Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15557
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳怡然(Yi-Jan Chen)
dc.contributor.authorTang-Nian Luoen
dc.contributor.author羅棠年zh_TW
dc.date.accessioned2021-06-07T17:47:54Z-
dc.date.copyright2013-06-21
dc.date.issued2013
dc.date.submitted2013-06-03
dc.identifier.citation[1] MOTC. Monthly statistics of transportation & communications [Online]. Available: http://www.motc.gov.tw/en/home.jsp?id=609&parentpath=0,154
[2] R. Abou-Jaoude, “ACC radar sensor technology, test requirements, and test solutions,” IEEE Trans. Intell. Transport. Syst., vol. 4, no. 3, pp. 115–122, Sept. 2003.
[3] J. Wenger, “Automotive radar—Status and perspectives,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp., Oct. 2005, pp. 21–25.
[4] ETSI, “ETSI Technical Report 102 263 v1.1.2 (2004-02),” ETSI, Rep. 102 263 v1.1.2, Feb. 2004.
[5] European Standard for Telecommunications series, ETSI EN 301 091-1, 2006.
[6] FCC Standard for Radiated Emission Limits, FCC part 15, sec. 15.253, 2006.
[7] Australian Communications Authority (2001). A review of automotive radar systems-device and regulatory frameworks [Online]. Available: http://www.acma.gov.au/webwr/radcomm/frequency_planning/spps/0104spp.pdf
[8] K. Pourvoyeur, R. Feger, A. Haderer, C. Wagner, A. Stelzer, and L. Maurer, “A highly modular 77-GHz FMCW radar sensor prototype for multi target tracking applications,” in Proc. Eur. Microw. Conf., Oct. 2008, pp. 1612–1615.
[9] M. Khanpour, K. W. Tang, P. Garcia, and S. P. Voinigescu, “A wideband W-band receiver front-end in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1717–1730, Aug. 2008.
[10] S. T. Nicolson, K. H. K. Yau, S. Pruvost et al., “A low-voltage SiGe BiCMOS 77-GHz automotive radar chipset,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1092–1104, May 2008.
[11] R. Feger, C. Wagner, S. Schuster et al., “A 77-GHz FMCW MIMO radar based on an SiGe single-chip transceiver,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1020–1035, May 2009.
[12] C. Wagner, A. Stelzer, and H. Jager, “A phase-array radar transmitter base on 77-GHz cascadable transceivers,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 73–76.
[13] D. Salle, C. Landez, P. Savary et al., “A fully integrated 77 GHz FMCW radar transmitter using a fractional-N frequency synthesizer,” in Proc. Eur. Radar Conf. (EuRAD), Sept. 2009, pp. 149–152.
[14] Y. Kawano, T. Suzuki, M. Sato et al., “A 77 GHz transceiver in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 310–311.
[15] T. Mitomo, N. Ono, H. Hoshino et al., “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 246–247.
[16] Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully-integrated 77GHz FMCW radar system in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 216–217.
[17] G. M. Brooker, “Mutual interference of millimeter wave radar systems,” IEEE Trans. Electromagn. Compat., vol. 49, no. 1, pp. 170–181, Feb. 2007.
[18] M. I. Skolnik, Introduction to Radar Systems. New York: McGraw Hill, 2001.
[19] D. M. Pozar, Microwave Engineering. New York: Wiley, 2005.
[20] H. Zhang, and K. Wu, “Three-frequency principle for automotive radar system,” in IEEE Radio and wireless Conf., Sept. 2004, pp. 315–318.
[21] J. L. Hong, Jr., “The Heterodyne Receiving System and Notes on the Recent Arlington-Salem Tests,” Proceedings of the IRE, vol. 1, no. 3, pp. 75–91, Jul. 1913.
[22] E. H. Armstrong, “The Super-heterodyne – its Origin, Development, and Some Recent Improvements,” Proceeding of the IRE, vol. 12, no.5, pp. 539–552, Oct. 1924.
[23] M. Pichler, A. Stelzer, P. Gulden et al., “Phase-error-measurement and -compensation in PLL frequency synthesizers for FMCW sensors–I: Context and application,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1006–1017, May 2007.
[24] S. Scheiblhofer, S. Schuster, and A. Stelzer, “Signal model and linearization for nonlinear chirps in FMCW radar SAW-ID tag request,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1477–1483, Apr. 2006.
[25] C. Wagner, A. Stelzer, and H. Jager, “PLL architecture for 77-GHz FMCW radar systems with highly-linear ultra-wideband frequency sweeps,” in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 399–402.
[26] B.Razavi, RF Microelectronics. NJ: Prentice Hall, 1998.
[27] W.-T. Yang, “Design of delta sigma modulator and class D audio amplifier,” M.S. thesis, Dept. Ind. Tech. R&D Master Prog. in Elect., Commun. and Electron. Eng., Nat. Taiwan Univ., Taipei, Taiwan, 2011.
[28] H.T. Friis, “Noise Figure of Radio Receivers,” Proceeding of the IRE, vol. 32, no. 7, pp. 419-422, Jul. 1944.
[29] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[30] R. E. Best, Phase-locked loops. New York: McGraw Hill, 2003.
[31] D. Banerjee (2006), PLL performance, simulation, and design handbook 4th edition [Online]. Available: http://www.ti.com/tool/pll_book#technicaldocuments
[32] T.-P. Wang and H. Wang, “A 71–80 GHz amplifier using 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 685–687, Sept. 2007.
[33] B.-J. Huang, K.-Y. Lin, and H. Wang, “Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3049–3059, Dec. 2009.
[34] Y.-K. Hsieh, J.-L Kuo, H. Wang, and L.-H. Lu, “A 60 GHz broadband low-noise amplifier with variable-gain control in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 610–612, Nov. 2011.
[35] J.-H. Tsai, W.-C. Chen, T.-P. Wang et al., “A miniature Q-band low noise amplifier using 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 327–329, June 2006.
[36] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13-μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409–2415, Nov. 2008.
[37] C.-A. Yu, T.-N. Luo, and Y.-J. E. Chen, “A V-band divide-by-four frequency divider with wide locking range and quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 82–84, Feb. 2012.
[38] T. Suzuki, Y. Kawano, M. Sato, T. Hirose, and K. Joshin, “60 and 77 GHz power amplifiers in standard 90 nm CMOS,” in IEEE Int. SolidState Circuits Conf. Dig. Tech. Papers, 2008, pp. 562–563.
[39] J.-J. Lin, K.-H. To, D. Hammock et al., “Power amplifier for 77-GHz automotive radar in 90-nm LP CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 292–294, May 2010.
[40] Y. Hamada, M. Tanomura, M. Ito, and K. Maruhashi, “A high gain 77 GHz power amplifier operating at 0.7 V based on 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 329–331, May 2009.
[41] J. Y.-C. Liu, Q. J. Gu, A. Tang et al., “A 60 GHz tunable output profile power amplifier in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 7, pp. 377–379, July 2011.
[42] Y.-N. Jen, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1637–1646, July 2009.
[43] T.-N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620–625, Mar. 2008.
[44] C. S. Vaucher, I. Ferencic, M. Locher et al., ”A family of low-power truly modular programmable dividers in standard 0.35um CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, NO.7, pp. 1039–1045, July 2000.
[45] G. M. Brooker, “Understanding millimeter wave FMCW radars,” International Conference on Sensors and Technology, November 2005, pp. 152-157.
[46] A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F, Commun. Radar & Signal Process., vol. 139, no. 5, pp. 343–350, Oct. 1992.
[47] P. D. L. Beasley, “The influence of transmitter phase noise on FMCW radar performance,” in Proc. Eur. Microw. Conf., Sept. 2006, pp. 1810-1813.
[48] C.-Y. Chan, S.-C. Chen, M.-H. Tsai, and S. S. H. Hsu, “Wiring effect optimization in 65-nm low-power NMOS,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1245–1248, Nov. 2008.
[49] F. Schwierz, and J. J. Liou, Modern Microwave Transistors: Theory, Design, and Performance. New Jersey: Wiley, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15557-
dc.description.abstract安全,無疑的是汽車運輸的主要議題。因為可以在白天、夜晚以及大多數的天氣狀況下良好運作,毫米波雷達有優於其他如超聲波、紅外線和雷射雷達技術的特性。毫米波長距離雷達操作在76到77 GHz,提供150公尺的自適應巡航控制範圍。自適應巡航控制系統可感測與目標的距離和相對速度,以保持足夠制動距離。由於具有比頻移鍵控式和脈衝式雷達較高的效能成本比,長距離汽車雷達最常使用的訊號類型是連續波頻率調變。隨著CMOS製程技術的發展,因為其低成本且高整合度的特性,使得CMOS毫米波電路變得更具有優勢。這使得汽車雷達可能更加普及。因為越來越多的汽車雷達在同一個鄰近區域裡操作,干擾將成為一個問題。這提高了偵測錯誤率,導致虛假目標偵測。在本論文中,我們設計了一個具有降低互相干擾之全積體化77 GHz長距離汽車雷達收發機。和直接數位頻率合成器比較,使用分數型頻率合成器產生連續波頻率調變訊號,具有小面積以及低功耗的優點。採用跳頻隨機掃頻連續波頻率調變,可以降低因互相干擾所導致的偵測錯誤率。調變使用跳頻、改變頻寬以及掃描時間的方式,使得干擾訊號在降頻之後,有如同雜訊般的響應,主要訊號得以辨認。電路使用TSMC 65奈米製程研製。晶片面積為,長1030 μm寬940 μm。接收機增益以及雜訊指數分別為23 dB以及14.8 dB。發射機的輸出功率為6.4 dBm。在1/64的輸出頻率下,多變的連續波頻率調變使用訊號分析儀的類比解調功能測試。電路總功率消耗為275毫瓦。zh_TW
dc.description.abstractSafety is undoubtedly one of the most important issues of automotive transportation. The millimeter-wave (MMW) radars which can be operated well at day, night and most weather conditions are superior to the other radar technologies such as the ultrasonic, infrared and laser radars. The MMW long-range radar (LRR) which this dissertation focuses on operated at 76–77 GHz for range detection up to 150 m is used for ACC. The ACC system senses the distance and relative speed of the object vehicle in front of the sensing vehicle to adjust acceleration and deceleration of the latter to ensure safe stopping distance. Due to the high performance-to-cost ratio when compared to frequency-shift keying (FSK) and pulse radars, the most commonly used LRR is frequency-modulated continuous wave (FMCW) radar. With the development of advanced CMOS technology, CMOS has become a favorable technology for MMW circuits because of low cost and high level of integration. The availability of low cost CMOS radar transceiver is a key to wide spread adoption of 77-GHz automotive LRRs. Interference will be a serious issue when automotive radars become popular. The radar signals of the vehicles in the adjacent lanes on highway may cause interference and ghost target detection. In this dissertation, an integrated 77-GHz CMOS long-range automotive radar transceiver with the capability of mutual interference reduction is presented. A fractional-N frequency synthesizer is chosen for FMCW generation since it has the advantages of small area occupation and low power consumption compared with direct digital frequency synthesizer (DDFS) when the fine frequency tuning is required. The frequency-hopping random chirp FMCW technique is developed to lower the possibility of false alarm by making mutual interference noise-like. The center frequency of the frequency sweep may hop to another frequency at the end of every sweep cycle. Moreover, the chirp bandwidth (frequency sweep range) and slope of frequency sweep can be altered every cycle. The modulation scheme makes the interference signals less likely to be correlated to the desired signal and results in noise-like frequency response for the mutual interference after received signal is demodulated. The integrated transceiver circuit was implemented in TSMC 65-nm CMOS technology with 1P9M and the occupied silicon area is 1030 μm by 940 μm. The measured receiver gain and noise figure are 23 dB and 14.8 dB respectively. The output power delivered by the transmitter is 6.4 dBm. The frequency-hopping random chirp FMCW function is tested by using analog demodulation function of the signal analyzer after the output signal is divided by 64. The total power consumption of integrated transceiver is 275 mW.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:47:54Z (GMT). No. of bitstreams: 1
ntu-102-D95943007-1.pdf: 17946000 bytes, checksum: b439e31260ef928409fd9e7d284c4341 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 i
Abstract iii
Contents v
List of Figures ix
List of Tables xvii
Publication Lists xix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Automotive Radar Development 4
1.3 Contribution of this dissertation 8
1.4 Framework 10
Chapter 2 Radar Principle 11
2.1 Radar System 11
2.2 Pulse and CW Radar 14
2.3 FSK Radar 16
2.4 FMCW Radar 17
Chapter 3 Interference Effects and Minimization 23
3.1 Simple Simulation Model 23
3.2 Identical Radars 24
3.3 Radars With Separation Frequency 26
3.4 Radars With Distinct Chirp Time 29
3.5 Radars With Distinct Chirp Bandwidth 31
3.6 Proposed FHRC FMCW Radar 33
Chapter 4 System and Behavioral Simulation 39
4.1 System Configurations 39
4.2 Transceiver Architecture 40
4.3 Synthesizers for FMCW Generation 42
4.4 Receiver Budget Simulations 48
4.5 Behavioral Simulation of Frequency Synthesizer 53
Chapter 5 Circuit Design and Simulations 61
5.1 65-nm CMOS Technology 61
5.2 System Architecture 65
5.3 LNA 66
5.4 Mixer and IFAmp 70
5.5 PA 75
5.6 Frequency Synthesizer 78
Chapter 6 Measurements 87
6.1 LNA 87
6.2 PA 89
6.3 Frequency Synthesizer 91
6.4 Receiver/Transmitter 95
Chapter 7 Conclusion 97
Appendix 99
A. Phase Noise Requirement 99
B. Effect of FMCW Chirp Nonlinearity 101
C. Maximum Frequency of Oscillator 102
Bibliography 105
dc.language.isoen
dc.subject毫米波汽車雷達zh_TW
dc.subject77 GHzzh_TW
dc.subjectCMOSzh_TW
dc.subject偵測錯誤zh_TW
dc.subject積體化收發機zh_TW
dc.subject連續波頻率調變zh_TW
dc.subject干擾zh_TW
dc.subjectCMOSen
dc.subjectmillimeter-wave automotive radaren
dc.subjectinterferenceen
dc.subjectintegrated transceiveren
dc.subjectFMCWen
dc.subject77 GHzen
dc.subjectfalse alarmen
dc.title具降低偵測錯誤率之77-GHz長距離汽車雷達收發機zh_TW
dc.titleA 77-GHz Long-rang Automotive Radar Transceiver With False Alarm Reductionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee莊晴光(Ching-Kuang Tzuang),鍾世忠(Shyh-Jong Chung),孟慶宗(Chin-Chun Meng),邱煥凱(Hwann-Kaeo Chiou),徐碩鴻(Shuo-Hung Hsu)
dc.subject.keyword77 GHz,CMOS,偵測錯誤,積體化收發機,連續波頻率調變,干擾,毫米波汽車雷達,zh_TW
dc.subject.keyword77 GHz,CMOS,false alarm,FMCW,integrated transceiver,interference,millimeter-wave automotive radar,en
dc.relation.page108
dc.rights.note未授權
dc.date.accepted2013-06-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
17.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved