Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15604
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基
dc.contributor.authorHsing-Ju Liuen
dc.contributor.author劉幸如zh_TW
dc.date.accessioned2021-06-07T17:48:38Z-
dc.date.copyright2013-02-21
dc.date.issued2013
dc.date.submitted2013-02-08
dc.identifier.citationBack, M., Bauer, M., Stanjek, H., & Peiffer, S. (2011). Sequestration of CO2 after reaction with alkaline earth metal oxides CaO and MgO. Applied Geochemistry, 26(7), 1097-1107. doi: 10.1016/j.apgeochem.2011.03.125
Bales, R. C., & Morgan, J. J. (1985). Dissolution kinetics of chrysotile at pH 7 to 10. Geochimica Et Cosmochimica Acta, 49(11), 2281-2288. doi: 10.1016/0016-7037(85)90228-5
Bonenfant, D., Kharoune, L., SauveA’, S., Hausler, R., Niquette, P., Mimeault, M., & Kharoune, M. (2008). CO2 sequestration potential of steel slags at ambient pressure and temperature. Industrial & Engineering Chemistry Research, 47(20), 7610-7616. doi: 10.1021/ie701721j
Chang, E. -., Pan, S., Chen, Y., Chu, H., Wang, C., & Chiang, P. (2011). CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. Journal of Hazardous Materials, 195(0), 107-114. doi: 10.1016/j.jhazmat.2011.08.006
Dahlin, D. C., O'Connor, W. K., Nilsen, D. N., Rush, G. E., Walters, R. P., & Turner, P. C. (2000 Jan 01). A method for permanent CO2 mineral carbonation. 17th Annual International Pittsburgh Coal Conference, Pittsburgh, PA. , Proceedings of the 17th Annual International Pittsburgh Coal Conference, 2000 1174-1190.
Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffe, B., & Guyot, F. (2009). Carbonation of ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling. Chemical Geology, 265(1–2), 63-78. doi: 10.1016/j.chemgeo.2009.01.022
De Windt, L., Chaurand, P., & Rose, J. (2011). Kinetics of steel slag leaching: Batch tests and modeling. Waste Management, 31(2), 225-235. doi: 10.1016/j.wasman.2010.05.018
Eloneva, S., Teir, S., Salminen, J., Fogelholm, C., & Zevenhoven, R. (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy, 33(9), 1461-1467. doi: 10.1016/j.energy.2008.05.003
Fagerlund, J., Teir, S., Nduagu, E., & Zevenhoven, R. (2009). Carbonation of magnesium silicate mineral using a pressurised gas/solid process. Energy Procedia, 1(1), 4907-4914. doi: 10.1016/j.egypro.2009.02.321
Fagerlund, J., Teir, S., Nduagu, E., & Zevenhoven, R. (2009). Carbonation of magnesium silicate mineral using a pressurised gas/solid process. Energy Procedia, 1(1), 4907-4914. doi: 10.1016/j.egypro.2009.02.321
Gamsjager, H., & Reiterer, F. (1979). Investigation of equilibria involving carbon dioxide, carbonates and water. Environment International, 2(4–6), 419-424. doi: 10.1016/0160-4120(79)90018-7
Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., & Rush, H. (2007). Ex situ aqueous mineral carbonation. Environmental Science & Technology, 41(7), 2587-2593. doi: 10.1021/es0619253
Golubev, S. V., Pokrovsky, O. S., & Schott, J. (2005). Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of mg and ca silicates at 25 °C. Chemical Geology, 217(3–4), 227-238. doi: 10.1016/j.chemgeo.2004.12.011
Ho, C., Shih, S., & Lee, C. (1996). Influence of CO2 and O2 on the reaction of Ca(OH)2 under spray-drying flue gas desulfurization conditions. Industrial & Engineering Chemistry Research, 35(11), 3915-3919. doi: 10.1021/ie9600506
Huijgen, W. J. J., & Comans, R. N. J. (2003). Carbon dioxide sequestration by mineral carbonation: Literature review. ( No. ECN-C--03-016). Petten, Holland.: ECN publication.
Huijgen, W., Witkamp, G., & Comans, R. (2004). Mineral CO2 sequestration in alkaline solid residues. The Seventh International Conference on Greenhouse Gas Control Technologies(GHGT-7), Vancouver, Canada.
Huijgen, W. J. J., & Comans, R. N. J. (2005). Mineral CO2 sequestration by steel slag carbonation. Environmental Science & Technology, 39(24), 9676-9682. doi: 10.1021/es050795f
Huijgen, W. J. J., & Comans, R. N. J. (2006). Carbonation of steel slag for CO2 sequestration:a?‰ leaching of products and reaction mechanisms. Environmental Science & Technology, 40(8), 2790-2796. doi: 10.1021/es052534b
Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C., & Sutter, L. L. (2009). Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environmental Science & Technology, 43(6), 1986-1992. doi: 10.1021/es802910z
Iizuka, A., Fujii, M., Yamasaki, A., & Yanagisawa, Y. (2004). Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Industrial & Engineering Chemistry Research, 43(24), 7880-7887. doi: 10.1021/ie0496176
Iyer, R. (2002). The surface chemistry of leaching coal fly ash. Journal of Hazardous Materials, 93(3), 321-329. doi: 10.1016/S0304-3894(02)00049-3
Krevor, S. C., & Lackner, K. S. (2009). Enhancing process kinetics for mineral carbon sequestration. Energy Procedia, 1(1), 4867-4871. doi: 10.1016/j.egypro.2009.02.315
Lackner, K. S. (2003). A guide to CO2 sequestration. Science, 300(5626), 1677-1678. doi: 10.1126/science.1079033
Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce Jr., E. L., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153-1170. doi: 10.1016/0360-5442(95)00071-N
Lekakh, S. N., Rawlins, C. H., Robertson, D. G. C., Richards, V. L., & Peaslee, K. D. (2008). Kinetics of aqueous leaching and carbonization of steelmaking slag. Metallurgical and Materials Transactions B, 39(1), 125-134. doi: 10.1007/s11663-007-9112-8
Lekakh, S. N., Robertson, D. G. C., Rawlins, C. H., Richards, V. L., & Peaslee, K. D. (2008). Investigation of a two-stage aqueous reactor design for carbon dioxide sequestration using steelmaking slag. Metallurgical and Materials Transactions B, 39(3), 484-492. doi: 10.1007/s11663-008-9155-5
Li, Y., Qi, H., You, C., & Xu, X. (2007). Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures. Fuel, 86(5–6), 785-792. doi: 10.1016/j.fuel.2006.09.011
Liu, C., Shih, S., & Lin, R. (2002). Kinetics of the reaction of Ca(OH)2/fly ash sorbent with SO2 at low temperatures. Chemical Engineering Science, 57(1), 93-104. doi: 10.1016/S0009-2509(01)00354-2
Liu, Z., & Dreybrod, W. (1997). Dissolution kinetics of calcium carbonate minerals in H2O CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O + CO2 → H+ + HCO3−. Geochimica Et Cosmochimica Acta, 61(14), 2879-2889. doi: 10.1016/S0016-7037(97)00143-9
Liu, Z., & Dreybrod, W. (1997). Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O + CO2 → H+ + HCO3−. Geochimica Et Cosmochimica Acta, 61(14), 2879-2889. doi: 10.1016/S0016-7037(97)00143-9
Luigi Marini. (2006). Developments in geochemistry. Elsevier. doi: 10.1016/S0921-3198(06)80020-7
Mikhail, S. A., & Turcotte, A. M. (1995). Thermal behaviour of basic oxygen furnace waste slag. Thermochimica Acta, 263(0), 87-94. doi: 10.1016/0040-6031(94)02413-I
Montes-Hernandez, G., Perez-Lopez, R., Renard, F., Nieto, J. M., & Charlet, L. (2009). Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. Journal of Hazardous Materials, 161(2–3), 1347-1354. doi: 10.1016/j.jhazmat.2008.04.104
O’Connor, W. K., Dahlin, D. C., Rush, G. E., Gerdemann, S. J., Penner, L. R., & Nilsen, D. N. (2005). Aqueous mineral carbonation: mineral availability, pretreatment, reaction parametrics, and process studies ( No. DOE/ARC-TR-04-002).Office of Process Development National Energy Technology Laboratory Office of Fossil Energy, US DOE.
Olsen, A. A. (2007). Forsterite dissolution kinetics : Applications and implications for chemical weathering. (PhD., Virginia Polytechnic Institute and State University (Virginia Tech)).
Prigiobbe, V., Costa, G., Baciocchi, R., Hanchen, M., & Mazzotti, M. (2009). The effect of and salinity on olivine dissolution kinetics at. Chemical Engineering Science, 64(15), 3510-3515. doi: 10.1016/j.ces.2009.04.035
Seifritz, w. (1990). Disposal by means of silicates. Nature, 345, 486.
Shih, S., Ho, C., Song, Y., & Lin, J. (1999). Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Industrial & Engineering Chemistry Research, 38(4), 1316-1322. doi: 10.1021/ie980508z
Sipila, J., Teir, S., & Zevenhoven, R. (2008). Carbon dioxide sequestration by mineral carbonation literature review update 2005-2007. ( No. report VT 2008-1). Finland: Abo Akdemi university. doi: 978-952-12-2036-4
Teir, S., Eloneva, S., Fogelholm, C., & Zevenhoven, R. (2009). Fixation of carbon dioxide by producing hydromagnesite from serpentinite. Applied Energy, 86(2), 214-218. doi: 10.1016/j.apenergy.2008.03.013
Teir, S., Eloneva, S., & Zevenhoven, R. (2005). Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Conversion and Management, 46(18–19), 2954-2979. doi: 10.1016/j.enconman.2005.02.009
Uibu, M., Kuusik, R., Andreas, L., & Kirsimae, K. (2011). The CO2 -binding by ca-mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia, 4(0), 925-932. doi: 10.1016/j.egypro.2011.01.138
Uliasz-Bochenczyk, A., & Mokrzycki, E. (2006). Fly ashes from polish power plants and combined heat and power plants and conditions of their application for carbon dioxide utilization. Chemical Engineering Research and Design, 84(9), 837-842. doi: 10.1205/cherd.05145
Uliasz-Bocheńczyk, A., Mokrzycki, E., Piotrowski, Z., & Pomykała, R. (2009). Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in poland. Energy Procedia, 1(1), 4873-4879. doi: 10.1016/j.egypro.2009.02.316
Xu, A., Zhang, H., Yang, Y., Cui, J., He, D., & Tian, N. (2012). Optimization study of calcium leaching from steelmaking slag. Journal of Iron and Steel Research, International, 19(4), 34-68. doi: 10.1016/S1006-706X(12)60084-3
Xue, Y., Hou, H., & Zhu, S. (2009). Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of Hazardous Materials, 162(2–3), 973-980. doi: 10.1016/j.jhazmat.2008.05.131
潘述元. (2011). 在超重力旋轉填充床中進行煉鋼爐石之碳酸化反應研究. (碩士, 環境工程學研究所,國立台灣大學,台北。).
陳怡蒼. (2008). 轉爐石碳酸化之操作變數效應. (碩士, 化學工程學研究所,國立台灣大學,台北。).
陳駿華. (2008). 以流體化床進行濕式碳酸化反應之績效評量. (碩士, 環境工程學研究所,國立台灣大學,台北。).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15604-
dc.description.abstract二氧化碳與溫室效應議題於近年來在國際被廣泛討論,據此,本研究以漿體反應器進行轉爐石碳酸化之二氧化碳封存實驗,並探討其動力學行為。實驗所使用之轉爐石原料為中聯公司所提供,於常壓及純二氧化碳流速0.1 L/min下,進行不同溫度、及液固比之濕式碳酸化反應。
本研究熱重分析儀(TGA)決定轉爐石之碳酸化轉換率,結果發現反應進行60分鐘後,反應速率將會趨於平緩;然而,在反應進行120分鐘時,具有最佳碳酸化反應轉化率56.99%(操作條件為:純二氧化碳流速為0.1 L/min、液固比為20 mL/mg、粒徑為44 μm、及操作溫度為50 ℃);在二氧化碳的氣固相平衡方面,二氧化碳的淨輸入和封存量之相對誤差小於十個百分比,證明漿體反應器在二氧化碳的封存技術應用上極為可行。此外,本研究亦利用反面曲線法進行最佳操作條件的計算,發現最佳化操作條件為實驗進行120分鐘時,操作溫度為50 ℃,純二氧化流速為0.1 L/min、液固比為10 mL/g、粒徑為44 μm時會得到最佳預測轉換率63%。
此外,本研究利用縮核模式(SCM)探討本研究所進行之濕式碳酸化反應之反應機制,估算結果於三個模式中皆相近,但相較之下較適用的為擴散反應機制;在液固比(L/S)為5,不同反應溫度條件下,有效擴散係數(De)可從1.66 x 10-6 到 1.8 x 10-6 (cm/s)。另一方面,亦利用表面覆蓋模式進行動力學探討與動力學參數估算與分析,結果顯示表面覆蓋模式於本研究之適用性較佳。
zh_TW
dc.description.abstractIncreasing of carbon dioxide (CO2) concentration in the atmosphere may enhance the global warming effect. In this study, CO2 capture by accelerated carbonation of basic oxygen furnace (BOF) slag is performed under different liquid-to-solid (L/S) ratio and temperature in a slurry reactor. The BOF slag, provided by China Hi-ment Corporation, is rich in calcium content and exhibits alkaline properties, which is beneficial to carbonation reaction.
The result indicated that CO2 mass balance within the slurry reactor is quite acceptable and the relative percent difference (RPD) was less than 10%, which indicated that the slurry reactor was a viable method to capture CO2 by BOF slags. The maximum carbonation conversion of BOF slag achieved was 56.99% under an L/S ratio of 20 mL/g, a CO2 flow rate of 0.1 L/min and a pressure of 101.3 kPa at 50 oC for 120 min. In addition, the reaction product was identified as calcite (CaCO3) according to the observations of SEM and XRD.
Meanwhile, reaction kinetics of carbonation of BOF slag in the slurry reactor was evaluated by the shrinking core model (SCM) and surface coverage model. Based on the results of SCM, the rate-limiting step was found to be chemical reaction controlled in 20 minutes after carbonation was conducted; and then nd the diffusion provided all the extra carbonation conversion after 60 minutes. However, to define the difference between ash layer and gas film control may need to take further analysis.
Effective diffusivity (De) was ranged from 1.66 x 10-6 to 1.8 x 10-6 for different temperature at L/S = 5, the range of De value up to 103 at different L/S ratio. Furthermore, the reaction rate constant (ks) was determined by the surface coverage model, which the reaction time was in a good correlation with the carbonation conversion of BOF slag. It was thus concluded that carbonation of BOF slag in a slurry reactor is a viable method for CO2 capture.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:48:38Z (GMT). No. of bitstreams: 1
ntu-102-R97541211-1.pdf: 3980874 bytes, checksum: fb0dd6a1247e7b39915e5d118dcefcf7 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgement Ⅰ
中文摘要 Ⅱ
Abstract Ⅲ
Contents Ⅴ
List of Figures Ⅷ
List of Tables Ⅻ
Chapter 1 Introduction 1-1
1.1 Greenhouse Gas And Global Warming 1-1
1.2 Carbon Capture and Storage Technology 1-2
1.3 Objectives 1-3
Chapter 2 Literature Review 2-1
2.1 Carbonation Process 2-1
2.1.1 Natural weathering process 2-1
2.1.2 Aqueous carbonation process 2-3
2.1.3 Feedstock 2-5
2.2 Process Chemistry 2-8
2.2.1 Dissolution of gaseous CO2 2-9
2.2.2 Leaching of metal ions 2-10
2.2.3 CO2-H2O-Ca2+ system during aqueous carbonation 2-11
2.2.4 System factors 2-13
2.3 Kinetics Models 2-14
2.3.1 Shrinking core model 2-14
2.3.2 Surface coverage model 2-17
Chapter 3 Materials and Methods 3-1
3.1 Research Flowchart 3-1
3.2 Materials 3-2
3.2.1 Source of Materials 3-2
3.2.2 Procedure of Preparing Steelmaking Slag 3-2
3.3 Physico-chemical Analysis 3-4
3.3.1 Atomic Absorption Spectroscopy (AAS) 3-4
3.3.2 Scanning Electron Microscope (SEM) 3-4
3.3.3 X-Ray Diffractometry (XRD) 3-5
3.3.4 Composition Analysis 3-6
3.3.5 Thermo gravimetric Analysis (TGA) 3-7
3.4 Carbonation Experiment 3-7
Chapter 4 Results and Discussion 4-1
4.1 Quantitative and qualitative analysis 4-1
4.1.1 Physical-chemical properties 4-1
4.1.2 Leaching behavior 4-4
4.1.3 CO2 mass balance 4-5
4.1.4 Product characterization 4-8
4.2 Aqueous Carbonation 4-11
4.2.1 Effect of thermal pretreatment on carbonation 4-12
4.2.2 Effect of reaction time and temperature on carbonation 4-14
4.2.3 Effect of L/S ratio on carbonation 4-17
4.2.4 Response surface methodology (RSM) 4-20
4.3 Kinetic Models 4-23
4.3.1 Shrinking core model 4-23
4.3.2 Surface coverage model 4-30
Chapter 5 Conclusions and Recommendations 5-1
5.1 Conclusions 5-1
5.2 Recommendations 5-3
Reference A-1
Appendix B-1
A-Ⅰ Summaries of experimental conditions and results B-1
A-Ⅱ Shrinking core model fitting results B-7
dc.language.isoen
dc.title於漿體反應器中進行濕式碳酸化反應之績效評估zh_TW
dc.titlePerformance Evaluation of Aqueous Carbonation of BOF slag in a Slurry Reactor: Kinetics Studyen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張怡怡,顧洋,談駿嵩,陳奕宏
dc.subject.keyword鹼性固體廢棄物,轉爐石,濕式碳酸化,二氧化碳封存,縮核模式,表面覆蓋模式,zh_TW
dc.subject.keywordalkaline solid wastes,basic oxygen furnace slag,aqueous carbonation,CO2 sequestration surface coverage model,shrinking core model,en
dc.relation.page93
dc.rights.note未授權
dc.date.accepted2013-02-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved