Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15561
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林?輝 | |
dc.contributor.author | Ti-Chen Chen | en |
dc.contributor.author | 陳滌塵 | zh_TW |
dc.date.accessioned | 2021-06-07T17:47:57Z | - |
dc.date.copyright | 2013-06-21 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2013-05-21 | |
dc.identifier.citation | [1] Siegel R, Deepa N, Ahmedin J. Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.
[2] Bremers AJA, Rutgers EJT, van de Velde CJH. Cancer surgery: the last 25 years. Cancer Treat Rev 1999; 25: 333–53. [3] McVie JG. Cancer treatment: the last 25 years. Cancer Treat Rev 1999; 25: 323–31. [4] Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol 2009; 27: 83–117. [5] Wu SYH, Yang KC, Tseng CL, Chen JC, Lin FH. Silica-modified Fe-doped calcium sulfide nanoparticles for in vitro and in vivo cancer hyperthermia. J Nanopart Res 2011; 13: 1139–49. [6] Gerweck LE. Hyperthermia in cancer therapy: the biological basis and unresolved questions. Cancer Res 1985; 45: 3408–14. [7] Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res 1984; 44: 4721–30. [8] Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004; 5: 497–508. [9] Laptev R, Nisnevitch M, Siboni G, Malik Z, Firer MA. Intracellular chemilumi-nescence activates targeted photodynamic destruction of leukaemic cells. Br J Cancer 2006; 95: 189–96. [10] Chen TC, Huang L, Liu CC, Chao PJ, Lin FH. Luminol as the light source for in situ photodynamic therapy. Process Biochem 2012; 47: 1903–1908. [11] Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic ther-apy: part one – photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004; 1: 279–293. [12] Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part three—–Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagn Photodyn Ther 2005; 2: 91—106 [13] Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis 2010; 15: 1050–1071. [14] Robertson CA, Hawkins Evans D, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B Biol 2009; 96: 1-8. [15] Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature Reviews, Cancer 2003; 3: 380-387. [16] Tsuzuki K, Tricoire L, Courjean O, Gibelin N, Rossier J, Lambolez B. Thermostable mutants of the photoprotein aequorin obtained by in vitro evolution. J Biol Chem 2005; 280: 34324 –34331. [17] Rose AL, Waite TD. Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use. Anal Chem 2001; 73: 5909–20. [18] Xu SL, Cui H. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 2007; 22: 77–87. [19] Taylor KJ, Jarman PD. Spetrum and lifetime of acoustically and chemically induced emission of light from luminol. Journal of the American Chemical Society 1971; 93:257-259. [20] Yuan, H.; Chong, H.; Wang, B.; Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Chemical molecule-induced light-activated system for anticancer and antifungal activities. J. Am. Chem. Soc. 2012, 134, 13184−13187. [21] Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJH, Sibata CH. Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 2004; 1: 27—42. [22] Ponka P. Cell Biology of Heme. Am J Med Sci 1999; 318: 241-256. [23] Inamura I, Uchida K. Association behavior of protoporphyrin IX in water and aqueous poly(N-vinylpyrrolidone) solutions interaction between pro-toporphyrin IX and poly(N-vinylpyrrolidone). Bull Chem Soc Jpn 1991; 64: 2005–2007. [24] Iinuma S, Farshi SS, Ortel B, Hasan T. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Brit J Cancer 1994; 70: 21-28. [25] Layer G, Reichelt J, Jahn D, Heinz DW. Structure and function of enzymes in heme biosynthesis. Protein Sci 2010; 19:1137-1161. [26] Battah S, O’Neill S, Edwards C, Balaratnam S, Dobbin P, MacRobert AJ. Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study. Int J Biochem Cell Biol 2006; 38: 1382–92. [27] Heyerdahl H, Wang I, Liu DL, Berg R, Andersson-Engels S, Peng Q, Moan J, Svanberg S, Svanberg K. Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues. Cancer Lett 1997; 112: 225-231. [28] Moan J, Van Den Akker JTHM, Juzenas P, Angell-Petersen LWME, Gadmar Ø.B., Iani V. On the basis for tumor selectivity in the 5-aminolevulinic acid-induced synthesis of protoporphyrin IX. J. Porphyrins Phthalocyanines 2001; 5: 170–176. [29] Krieg RC, Messmann H, Rauch J, et al. Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells. Photochem Photobiol 2002; 76: 518–525. [30] Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-aminolevulinic acid-based photodynamic therapy: Principles and experimental research. Photochem Photobiol 1997; 65: 235-251. [31] Sambuy Y, Angelis ID, Ranalgi G, Scarino ML, Stammata A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influences of cell and culture-related factors on Cao-2 cell functional characteristics. Cell Biol Toxicol 2005; 21: 1-26. [32] Solito E, de Coupade C, Parente L, Flower RJ, Russo-Marie F. Human annexin 1 is highly expressed during the differentiation of the epithelial cell line A549: involvedment of nuclear factor interleukin 6 in phorbolester induction of Annexin 1. Cell Growth Different 1998; 9: 327-336. [33] Sato E, Koyama S, Robbins RA. Bleomycin stimulates lung fibroblast and epithelial cell lines to release eosinophil chemotactic activity. Eur Respir J 2000; 16: 951-958. [34] Ishiyama M, Miyazono Y, Sasamoto K, Ohkura Y, Ueno K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 1997; 44: 1299–1305. [35] Ebbind DD. General Chemistry. 3rd ed. Boston: Houghton Mifflin; 1990. [36] Karp G. Cell and Molecular Biology. 5th ed. Hoboken: Wiley; 2008. [37] Wang G, Zhang JP, Dewilde AH, Pal AK, Bello D, Therrien JM, Braunhut SJ, Marx KA. Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay. Toxicology 2012; 299: 99–111. [38] Wilhelmi V, Fischer U, van Berlo D, Schultze-Osthoff K, Schins RPF, Albrecht C. Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: Facts and artefacts. Toxicol In Vitro 2012; 26: 323-334. [39] Steinkamp JA, Valdez YE, Lehnert BE. Flow cytometric, phase-resolved fluorescence measurement of propidium iodide uptake in macrophages containing phagocytized fluorescent microspheres. Cytometry 2000; 39: 45–55. [40] Everds NE. The Mouse in Biomedical Research 2nd ed. New York: Academic Press; 2007. p. 137. [41] Everds NE. The Laboratory Mouse. Boston: Elsevier Academic Press; 2004. p. 273-278. [42] Dukes CE, Bussey HJR: The spread of rectal cancer and its affect on prognosis. Br J Cancer 1958; 12: 309-320. [43] Petras RE, Frankel WL. Modern Surgical Pathology 2nd ed. Philadelphia: Saunders; 2009. p. 755-770. [44] Tablot I, Price A, Salto-Tellez M. Biopsy Pathology in Colorectal Disease 2nd ed. London: Hodder Arnold; 2006. p. 6. [45] Hatakeyama T, Murayama Y, Komatsu S, Shiozaki A, Kuriu Y, Ikoma H, Nakanishi M, Ichikawa D, Fujiwara H, Okamoto K, Ochiai T, Kokuba Y, Inoue K, Nakajima M, Otsuji E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncol Rep 2013; 29: 911-916. [46] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst 1998; 90: 889–905. [47] Curtis H, Barnes SN. Biology. 5th ed. New York: Worth Publishers; 1989. p. 104. [48] Eaton JW, Qian MW. Molecular bases of cellular iron toxicity. Free Radical Bio Med 2002; 32: 833-840. [49] Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wa′ nczyk M, et al. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 2011; 16: 4140–64. [50] Amo T, Kawanishi N, Uchida M, Fujita H, Oyanagi E, Utsumi T, et al. Mechanism of cell death by 5-aminolevulinic acid-based photodynamic action and its enhancement by ferrochelatase inhibitors in human histiocytic lymphoma cell line U937. Cell Biochem Funct 2009; 27: 503–15. [51] Miyake M, Ishii M, Kawashima K, Kodama T, Sugano K, Fujimoto K, et al. siRNA mediated knockdown of the heme synthesis and degradation pathways: modulation of treatment effect of 5-aminolevulinic acid-based photody-namic therapy in urothelial cancer cell lines. Photochem Photobiol 2009; 85: 1020–7. [52] Bates RC, Pursell BM, Mercurio AM. Epithelial-mesenchymal transition and colorectal cancer: Gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 2007; 185: 29–39. [53] Li HC, Schmidt L, Greenson JK, Chang AC, Myers JL. Primary pulmonary adenocarcinoma with intestinal differentiation mimicking metastatic colorectal carcinoma; Case report and review of literature. Am J Clin Pathol 2009; 131: 129-133. [54] Rose C, Wu HH. Morphologic criteria of invasive colonic adenocarcinoma on biopsy specimens. The Internet Journal of Pathology 2011; 12: 1. [55] Del Buono R, Pignatelli M, Hall PA. Control of differentiation in a rectal carcinoma cell line: the role of diffusible and cell-associated factors. J Pathol 1991; 164: 59-66. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15561 | - |
dc.description.abstract | 光動力治療係在患處施以一光敏感藥物(photosensitizer),再於患處照射特定波長之光線以刺激光敏感藥物,其自激發態回到基態時釋放之能量將透過能量轉換(energy transfer),使患處的分子反應形成具有細胞毒性的自由基(free radicals)、活性氧族(reactive oxygen species),或單態氧(singlet oxygen),進而攻擊患處細胞,造成細胞死亡。為求較深的光穿透深度,目前光動力治療之施行主要係利用紅光雷射作為光源,而施行之標的多為淺層部位,例如頭頸部腫瘤,或皮膚疾病。對於較深層或體積較大的腫瘤,受限於光的穿透深度,光動力治療之施行除必須輔以高度侵入性之內視鏡,施行成效亦較不彰。
為改善光動力治療之療效,並擴大其應用,本研究欲發展新式光源以取代現有之紅光雷射,而利用化學反應所釋出之化學冷光,迄今已在諸多領域獲廣泛應用,遂成為本研究考量替代光源之選項。其中,3-胺鄰苯二甲醯胺(luminol)能在水溶液環境釋出波長420nm之化學冷光,是作為替代光源的良好選項。臨床上常用的光敏感藥物中,五胺基酮戊酸(5-Aminolevulinic Acid; 5-ALA)在420nm有較強吸收值,故以之為本研究使用之光敏感藥物。 為評估細胞實驗之可行性,本研究係利用人類的大腸癌細胞株Caco-2作為實驗模型。首先利用冷光分析儀(chemiluminescence analyzer)分析luminol在細胞培養環境中可釋出冷光之強度。在細胞培養環境中,luminol可經由硫酸亞鐵(FeSO4)之氧化進而發出冷光,強度約為1至3×10-14J/cm2,發光期間長於十分鐘。細胞先加入5-ALA作用3.5小時後,在粒腺體內轉化成具有光毒性(phototoxicity)的原紫環IX (protoporphyrin IX),此時加入luminol及FeSO4,以釋出之冷光進行能量轉換,進而造成細胞損害。反應後72小時,細胞活性及毒性分析中,實驗組與對照組之間出現統計上之明顯差異,染色後在共軛焦螢光顯微鏡觀察,實驗組除細胞數量明顯減少,細胞亦呈現顯著粗糙、細胞膜破損等受損現象。利用流式細胞儀分析,亦獲得與前述分析吻合之結果。 動物實驗係利用免疫缺陷小鼠及作為模型。在小鼠皮下異種植入(xenografting) Caco-2細胞株,待腫瘤成長後,於患處直接注射5-ALA,反應3.5小時候,再依序注射luminol和FeSO4。異種植入腫瘤後,小鼠在血液及血清生化檢驗均呈現異常,但光動力治療組之小鼠有較佳的肝功能,腫瘤之生長速度相較於控制組亦略受抑制。在組織切片檢驗中,光動力治療組之小鼠之腫瘤細胞分化現象較之控制組明顯,細胞排列亦較規則。總體而言,小鼠之生命跡象均相當活躍,可推論注射之藥物並不造成急性毒性。 目前在細胞實驗已獲致成效,動物實驗則需要更大規模實驗以確認其可行性。 | zh_TW |
dc.description.abstract | Photodynamic therapy (PDT) is a relatively new cancer treatment method, which involves a two-stage process, including the endocytosis of a light-absorbing photosensitizer (PS) and stimulating the PS by light with adequate wavelength. Presently, the light sources used in photodynamic therapy are high intensity lasers or light emitting diodes (LED), making it unsuitable for large-volume tumors and tumors located deep inside the body. To overcome this limitation, we propose an in situ light source to excite the photosensitizer thus generating cytotoxic species to kill the tumor cells directly. Based on this concept, we selected a reagent that acts as the light emitting source, which might be delivered to the tumor site intravenously after photosensitizer administration.
Among the light-emitting chemicals, luminol is widely used in forensic medicine for detecting fingerprints or trace amounts of blood. Luminol emits chemiluminescence with 420nm for more than 10 minutes when oxidized by strong oxidants e.g. trace metals. Therefore, luminol is selected as the in situ light source for 5-aminolevulinic acid (5-ALA) -mediated photodynamic treatment of cancerous cell cultures. The chemiluminescence of luminol was initially analyzed by a chemiluminescence analyzer. Cell viability and cytotoxicity were determined using the water soluble tetrazolium salt assay and lactate dehydrogenase assay respectively. Confocal microscopy and flow cytometry were used to evaluate the cell morphology and cell death pathway. According to the results, cancerous cells exposed to 5-aminolevulinic acid for 3.5 hours and subsequently treated with luminol/FeSO4 underwent apoptosis and necrosis. In an animal study, nude and NOD SCID mice were xenografted with Caco-2 cells subcutaneously and the experiment began when the tumor reached a specific size. 5-ALA was topically injected and allowed to react for 3.5 hours. Luminol and FeSO4 were subsequently topically injected. No acute toxicity was observed during the experiment. As for hematological and blood chemistry tests, abnormalities in many categories were found but the mice remained alive. Histopathologic examination revealed that the PDT treatment enhanced cell differentiation, relative regular cellular patterning and cell polarity. The results from the preliminary study warrant additional studies. This method has the potential to extend photodynamic therapy applications to tumors located deep inside the body. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:47:57Z (GMT). No. of bitstreams: 1 ntu-101-F94548004-1.pdf: 6889179 bytes, checksum: 8b6ba6b1a2b80b5ec4262a56b9a79d85 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Chapter 1 INTRODUCTION-------------------------------------1
1.1. Background information and purpose of study-----------1 1.2. Literature review-------------------------------------4 1.2.1. Photodynamic therapy--------------------------------4 1.2.2. Light source---------------------------------------10 1.2.2.1. Luminol------------------------------------------11 1.2.3. Photosensitizer------------------------------------14 1.2.3.1. 5-Aminolevulinic acid, protoporphyrin IX and heme biosynthesis pathway--------------------------------------16 Chapter 2 MATERIALS AND METHODS---------------------------23 2.1. Materials--------------------------------------------24 2.1.1. Caco-2 cell line-----------------------------------24 2.1.2. A549 cell line-------------------------------------25 2.1.3. HFL-1 cell line------------------------------------25 2.2. Chemiluminescence analysis---------------------------26 2.2.1. Chemiluminescence spectrum-------------------------26 2.2.2. Chemiluminescence intensity------------------------26 2.3. In vitro study---------------------------------------28 2.3.1. Cell culture---------------------------------------28 2.3.2. Photodynamic treatment-----------------------------28 2.3.3. Cell viability-------------------------------------29 2.3.4. Cell toxicity--------------------------------------30 2.3.5. Cell staining--------------------------------------33 2.3.6. Flow cytometry-------------------------------------34 2.3.7. Confocal microscopy--------------------------------34 2.3.8. Statistical analysis-------------------------------35 2.4. In vivo study----------------------------------------36 2.4.1. Animal---------------------------------------------36 2.4.2. Xenograft------------------------------------------37 2.4.3. Solution preparation-------------------------------37 2.4.4. PDT treatment--------------------------------------38 2.4.5. Assessment of tumor response-----------------------39 2.4.6. Histopathological examination----------------------39 2.4.7. Hematology and serum chemistry---------------------40 Chapter 3 RESULTS-----------------------------------------42 3.1. Chemiluminescence analysis---------------------------42 3.1.1. Chemiluminescence spectrum-------------------------42 3.1.2. Chemiluminescence intensity------------------------43 3.2. In vitro study---------------------------------------45 3.2.1. Cell viability-------------------------------------45 3.2.2. Cell toxicity--------------------------------------48 3.2.3. Flow cytometry-------------------------------------50 3.2.4. Confocal microscopy--------------------------------51 3.3. In vivo study----------------------------------------54 3.3.1. Assessment of tumor response-----------------------54 3.3.1.1. Body weight--------------------------------------54 3.3.1.2. Tumor size---------------------------------------55 3.3.2. Histopathological examination----------------------58 3.3.3. Hematology and serum chemistry---------------------65 3.3.3.1. Hematology---------------------------------------65 3.3.3.2. Serum chemistry----------------------------------67 Chapter 4 DISCUSSION--------------------------------------68 Chapter 5 CONCLUSION--------------------------------------76 ACKNOWLEDGEMENT-------------------------------------------77 REFERENCES------------------------------------------------78 | |
dc.language.iso | en | |
dc.title | 以Luminol作為新型光動力治療光源可行性之研究 | zh_TW |
dc.title | The Feasibility of Luminol as New Light Source for Photodynamic Therapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王盈錦,王玲美,王明哲,宋信文 | |
dc.subject.keyword | 光動力治療,五胺基酮戊酸,3-胺鄰苯二甲醯胺,原紫環IX, | zh_TW |
dc.subject.keyword | Photodynamic therapy,5-Aminolevulinic acid,Luminol,Protoporphyrin IX, | en |
dc.relation.page | 86 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-05-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
Appears in Collections: | 醫學工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-101-1.pdf Restricted Access | 6.73 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.