波速度在上部地函的南北差異 74
5.3 各深度的低速帶分布與連通性 76
5.4 雅魯藏布縫合帶附近之低速帶 78
第六章 結論 86
參考文獻 87
附錄A 使用地震列表 94
附錄B 地震規模與訊噪比之關係 96
附錄C 各測站疊加接收函數時所使用之地震列表 97
附錄D 西藏Vp/Vs比值之設定及影響 103
附錄E 各測站之逆推結果 (group1) 105
dc.language.isozh-TW
dc.title利用接收函數及表面波頻散之聯合逆推法探討西藏Hi-CLIMB陣列下之地體構造zh_TW
dc.titleCrustal Structure beneath the Hi-CLIMB Array in Tibet from Joint Inversion of Receiver Functions and Rayleigh Wave Dispersionen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳勁吾,黃柏壽,洪淑蕙,喬凌雲
dc.subject.keyword西藏,地殼構造,接收函數,表面波,大陸碰撞,zh_TW
dc.subject.keywordTibet,crustal structure,receiver function,surface wave,continental collision,en
dc.relation.page120
dc.rights.note未授權
dc.date.accepted2013-02-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
24.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved