Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15586
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭景暉
dc.contributor.authorYi-Jane Chenen
dc.contributor.author陳羿貞zh_TW
dc.date.accessioned2021-06-07T17:48:18Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-02-20
dc.identifier.citationAlmeida MA, Phillips C, Kula K, Tulloch C (1995). Stability of the palatal rugae as landmarks for analysis of dental casts. Angle Orthod 65(1):43-48.
AlSamak S, Gkantidis N, Bitsanis E, Christou P (2012). Assessment of potential orthodontic mini-implant insertion sites based on anatomical hard tissue parameters: a systematic review. Int J Oral Maxillofac Implants 27(4):875-887.
Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V et al. (2002). Cell differentiation by mechanical stress. FASEB J 16(2):270-272.
Ashmore JL, Kurland BF, King GJ, Wheeler TT, Ghafari J, Ramsay DS (2002). A 3-dimensional analysis of molar movement during headgear treatment. Am J Orthod Dentofacial Orthop 121(1):18-29.
Bae SM, Park HS, Kyung HM, Kwon OW, Sung JH (2002). Clinical application of micro-implant anchorage. J Clin Orthod 36(5):298-302.
Bailey LT, Esmailnejad A, Almeida MA (1996). Stability of the palatal rugae as landmarks for analysis of dental casts in extraction and nonextraction cases. Angle Orthod 66(1):73-78.
Barewal RM, Oates TW, Meredith N, Cochran DL (2003). Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 18(5):641-651.
Bernhart T, Freudenthaler J, Dortbudak O, Bantleon HP, Watzek G (2001). Short epithetic implants for orthodontic anchorage in the paramedian region of the palate. A clinical study. Clin Oral Implants Res 12(6):624-631.
Brighton CT, Strafford B, Gross SB, Leatherwood DF, Williams JL, Pollack SR (1991). The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J Bone Joint Surg Am 73(3):320-331.
Burger EH, Klein-Nulend J (1999). Mechanotransduction in bone--role of the lacuno-canalicular network. FASEB J 13 Suppl:S101-S112.
Carano A, Lonardo P, Velo S, Incorvati C (2005). Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Prog Orthod 6(1):82-97.
Chan DD, Van Dyke WS, Bahls M, Connell SD, Critser P, Kelleher JE et al. (2011). Mechanostasis in apoptosis and medicine. Prog Biophys Mol Biol 106(3):517-524.
Chang JZ, Chen YJ, Tung YY, Chiang YY, Lai EH, Chen WP et al. (2012). Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am J Orthod Dentofacial Orthop 141(3):279-288.
Chang MC, Chen YJ, Lee MY, Lin LD, Wang TM, Chan CP et al. (2010). Prostaglandin F(2alpha) stimulates MEK-ERK signalling but decreases the expression of alkaline phosphatase in dental pulp cells. Int Endod J 43(6):461-468.
Chen SR, Chen YJ, Yao CC, Chang HF, Chen KC. (2004). Analysis of craniofacial and dentoalveolar morphology in adult orthodontic patients with sagittal jaw discrepancy. J Taiwan Assoc Orthod 16(4):5-17.
Chen YH, Chang HH, Chen YJ, Lee D, Chiang HH, Yao CC (2008). Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study. Clin Oral Implants Res 19(1):99-106.
Chen YJ, Chang HH, Huang CY, Hung HC, Lai EH, Yao CC (2007). A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res 18(6):768-775.
Chen YJ, Chen YH, Lin LD, Yao CC (2006). Removal torque of miniscrews used for orthodontic anchorage--a preliminary report. Int J Oral Maxillofac Implants 21(2):283-289.
Cheng SJ, Tseng IY, Lee JJ, Kok SH (2004). A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 19(1):100-106.
Cho HJ (2006). Clinical applications of mini-implants as orthodontic anchorage and the peri-implant tissue reaction upon loading. J Calif Dent Assoc 34(10):813-820.
Cope J, Graham J. (2007). Treatment planning for temporary anchorage device applications in Cope, J. (Ed), OrthoTADs: the clinical guide and atlas, Under Dog Media, LP, pp. 67-88. (2007).
Costa A, Raffainl M, Melsen B (1998). Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 13(3):201-209.
Creekmore TD, Eklund MK (1983). The possibility of skeletal anchorage. J Clin Orthod 17(4):266-269.
Daimaruya T, Nagasaka H, Umemori M, Sugawara J, Mitani H (2001). The influences of molar intrusion on the inferior alveolar neurovascular bundle and root using the skeletal anchorage system in dogs. Angle Orthod 71(1):60-70.
Deguchi T, Takano-Yamamoto T, Kanomi R, Hartsfield JK, Jr., Roberts WE, Garetto LP (2003). The use of small titanium screws for orthodontic anchorage. J Dent Res 82(5):377-381.
Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495-516.
Erverdi N, Keles A, Nanda R (2004). The use of skeletal anchorage in open bite treatment: a cephalometric evaluation. Angle Orthod 74(3):381-390.
Erverdi N, Tosun T, Keles A (2002). A new anchorage site for the treatment of anterior open bite: zygomatic anchorage. A case report. World J Orthod 3(2):147-153. (2002b).
Freudenthaler JW, Haas R, Bantleon HP (2001). Bicortical titanium screws for critical orthodontic anchorage in the mandible: a preliminary report on clinical applications. Clin Oral Implants Res 12(4):358-363.
Gainsforth BL,Higley LB. (1945) A study of orthodontic anchorage possibilities in basal bone. Am J Orthod Oral Surg 31(8);406-416.
Giancotti, A., Muzzi, F., Greco, M. and Arcuri, C. (2002). Palatal implant-supported distalizing devices: clinical application of the Straumann Orthosystem. World J Orthod 3(2):135-139.
Gross A, McDonnell JM, Korsmeyer SJ (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899-1911.
Harzer W, Schneider M, Gedrange T (2004). Rapid maxillary expansion with palatal anchorage of the hyrax expansion screw--pilot study with case presentation. J Orofac Orthop 65(5):419-424.
Higuchi KW, Slack JM (1991). The use of titanium fixtures for intraoral anchorage to facilitate orthodontic tooth movement. Int J Oral Maxillofac Implants 6(3):338-344.
Hong RK, Heo JM, Ha YK (2005). Lever-arm and mini-implant system for anterior torque control during retraction in lingual orthodontic treatment. Angle Orthod 75(1):129-141.
Hoste S, Vercruyssen M, Quirynen M, Willems G (2008). Risk factors and indications of orthodontic temporary anchorage devices: a literature review. Aust Orthod J 24(2):140-148.
Hu S, Chen SM, Li XK, Qin R, Mei ZN (2007). Antitumor effects of chi-shen extract from Salvia miltiorrhiza and Paeoniae radix on human hepatocellular carcinoma cells. Acta Pharmacol Sin 28(8):1215-1223.
Jeng JH, Hahn LJ, Lu FJ, Wang YJ, Kuo MY (1994). Eugenol triggers different pathobiological effects on human oral mucosal fibroblasts. J Dent Res 73(5):1050-1055.
Kanomi R (1997). Mini-implant for orthodontic anchorage. J Clin Orthod 31(11):763-767.
Kim JW, Ahn SJ, Chang YI (2005). Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop 128(2):190-194.
Kircelli BH, Pektas ZO, Uckan S (2006). Orthopedic protraction with skeletal anchorage in a patient with maxillary hypoplasia and hypodontia. Angle Orthod 76(1):156-163.
Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T (2007). Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 131(1):9-15.
Lai EH, Yao CC, Chang JZ, Chen I, Chen YJ (2008). Three-dimensional dental model analysis of treatment outcomes for protrusive maxillary dentition: comparison of headgear, miniscrew, and miniplate skeletal anchorage. Am J Orthod Dentofacial Orthop 134(5):636-645.
Langberg BJ, Todd A (2004). Treatment of a Class I malocclusion with severe bimaxillary protrusion. Am J Orthod Dentofacial Orthop 126(6):739-746.
Leung MT, Lee TC, Rabie AB, Wong RW (2008). Use of miniscrews and miniplates in orthodontics. J Oral Maxillofac Surg 66(7):1461-1466.
Lim HJ, Choi YJ, Evans CA, Hwang HS (2011). Predictors of initial stability of orthodontic miniscrew implants. Eur J Orthod 33(5):528-532.
Lin JC, Liou EJ (2003). A new bone screw for orthodontic anchorage. J Clin Orthod 37(12):676-681.
Liou EJ, Pai BC, Lin JC (2004). Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 126(1):42-47.
Luzi C, Verna C, Melsen B (2007). A prospective clinical investigation of the failure rate of immediately loaded mini-implants used for orthodontic anchorage. Prog Orthod 8(1):192-201.
Maino, B., Mura, P. and Gianelly, A. (2002). A retrievable palatal implant for absolute anchorage in orthodontics. World J Orthod 3(2):125-134.
Matsuda N, Morita N, Matsuda K, Watanabe M (1998). Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249(2):350-354.
Mayr M, Hu Y, Hainaut H, Xu Q (2002). Mechanical stress-induced DNA damage and rac-p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. FASEB J 16(11):1423-1425.
Melsen B (2005). Mini-implants: Where are we? J Clin Orthod 39(9):539-547.
Melsen B, Lang NP (2001). Biological reactions of alveolar bone to orthodontic loading of oral implants. Clin Oral Implants Res 12(2):144-152.
Millar JB, Blevitt J, Gerace L, Sadhu K, Featherstone C, Russell P (1991). p55CDC25 is a nuclear protein required for the initiation of mitosis in human cells. Proc Natl Acad Sci U S A 88(23):10500-10504.
Misch, C. E. (1993). Contemporary implant dentistry. Mosby – Year Book
Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T (2003). Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 124(4):373-378.
Moon CH, Park HK, Nam JS, Im JS, Baek SH (2010). Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am J Orthod Dentofacial Orthop 138(1):51-57.
Motoyoshi M, Yoshida T, Ono A, Shimizu N (2007). Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 22(5):779-784.
Nagasaka, H., Sugawara, J., Kawamura, H., Kasahara, T., Umemori, M. and Mitani, H. (1999). A clinical evaluation on the efficacy of titanium miniplates as orthodontic anchorage. Orthod Waves 58(2):136-147.
Nagata A, Igarashi M, Jinno S, Suto K, Okayama H (1991). An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol 3(10):959-968.
Neidlinger-Wilke C, Wilke HJ, Claes L (1994). Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res 12(1):70-78.
Nigg EA (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21-32.
Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC et al. (2003). Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284(4):C934-C943.
Ohashi E, Pecho OE, Moron M, Lagravere MO (2006). Implant vs screw loading protocols in orthodontics. Angle Orthod 76(4):721-727.
Ohmae M, Saito S, Morohashi T, Seki K, Qu H, Kanomi R et al. (2001). A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop 119(5):489-497.
Oltvai ZN, Milliman CL, Korsmeyer SJ (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609-619.
Park HS (1999). The skeletal cortical anchorage using titanium microscrew implants. Korea J Orthod 29(6):699-706.
Park HS (2006). A miniscrew-assisted transpalatal arch for use in lingual orthodontics. J Clin Orthod 40(1):12-16.
Park HS, Bae SM, Kyung HM, Sung JH (2001). Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin Orthod 35(7):417-422.
Park HS, Kwon TG, Kwon OW (2004). Treatment of open bite with microscrew implant anchorage. Am J Orthod Dentofacial Orthop 126(5):627-636.
Park HS, Kyung HM, Sung JH (2002). A simple method of molar uprighting with micro-implant anchorage. J Clin Orthod 36(10):592-596.
Poggio PM, Incorvati C, Velo S, Carano A (2006). 'Safe zones': a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 76(2):191-197.
Porter JA, von Fraunhofer JA (2005). Success or failure of dental implants? A literature review with treatment considerations. Gen Dent 53(6):423-432.
Ramfjord, S. P. (1959). Indices for prevalence and incidence of periodontal disease. J Periodontal 30:51-59.
Reynders R, Ronchi L, Bipat S (2009). Mini-implants in orthodontics: a systematic review of the literature. Am J Orthod Dentofacial Orthop 135(5):564-519.
Roberts WE, Helm FR, Marshall KJ, Gongloff RK (1989). Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod 59(4):247-256.
Sanchez-Esteban J, Wang Y, Cicchiello LA, Rubin LP (2002). Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 282(3):L448-L456.
Santiago RC, de Paula FO, Fraga MR, Picorelli Assis NM, Vitral RW (2009). Correlation between miniscrew stability and bone mineral density in orthodontic patients. Am J Orthod Dentofacial Orthop 136(2):243-250.
Schatzle M, Mannchen R, Zwahlen M, Lang NP (2009). Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res 20(12):1351-1359.
Schoeman R, Subramanian L (1996). The use of orthognathic surgery to facilitate implant placement: a case report. Int J Oral Maxillofac Implants 11(5):682-684.
Sherwood KH, Burch JG, Thompson WJ (2002). Closing anterior open bites by intruding molars with titanium miniplate anchorage. Am J Orthod Dentofacial Orthop 122(6):593-600.
Southard TE, Buckley MJ, Spivey JD, Krizan KE, Casko JS (1995). Intrusion anchorage potential of teeth versus rigid endosseous implants: a clinical and radiographic evaluation. Am J Orthod Dentofacial Orthop 107(2):115-120.
Stanford CM, Morcuende JA, Brand RA (1995). Proliferative and phenotypic responses of bone-like cells to mechanical deformation. J Orthop Res 13(5):664-670.
Sugawara J (1999). Dr. Junji Sugawara on the skeletal anchorage system. Interview by Dr. Larry W. White. J Clin Orthod 33(12):689-696.
Sugawara, J., Umemori, M., Mitani, H., Nagasaka, H. and Kawamura, H. (1998). Orthodontic treatment for class III malocclusion using a titanium miniplate as an anchorage. Orthod Waves 57, 25-35.
Sung JH, Kyung HM, Bae SM, Park HS, Kwon OW, McNamara JA. (2006). Microimplants in Orthodontics. Dentos.
Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I (2010). Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition. J Biol Chem 285(22):16978-16990.
Tseng YC, Hsieh CH, Chen CH, Shen YS, Huang IY, Chen CM (2006). The application of mini-implants for orthodontic anchorage. Int J Oral Maxillofac Surg 35(8):704-707.
Turley PK, Kean C, Schur J, Stefanac J, Gray J, Hennes J et al. (1988). Orthodontic force application to titanium endosseous implants. Angle Orthod 58(2):151-162.
Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H (1999). Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 115(2):166-174.
Wang YC, Liou EJ (2008). Comparison of the loading behavior of self-drilling and predrilled miniscrews throughout orthodontic loading. Am J Orthod Dentofacial Orthop 133(1):38-43.
Wehrbein H, Merz BR, Diedrich P, Glatzmaier J (1996). The use of palatal implants for orthodontic anchorage. Design and clinical application of the orthosystem. Clin Oral Implants Res 7(4):410-416.
Verborgt O, Gibson GJ, Schaffler MB (2000). Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15(1):60-67.
Weyts FA, Bosmans B, Niesing R, van Leeuwen JP, Weinans H (2003). Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int 72(4):505-512.
Wiechmann D, Meyer U, Buchter A (2007). Success rate of mini- and micro-implants used for orthodontic anchorage: a prospective clinical study. Clin Oral Implants Res 18(2):263-267.
Wilmes B, Drescher D (2011). Impact of bone quality, implant type, and implantation site preparation on insertion torques of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Surg 40(7):697-703.
Wilmes B, Ottenstreuer S, Su YY, Drescher D (2008a). Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop 69(1):42-50.
Wilmes B, Panayotidis A, Drescher D (2011). Fracture resistance of orthodontic mini-implants: a biomechanical in vitro study. Eur J Orthod 33(4):396-401.
Wilmes B, Su YY, Sadigh L, Drescher D (2008b). Pre-drilling force and insertion torques during orthodontic mini-implant insertion in relation to root contact. J Orofac Orthop 69(1):51-58.
Wu TY, Kuang SH, Wu CH (2009). Factors associated with the stability of mini-implants for orthodontic anchorage: a study of 414 samples in Taiwan. J Oral Maxillofac Surg 67(8):1595-1599.
Xing L, Boyce BF (2005). Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Biophys Res Commun 328(3):709-720.
Yao CC, Lai EH, Chang JZ, Chen I, Chen YJ (2008). Comparison of treatment outcomes between skeletal anchorage and extraoral anchorage in adults with maxillary dentoalveolar protrusion. Am J Orthod Dentofacial Orthop 134(5):615-624.
Yao CC, Lee JJ, Chen HY, Chang ZC, Chang HF, Chen YJ (2005a). Maxillary molar intrusion with fixed appliances and mini-implant anchorage studied in three dimensions. Angle Orthod 75(5):754-760.
Yao CC, Wu CB, Wu HY, Kok SH, Chang HF, Chen YJ (2004). Intrusion of the overerupted upper left first and second molars by mini-implants with partial-fixed orthodontic appliances: a case report. Angle Orthod 74(4):550-557.
You L, Cowin SC, Schaffler MB, Weinbaum S (2001). A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech 34(11):1375-1386.
Ziegler U, Groscurth P (2004). Morphological features of cell death. News Physiol Sci 19:124-128.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15586-
dc.description.abstract近年來,應用迷你植體所發展出的齒顎矯正新式治療已經為傳統技術增添全新樣貌。傳統齒列矯正治療經常利用後牙、鄰牙或口外裝置作為矯正錨定,以避免治療過程中發生不符合治療目標的牙齒移位。迷你植體錨定是指在患者的顎骨或齒槽骨選擇適當區域植入迷你骨釘或迷你骨板等迷你植體,藉以提供穩定的骨性錨定,如此可完全取代傳統矯正錨定。迷你植體的優點包括可立即受力、毋需患者合作、可提升治療效率、增進成年患者接受治療之意願。植入迷你骨板需翻辦手術且術後傷口難免腫痛,迷你骨釘的植入過程則相對簡易,因此迷你骨釘的應用與研發逐漸成為矯正迷你植體的主流。迷你植體錨定可大幅擴展矯正牙齒移動範圍,極可能突破傳統治療極限,本研究首先擬評估應用迷你植體錨定及固定矯正裝置進行上顎大臼齒壓入治療的效果。在矯正治療受力過程中,多數迷你植體能成功做為穩定之骨性錨定,但也有可能發生鬆動終至失敗,若能探討相關原因並適當改善臨床流程,將有助於增進迷你植體錨定之穩定性,因此本研究也將探討影響迷你植體失敗率的臨床因素。如上所述,穩定之骨性錨定可持續抵抗矯正力量之反作用力,但是矯正醫師也須避免施力過當的風險,矯正力量過大可能傷害牙周與迷你植體周圍的骨組織及骨細胞,本研究的第二部份將透過精確控制細胞受力條件的體外實驗模式,探討高度張力刺激對於類骨母細胞的生長活性及細胞分裂週期之影響。
材料與方法: 本研究收集22位患者治療前後的上顎牙齒模型,以三維數位儀分析上顎大臼齒壓入治療的位移變化。迷你植體失敗率研究則是以回溯性方式收集323患者所使用共計851支迷你植體的資料,依序建置2個資料庫(分別為359支植體/129患者,492支植體/194患者),以統計各種迷你植體失敗率並透過單變項分析檢測各項關於患者特徵、迷你植體本身、及植入過程的因素是否與迷你植體失敗率有所關聯,再進一步以多變項邏輯式迴歸分析探討可預測迷你植體失敗率的顯著因素。至於細胞受力實驗,則是將MG-63類骨母細胞株培養於具伸縮彈性的培養皿,施以周期性張力刺激(15%, 0.5 Hz) 24或48小時,再檢測細胞活性及細胞分裂週期變化,另以RT-PCR技術分析與細胞分裂週期及細胞自我凋亡有關的基因表現。
結果: 本研究分析22位患者合計43個上顎大臼齒與32個小臼齒治療前後的三度空間位移變化,結果證實迷你植體能有效率地完成上顎後牙過度萌出之絕對壓入治療,直接受力的第一大臼齒壓入程度平均達3mm以上。迷你植體的統計結果: 迷你骨板失敗率低於5%,迷你骨釘失敗率依其種類而異(10% ~25%),第一個資料庫的單變項分析結果顯示下列因素顯著影響迷你植體的失敗率: 患者年齡、迷你植體種類、迷你植體種植位置、應用迷你植體進行的牙齒矯正移動型式,而多變項邏輯式迴歸分析則發現當患者年齡較輕、迷你植體種類為骨釘、種植於下顎骨,三項因素之存在皆可預測迷你植體失敗風險將顯著升高。本研究的第二個資料庫分析結果也顯示迷你骨板的失敗率明顯低於純鈦預鑽迷你骨釘及不鏽鋼自鑽迷你骨釘,單變項分析發現下列情形之迷你植體失敗率明顯著較高:迷你骨釘為自鑽型、使用於牙齒扶正、種植處骨密度較低、迷你骨釘周圍軟組織發炎、植入三週內即開始受力。多變項邏輯式迴歸分析則顯示迷你植體周圍軟組織發炎及迷你植體植入三週內即開始受力,是迷你植體失敗風險大幅升高的最顯著因素。此外,本研究經由細胞受力實驗證實高度張力刺激對MG-63類骨母細胞的生長活性所造成之傷害: 不僅細胞分裂增生受抑制,同時也造成細胞週期停滯、細胞自我凋亡,以及調控細胞分裂之基因表現降低。
結論: 迷你植體錨定確實能取代傳統矯正錨定,擴大牙齒矯正移動範圍,有效達成上顎大臼齒絕對壓入之矯正移動。探討影響迷你植體失敗的相關因素將有助於臨床醫師防範未然以降低其失敗率;雖然迷你骨板的失敗率低於迷你骨釘,但植入及取出過程皆需進行翻瓣手術。使用穩定之迷你植體作為骨性錨定時,矯正醫師更需謹慎控制矯正力量大小,以避免過大力量刺激加諸於牙齒及迷你植體周圍骨細胞的傷害效應。
zh_TW
dc.description.abstractBackground/purpose: Mini-implant anchorage have expanded the envelope of orthodontic tooth movement and broadened the therapeutic spectrum in orthodontics. However, mini-implants failure due to loosening during orthodontic loading remained the problem and the determination of specific clinical features that affect the stability of mini-implants has become crucial. The first part of this study aimed to investigate the envelope of intrusive movement of maxillary molars in patients treated with fixed orthodontic appliances and mini-implants anchorage, and to retrospectively explore possible factors affecting the success and failure rates of orthodontic mini-implants. Mechanical loading provides an anabolic stimulus for bone. However, heavy force loading may exert excessive stress on the bone tissue surrounding mini-implants. The second part of this study aimed to examine the effects of high-level mechanical tensional force on the growth and cell cycle progression of osteoblast-like MG-63 cells in vitro.
Materials and Methods: The pre-treatment and post-intrusion dental casts were digitized and analyzed using a 3-D digitizer to quantitatively assess the intrusive movement of 43 maxillary molars and 32 premolars. To investigate the failure rate of mini-implants, two databases were sequentially built-up by collecting the records of 851 mini-implants in 323 patients. The first database included 359 mini-implants (miniplates, miniscrews, and microscrews) in 129 patients. The second database included 492 mini-implants (miniplates, pre-drilling miniscrews, and self-drilling miniscrews) in 194 patients. Many clinical factors potentially associated with mini-implant failure were checked with univariate analysis, followed by multivariate forward stepwise logistic regression. In the part II study, osteoblast-like MG-63 cells were seeded onto flexible-bottomed plates and subjected to cyclic mechanical stretching (15% elongation, 0.5 Hz) for 24 and 48 h in a Flexercell FX-4000 strain unit. Cellular activities were measured by an assay based on the reduction of the tetrazolium salt, 3,[4,5-dimethyldiazol-2-yl]-2,5-diphenyl tetra-zolium bromide (MTT). The number of viable cells was also determined by trypan blue dye exclusion technique. Cell cycle progression was checked by flow cytometry. mRNA expressions of apoptosis- and cell cycle-related genes (Bcl2, Bax, cdc2, cdc25C, and cyclin B1) were analyzed using an RT-PCR technique.
Results: The mean intrusive movement of the maxillary first molars was 3 to 4 mm with a maximum of over 8 mm. For the adjacent maxillary second molars and second premolars, the amount of intrusion was 2 mm and 1-2 mm, respectively. There was a significant difference among the failure rates of miniplates, miniscrews, and microscrews. The statistical results of the first database showed that the failure arte of miniplate was obviously lower than those of microscrews and miniscrews. Greater risks for failure were found in younger patients, when an implant was placed for retraction/protraction, when it was placed on the mandibular arch, when it was placed posterior to the second premolars, or when using the miniscrew/ microscrew systems. After adjusting for potential confounding effects, only 3 factors (type of mini-implant, placement on the mandibular arch, and age) were found to be statistically significant in predicting mini-implant failures. The analysis of the second database revealed that there were no significant differences in failure rates among the mini-implants for the following variables: facial divergency, location (anterior or posterior), arch (upper or lower), type of soft tissue (attached gingival or removable mucosa), and most of the cephalometric measurements which reflect dento-cranio-facial characteristics. An increased failure rate was noted for the self-drilling miniscrew, those for tooth uprighting, those inserted on bone with lower density, those associated with local inflammation of the surrounding soft tissue, those loaded within 3 weeks after insertion, and those placed in patients with greater mandibular retrusion. As to the cell culture study, the number of viable cells significantly decreased in osteoblast-like MG-63 cells subjected to mechanical stretching for 24 or 48 h. The MTT activity of stretched cells did not change at 24 h, whereas a significant decrease was noted at 48 h in comparison to the unstretched controls. The flow cytometry showed that mechanical stretching induced S-phase cell cycle arrest. Furthermore, exposure to mechanical stretching may lead to apoptotic cell death, as shown by the increase in the hypodiploid sub-G0/G1 cell population. Moreover, a decreased cdc25C mRNA level was consistently noted in stretched cells. Whereas, the mRNA expressions of Bcl2, Bax, cdc2, and cyclin B1 genes were not significantly altered compared to unstretched control cells.
Conclusion: A combination of mini-implants anchorage and fixed appliances is a predictable and effective orthodontic procedure to intrude over-erupted maxillary molars. The logistic regression model revealed that severe inflammation of the surrounding soft tissue and early loading within 3 weeks after insertion were most significant in predicting mini-implant failure. The stability of miniplate was superior to those of pre-drilling or self-drilling miniscrews. However, the application of miniplate requires flap surgeries for implantation and for removal. Therefore, selection of the proper type of mini-implants should be based on the treatment needs of each individual patient. In vitro study revealed that high-level mechanical stretching induced cell cycle arrest and apoptotic cell death in osteoblast-like MG-63 cells. It suggests that heavy tensional force is a negative regulator of osteoblastic activities, thus should be minimized in orthodontic/orthopedic treatment using stable mini-implants anchorage.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:48:18Z (GMT). No. of bitstreams: 1
ntu-102-D94422003-1.pdf: 8328939 bytes, checksum: d97759c6f58ec4715371f724729cffc2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents.................................................II
List of Figures..........................................IV
List of Tables...........................................VI
摘要...................................................VIII
Abstract..................................................X
Chapter 1
Introduction .............................................1
1.1. Orthodontic anchorage................................1
1.2. Mini-implants used for orthodontic anchorage.........2
1.3. Application of mini-implant anchorage................4
1.4. Stability of orthodontic mini-implants...............5
Chapter 2
Motivation and Purposes..................................11
Chapter 3
Maxillary molar intrusion with fixed appliances and mini-implant anchorage: A 3-D analysis........................12
3.1. Introduction........................................12
3.2. Materials and Methods...............................13
3.3. Results.............................................16
3.4. Discussion..........................................18
Chapter 4
A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems.........23
4.1.Introduction.........................................23
4.2.Materials and Methods................................25
4.3. Results.............................................28
4.4. Discussion..........................................31
Chapter 5
Stability of miniplates and miniscrews used for orthodontic anchorage: experience with 492 temporary anchorage devices........................................37
5.1. Introduction........................................37
5.2. Materials and Methods...............................39
5.3. Results.............................................43
5.4. Discussion..........................................45
Chapter 6
Mechanoregulation of osteoblast-like MG-63 cell activities by cyclic stretching.....................................51
6.1. Introduction........................................51
6.2. Materials and Methods...............................53
6.3. Results.............................................56
6.4. Discussion..........................................58
Chapter 7
Conclusions and Perspectives.............................63
Chapter 8
References...............................................65

List of Figures
Figure 3-1. Micro-implant anchorage preparation..........76
Figure 3-2. Intrusion of left maxillary first molar......77
Figure 3-3. Desktop mechanical 3-D digitizer.............78
Figure 3-4. Rhinoceros program to analyze 3-D point data.79
Figure 3-5. Intrusion of maxillary posterior teeth with mini-implant anchorage...................................80
Figure 4-1. Miniplate to retract maxillary dentition.....81
Figure 4-2. Miniscrew to retract and intrude maxillary anterior teeth...........................................81
Figure 4-3. Microscrew mesial to maxillary second premolar to facilitate anterior teeth retraction..................82
Figure 4-4. Bonding bracket on miniscrew for better torque and directional control..................................82
Figure 5-1. Different types of orthodontic mini-implants used in this study.......................................83
Figure 5-2. Mini-implants used as orthodontic anchorage..84
Figure 6-1. Morphology of MG-63 cells with and without mechanical stretching or 48h.............................85
Figure 6-2. Exposure to mechanical stretching for 24 h significantly decreased numbers of viable cells, and the effect became more obvious at 48 h.......................86
Figure 6-3. Mechanical stretching significantly reduced the MTT activity of MG-63 cells at 48 h, but not at 24 h.87
Figure 6-4. Mechanical stretching induced S-phase cell cycle arrest and apoptotic cell death, as indicated by an increase in the hypodiploid sub-G0/G1 population.........88
Figure 6-5. Effects of mechanical stretching on the mRNA expressions of apoptosis- and cell cycle-related genes in MG-63 cells..............................................89

List of Tables
Table 2-1. Summary of the databases included in this study....................................................90
Table 3-1. Demographic information of 22 subjects treated for over-eruption of maxillary molars....................91
Table 3-2. Reliability of measurements: individual and collective means and standard............................92
Table 3-3. Amount of intrusion at various cusp tips of maxillary teeth..........................................93
Table 3-4. Assessment of crown tipping of maxillary posterior teeth..........................................94
Table 4-1. Demographic information of 359 mini-implants in 129 subjects.............................................95
Table 4-2. Distribution of failures in 359 mini-implants: 53 mini-implants failed in 41 subjects...................96
Table 4-3. Univariate analysis of factors associated with mini-implant failure.....................................97
Table 4-4. Multivariate analysis of factors associated with mini-implant failure................................99
Table 4-5. Failure rates with different durations from implantation to force application among different types of mini-implants...........................................100
Table 5-1. Review of clinical studies which examined factors related to mini-implant failure and were published before 2008.............................................101
Table 5-2. Demographic characteristics of the 194 subjects with 492 mini-implants..................................104
Table 5-3. Univariate analysis of patient-related factors associated with mini-implant failure....................105
Table 5-4. Univariate analysis of implantation-related factors associated with mini-implant failure............106
Table 5-5. Analysis of the operator factor and failure rates among different types of mini-implants............108
Table 5-6. Comparison of cephalometric measurements between the subjects with different mini-implant stability...............................................109
Table 5-7. Multivariate analysis of factors associated with mini-implant failure...............................110
Table 7-1. Summary of the mini-implant failure rate according to type of mini-implants......................111
dc.language.isoen
dc.subjectcdc25Czh_TW
dc.subject上顎臼齒壓入zh_TW
dc.subject矯正錨定zh_TW
dc.subject迷你骨板zh_TW
dc.subject迷你骨釘zh_TW
dc.subject迷你植體失敗率zh_TW
dc.subject機械性張力zh_TW
dc.subject細胞分裂週期zh_TW
dc.subjectOrthodontic anchorageen
dc.subjectminiscrewen
dc.subjectminiplateen
dc.subjectcdc25Cen
dc.subjectcell division cycleen
dc.subjectmechanical tensional forceen
dc.subjectfailure rate of mini-implantsen
dc.title機械張力對矯正迷你植體失敗率與MG-63類骨母細胞活性的影響zh_TW
dc.titleEffects of mechanical tensional force on failure rate of orthodontic mini-implants and cellular activity of osteoblast-like MG-63 cellsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee林俊彬,陳敏慧,傅鍔,張宏博
dc.subject.keyword上顎臼齒壓入,矯正錨定,迷你骨板,迷你骨釘,迷你植體失敗率,機械性張力,細胞分裂週期,cdc25C,zh_TW
dc.subject.keywordOrthodontic anchorage,miniplate,miniscrew,failure rate of mini-implants,mechanical tensional force,cell division cycle,cdc25C,en
dc.relation.page111
dc.rights.note未授權
dc.date.accepted2013-02-20
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved