Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敏聰(Minn-Tsong Lin)
dc.contributor.authorSheng-Hong Chenen
dc.contributor.author陳晟弘zh_TW
dc.date.accessioned2021-06-07T17:47:26Z-
dc.date.copyright2013-07-08
dc.date.issued2013
dc.date.submitted2013-06-25
dc.identifier.citation[1] M. Johnson and R. H. Silsbee,Phys. Rev. Lett. 55, 1790 (1985).
[2] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn,Phys. Rev. B 39, 4828
(1989).
[3] C. Tsang, R. Fontana, T. Lin, D. Heim, V. Speriosu, B. Gurney, and
M.Williams, Magnetics,IEEE Transactions on 30, 3801 (1994).
[4] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey,Phys. Rev. Lett.
74, 3273 (1995).
[5] T. Miyazaki and N. Tezuka,Journal of Magnetism and Magnetic Materials
139, 231 (1995).
[6] Z. Xiong, D. Wu, Z. V. Vardeny, and J. Shi,Nature 427, 821 (2004).
[7] K. S. Li, Y. M. Chang, S. Agilan, J. Y. Hong, J. C. Tai, W. C. Chiang, K.
Fukutani, P. A. Dowben, and M. T. Lin, Phys. Rev. B 83, 172404 (2011).
[8] J. B. Youssef, K. Bouziane, O. Koshkina, H. Le Gall, M. El Harfaoui, M.
El Yamani, J. Desvignes, and A. Fert, Journal of Magnetism and Magnetic
Materials 165, 288 (1997).
[9] S. Zhang, Phys. Rev. Lett. 83, 640 (1999).
[10] P. Hammar, B. Bennett, M. Yang, and M. Johnson,Phys. Rev. Lett. 83, 203
(1999).
[11] C. Tang and S. VanSlyke,Appl. Phys. Lett. 51, 913 (1987).
[12] R. Friend, et al.,Nature 397, 121 (1999).
[13] C. D. Dimitrakopoulos and P. R. Malenfant,Adv. Mater. 14, 99 (2002).
[14] P. Peumans, S. Uchida, and S. R. Forrest, Materials for Sustainable Energy:
A Collection of Peer-Reviewed Research and Review Articles from Nature
Publishing Group, 94 (2010).
[15] V. Dediu, M. Murgia, F. Matacotta, C. Taliani, and S. Barbanera,Solid State
Comm. 122, 181 (2002).
[16] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petro ,Phys.
Rev. B 61 3672 (1988)
[17] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petro , P. Etienne,
G. Creuzet, A. Friederich, and J. Chazelas,Phys. Rev. Lett. 61, 2472 (1988).
[18] N. Mott,Proceeding of the Royal Society of London. Series A, Mathematical
and Physical Sciences 153, 699 (1936).
[19] M. Julli ere, Phys. Lett. A 54, 225 (1975).
[20] C. Mead, Phys. Rev. Lett. 6, 545 (1961).
[21] H. Y. Ku and F. G. Ullman, J. Appl. Phys. 35, 265 (1964).
[22] D. New, N. Lee, H. Tan, and T. Castner, Phys. Rev. Lett. 48, 1208 (1982).
[23] K. T. McCarthy, A. F. Hebard, and S. B. Arnason, Phys. Rev. Lett. 90, 117201
(2003).
[24] K. Kim and B. Min, J. Appl. Phys. 101, 09G507 (2007).
[25] H. Ishii, K. Sugiyama, E. Ito, and K. Seki,Adv. Mater. 11, 605 (1999).
[26] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.,Wiley, New York 1981.
[27] K. C. Kao,W. Hwang,Electrical Transport in Solids, Pergamon, Oxford 1981.
[28] M. Schott, in Organic Conductors: Fundamentals and Applications (Ed: P.
Farges ), Marcel Dekker, New York 1994, pp. 539-646.
[29] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. Forrest,
Phys. Rev. B 54, 13748 (1996).
[30] H. J. Freund, H. Kuhlenbeck,in Application of Synchrotorn Radiation (Ed:
W. Eberhardt), Springer, Berlin 1995, pp. 9-60.
[31] Richard J. Murdey and William R. Salaneck Jpn. J. Appl. Phys. 44 (2005)
pp. 3751-3756
[32] K. Wandelt, J. E. Hulse,J. Chem. Phys. 80, 1340, (1984).
[33] H. Ishii, K. Seki,IEEE Trans. Electron Dev.44, 1295 (1997).
[34] K. Seki, T. Tani, H. Ishii,Thin Solid Films 273, 20 (1996).
[35] K. Seki, H. Yanagi, Y. Kobayashi, T. Ohta, and T. Tani,Phys. Rev. B 49,
2760 (1994).
[36] D. Song, J. Nowak, and M. Covington, J. Appl. Phys. 87, 5197 (2000).
[37] C. Barraud et al., Nature Phys. 6, 615 (2010).
[38] Y. M. Chang, K. S. Li, H. Huang, M. J. Tung, S. Y. Tong, and M. T. Lin, J.
Appl. Phys. 107, 093904 (2010).
[39] K. T. McCarthy, S. B. Arnason, and A. F. Hebard,Appl. Phys. Lett. 74, 302
(1999).
[40] G. Landry, Y. Dong, J. Du, X. Xiang, and J. Q. Xiao,Appl. Phys. Lett. 78,
501 (2001).
[41] J. Bisquert, G. Garcia-Belmonte, A. Pitarch, and H. J. Bolink,Chem. Phys.
Lett. 422, 184 (2006)
[42] I. Mora-Sero, et al.,Nano Lett. 6, 640 (2006).
[43] P. Padhan, P. LeClair, A. Gupta, K. Tsunekawa, and D. Djayaprawira,Appl.
Phys. Lett. 90, 142105 (2007).
[44] K. T. McCarthy, A. F. Hebard, and S. B. Arnason, Phys. Rev. Lett. 90, 117201
(2003).
[45] H. Kaiju, S. Fujita, T. Morozumi, and K. Shiiki, J. Appl. Phys. 91, 7430
(2002).
[46] H. Miesenbock and M. Tosi,Z. Phy. B : Condens. Matter 78, 255 (1990).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15523-
dc.description.abstract我們成功地經由磁控濺鍍和熱蒸鍍的技術製備出苝四甲酸二酐(3,4,9,10-perylene-teracarboxylic dianhydride)有機自旋閥,且透過直流四點量測與交流兩點量測的分析技術對樣品做一系列的特性分析,並討論室溫之下樣品磁性與電性的性質。從 2奈米中間層厚度的有機自旋閥中得到具有14.6%磁電阻率以及-1.93%磁電容率的行為表現,並找出與以氧化鋁作為中間層的磁性穿隧元件截然不同的介面行為,也就是負數介面電容。我們推測這樣的行為表現來自於介面能階的電荷累積,而這種電荷累積是由金屬與有機介面偶極層和有機層內靠近介面邊緣處因能帶彎曲造成的擴散層所貢獻。此外,藉由分析磁阻抗頻譜以及介面電容的特性,討論有機自旋閥中不同中間層厚度的影響,並發現截止頻率會隨著有機自旋閥中中間層厚度增厚而變小,磁電容率的大小也與磁電阻率一樣會隨著厚度增厚而減少以及觀察出介面電容具有厚度依賴性的電荷累積情形。簡單地說,透過磁電容的量測分析技術,我們展示了介面電容與中間層特性及厚度的關係並提供了許多關於有機自旋閥系統中電容以及介面特性的相關資訊。zh_TW
dc.description.abstractOrganic spin valves (OSVs) with a thin organic semiconductor (OSC) spacer of 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) were fabricated using magneto-sputtering and thermal evaporating technique, and characterized by DC four-probe sensing, AC two-terminal measuring analysis technique to discuss the magnetic and electric properties at room temperature. The magnetoresistance ratio of 14.6% and the magnetocapacitance of -1.93% were demonstrated in the OSV with 2nm-PTCDA spacer at room temperature. To figure out the negative interfacial capacitances, we speculate that the behavior is attributed to the charge accumulation at the metal-organic interfacial dipole layer and the diffusion layer induced by band bending. The capacitive property is different to the Al2O3-based magnetic tunnelling junction. Furthermore, the influence of spacer thickness to magnetoimpedance and interfacial capacitance in OSVs with three different thickness spacers are investigated. Working out that the cut-off frequency is got smaller as the OSV spacer became thicker in magnetoimpedance spectrum. The influence of spacer thickness to magnetocapacitance performance is decay with the same to magnetoresistance, and that charge accumulation at the interface states can be affected by the thickness of the PTCDA-spacer. Briefly, the interfacial capacitance related to the spacer thickness and characteristic using the analysis technique of magnetocapacitance is demonstrated, which provide the information about the capacitive and interfacial properties in PTCDA-OSV system.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:47:26Z (GMT). No. of bitstreams: 1
ntu-102-R99222045-1.pdf: 9272455 bytes, checksum: 90be7d351d194f92029e54c718cf2c77 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 Introduction 1
2 Basic Concepts 3
2.1 Introduction of Magnetoresistance . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Giant Magnetoresistance . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Tunneling Magnetoresistance . . . . . . . . . . . . . . . . . . 6
2.2 Dielectric Properties and Capacitance . . . . . . . . . . . . . . . . . . 8
2.2.1 Parallel-Plate Capacitor . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Impedance based on the RC equivalent parallel model . . . . . 10
2.2.3 Interfacial capacitance . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Magnetocapacitance Eect . . . . . . . . . . . . . . . . . . . . 13
2.3 Organic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Organic Semiconductor . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Metal-Organic electronic structure . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Metal-Organic Interfacial dipole layer . . . . . . . . . . . . . . 14
2.4.2 Band bending in organic layer . . . . . . . . . . . . . . . . . . 18
3 Experimental Fabrication and Apparatus 20
3.1 Fabrication Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 Multi-functional deposition chamber . . . . . . . . . . . . . . 21
3.1.2 Sample Controlled mechanism . . . . . . . . . . . . . . . . . . 22
3.1.3 Magnetron Sputtering System . . . . . . . . . . . . . . . . . . 24
3.1.4 Thermal Evaporation System . . . . . . . . . . . . . . . . . . 25
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Magneto-Transport Characterization Tools . . . . . . . . . . . . . . . 31
3.3.1 Direct current (DC) four-terminal sensing . . . . . . . . . . . 31
3.3.2 Alternating current (AC) Impedance Measurement . . . . . . 32
4 Experimental Results and Discussion 33
4.1 DC Bias Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.1 Magneto-transport property . . . . . . . . . . . . . . . . . . . 33
4.2 AC Bias Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Magnetocapacitive characteristic and model simulation . . . . 34
4.2.2 Interfacial capacitive property . . . . . . . . . . . . . . . . . . 40
4.2.3 Capacitive properties at dierent spacer thickness . . . . . . . 41
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Conclusion 49
Bibliography 51
dc.language.isoen
dc.subject電荷累積zh_TW
dc.subject介面zh_TW
dc.subject有機自旋閥zh_TW
dc.subject阻抗zh_TW
dc.subject磁電阻zh_TW
dc.subject磁電容zh_TW
dc.subject金屬-有機zh_TW
dc.subject?四甲酸二酐zh_TW
dc.subjectMagnetocapacitanceen
dc.subjectCharge accumulationen
dc.subjectPTCDAen
dc.subjectMetal-organicen
dc.subjectOrganic spin valveen
dc.subjectImpedanceen
dc.subjectMagnetoresistanceen
dc.subjectInterfaceen
dc.title苝四甲酸二酐有機自旋閥系統中介面特性對磁電容效應的影響zh_TW
dc.titleThe Influence of Interfacial Characteristics on Magnetocapacitance in PTCDA-Based Organic Spin Valveen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江文中(Wen-Chung Chiang),何家驊(Chia-Hua Ho)
dc.subject.keyword有機自旋閥,阻抗,磁電阻,磁電容,介面,金屬-有機,?四甲酸二酐,電荷累積,zh_TW
dc.subject.keywordOrganic spin valve,Impedance,Magnetoresistance,Magnetocapacitance,Interface,Metal-organic,PTCDA,Charge accumulation,en
dc.relation.page54
dc.rights.note未授權
dc.date.accepted2013-06-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
9.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved