請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15521
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉雅雯(Ya-Wen Liu) | |
dc.contributor.author | Tsung-Lin Hsieh | en |
dc.contributor.author | 謝宗霖 | zh_TW |
dc.date.accessioned | 2021-06-07T17:47:24Z | - |
dc.date.copyright | 2020-08-26 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-04 | |
dc.identifier.citation | Abram, C.L., Seals, D.F., Pass, I., Salinsky, D., Maurer, L., Roth, T.M., and Courtneidge, S.A. (2003). The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem 278, 16844-16851. Ahn, S., Kim, J., Lucaveche, C.L., Reedy, M.C., Luttrell, L.M., Lefkowitz, R.J., and Daaka, Y. (2002). Src-dependent Tyrosine Phosphorylation Regulates Dynamin Self-assembly and Ligand-induced Endocytosis of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry 277, 26642-26651. Ahn, S., Maudsley, S., Luttrell, L.M., Lefkowitz, R.J., and Daaka, Y. (1999). Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem 274, 1185-1188. Baron, V., Alengrin, F.o., and Van Obberghen, E. (1998). Dynamin Associates with Src-Homology Collagen (SHC) and Becomes Tyrosine Phosphorylated in Response to Insulin. Endocrinology 139, 3034-3037. Binks, M., Jones, G.E., Brickell, P.M., Kinnon, C., Katz, D.R., and Thrasher, A.J. (1998). Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome. Eur J Immunol 28, 3259-3267. Boateng, L.R., Cortesio, C.L., and Huttenlocher, A. (2012). Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts. Journal of Cell Science 125, 1329-1341. Broudy, V.C., Lin, N.L., Liles, W.C., Corey, S.J., O’Laughlin, B., Mou, S., and Linnekin, D. (1999). Signaling via Src Family Kinases Is Required for Normal Internalization of the Receptor c-Kit. Blood 94, 1979-1986. Bruzzaniti, A., Neff, L., Sanjay, A., Horne, W.C., De Camilli, P., and Baron, R. (2005). Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol Biol Cell 16, 3301-3313. Burns, S., Thrasher, A.J., Blundell, M.P., Machesky, L., and Jones, G.E. (2001). Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98, 1142-1149. Calle, Y., Jones, G.E., Jagger, C., Fuller, K., Blundell, M.P., Chow, J., Chambers, T., and Thrasher, A.J. (2004). WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption. Blood 103, 3552-3561. Cao, H., Chen, J., Krueger, E.W., and McNiven, M.A. (2010). SRC-mediated phosphorylation of dynamin and cortactin regulates the 'constitutive' endocytosis of transferrin. Mol Cell Biol 30, 781-792. Cao, H., Garcia, F., and McNiven, M.A. (1998). Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9, 2595-2609. Chappie, J.S., Acharya, S., Leonard, M., Schmid, S.L., and Dyda, F. (2010). G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature 465, 435-440. Chen, W.-T. (1989). Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. Journal of Experimental Zoology 251, 167-185. Chen, W.T., Chen, J.M., Parsons, S.J., and Parsons, J.T. (1985). Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature 316, 156-158. Cheung, G., and Cousin, M.A. (2019). Synaptic vesicle generation from activity-dependent bulk endosomes requires a dephosphorylation-dependent dynamin–syndapin interaction. Journal of Neurochemistry 151, 570-583. Chin, Y.H., Lee, A., Kan, H.W., Laiman, J., Chuang, M.C., Hsieh, S.T., and Liu, Y.W. (2015). Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation. Hum Mol Genet 24, 5542-5554. Chuang, M.-C., Lin, S.-S., Ohniwa, R.L., Lee, G.-H., Su, Y.-A., Chang, Y.-C., Tang, M.-J., and Liu, Y.-W. (2019). Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. Journal of Cell Biology 218, 1670-1685. Cárdenas, A.M., and Marengo, F.D. (2010). Rapid endocytosis and vesicle recycling in neuroendocrine cells. Cell Mol Neurobiol 30, 1365-1370. Damke, H., Baba, T., Warnock, D.E., and Schmid, S.L. (1994). Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127, 915-934. David-Pfeuty, T., and Singer, S.J. (1980). Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proceedings of the National Academy of Sciences of the United States of America 77, 6687-6691. Destaing, O., Ferguson, S.M., Grichine, A., Oddou, C., De Camilli, P., Albiges-Rizo, C., and Baron, R. (2013). Essential function of dynamin in the invasive properties and actin architecture of v-Src induced podosomes/invadosomes. PLoS One 8, e77956. Destaing, O., Saltel, F., Géminard, J.-C., Jurdic, P., and Bard, F. (2003). Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Molecular biology of the cell 14, 407-416. Destaing, O., Sanjay, A., Itzstein, C., Horne, W.C., Toomre, D., De Camilli, P., and Baron, R. (2008). The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Molecular biology of the cell 19, 394-404. Durieux, A.C., Vignaud, A., Prudhon, B., Viou, M.T., Beuvin, M., Vassilopoulos, S., Fraysse, B., Ferry, A., Lainé, J., Romero, N.B., et al. (2010). A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet 19, 4820-4836. Efendiev, R., Yudowski, G.A., Zwiller, J., Leibiger, B., Katz, A.I., Berggren, P.O., Pedemonte, C.H., Leibiger, I.B., and Bertorello, A.M. (2002). Relevance of dopamine signals anchoring dynamin-2 to the plasma membrane during Na+,K+-ATPase endocytosis. J Biol Chem 277, 44108-44114. Faelber, K., Posor, Y., Gao, S., Held, M., Roske, Y., Schulze, D., Haucke, V., Noé, F., and Daumke, O. (2011). Crystal structure of nucleotide-free dynamin. Nature 477, 556-560. Ferguson, S.M., and De Camilli, P. (2012). Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13, 75-88. Georgess, D., Machuca-Gayet, I., Blangy, A., and Jurdic, P. (2014). Podosome organization drives osteoclast-mediated bone resorption. Cell Adh Migr 8, 191-204. Glazier, R., Brockman, J.M., Bartle, E., Mattheyses, A.L., Destaing, O., and Salaita, K. (2019). DNA mechanotechnology reveals that integrin receptors apply pN forces in podosomes on fluid substrates. Nature Communications 10, 4507. Gold, E.S., Underhill, D.M., Morrissette, N.S., Guo, J., McNiven, M.A., and Aderem, A. (1999). Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190, 1849-1856. Gomez, T.S., Hamann, M.J., McCarney, S., Savoy, D.N., Lubking, C.M., Heldebrant, M.P., Labno, C.M., McKean, D.J., McNiven, M.A., Burkhardt, J.K., et al. (2005). Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat Immunol 6, 261-270. González-Jamett, A.M., Baez-Matus, X., Olivares, M.J., Hinostroza, F., Guerra-Fernández, M.J., Vasquez-Navarrete, J., Bui, M.T., Guicheney, P., Romero, N.B., Bevilacqua, J.A., et al. (2017). Dynamin-2 mutations linked to Centronuclear Myopathy impair actin-dependent trafficking in muscle cells. Sci Rep 7, 4580. Grassart, A., Cheng, A.T., Hong, S.H., Zhang, F., Zenzer, N., Feng, Y., Briner, D.M., Davis, G.D., Malkov, D., and Drubin, D.G. (2014). Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. Journal of Cell Biology 205, 721-735. Gu, C., Yaddanapudi, S., Weins, A., Osborn, T., Reiser, J., Pollak, M., Hartwig, J., and Sever, S. (2010). Direct dynamin-actin interactions regulate the actin cytoskeleton. Embo j 29, 3593-3606. Heemskerk, N., van Rijssel, J., and van Buul, J.D. (2014). Rho-GTPase signaling in leukocyte extravasation: an endothelial point of view. Cell Adh Migr 8, 67-75. Hinshaw, J.E. (2000). Dynamin and Its Role in Membrane Fission. Annual Review of Cell and Developmental Biology 16, 483-519. Howell, B.W., and Cooper, J.A. (1994). Csk suppression of Src involves movement of Csk to sites of Src activity. Molecular and Cellular Biology 14, 5402-5411. Kaverina, I., Stradal, T.E., and Gimona, M. (2003). Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. J Cell Sci 116, 4915-4924. Kong, L., Sochacki, K.A., Wang, H., Fang, S., Canagarajah, B., Kehr, A.D., Rice, W.J., Strub, M.P., Taraska, J.W., and Hinshaw, J.E. (2018). Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560, 258-262. Kuo, S.-L., Chen, C.-L., Pan, Y.-R., Chiu, W.-T., and Chen, H.-C. (2018). Biogenesis of podosome rosettes through fission. Scientific Reports 8, 524. Labernadie, A., Bouissou, A., Delobelle, P., Balor, S., Voituriez, R., Proag, A., Fourquaux, I., Thibault, C., Vieu, C., Poincloux, R., et al. (2014). Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nature Communications 5, 5343. Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends in Cell Biology 17, 107-117. Linder, S., and Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13, 376-385. Linder, S., Higgs, H., Hüfner, K., Schwarz, K., Pannicke, U., and Aepfelbacher, M. (2000a). The Polarization Defect of Wiskott-Aldrich Syndrome Macrophages Is Linked to Dislocalization of the Arp2/3 Complex. The Journal of Immunology 165, 221-225. Linder, S., Hufner, K., Wintergerst, U., and Aepfelbacher, M. (2000b). Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. Journal of Cell Science 113, 4165-4176. Linder, S., and Kopp, P. (2005). Podosomes at a glance. Journal of Cell Science 118, 2079-2082. Linder, S., Nelson, D., Weiss, M., and Aepfelbacher, M. (1999). Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 96, 9648-9653. Liu, Y.-W., Neumann, S., Ramachandran, R., Ferguson, S.M., Pucadyil, T.J., and Schmid, S.L. (2011). Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. Proceedings of the National Academy of Sciences 108, E234. Luxenburg, C., Winograd-Katz, S., Addadi, L., and Geiger, B. (2012). Involvement of actin polymerization in podosome dynamics. J Cell Sci 125, 1666-1672. Marchisio, P.C., D'Urso, N., Comoglio, P.M., Giancotti, F.G., and Tarone, G. (1988). Vanadate-treated baby hamster kidney fibroblasts show cytoskeleton and adhesion patterns similar to their Rous sarcoma virus-transformed counterparts. J Cell Biochem 37, 151-159. Marie-Anaïs, F., Mazzolini, J., Herit, F., and Niedergang, F. (2016). Dynamin-Actin Cross Talk Contributes to Phagosome Formation and Closure. Traffic 17, 487-499. Merrifield, C.J., Feldman, M.E., Wan, L., and Almers, W. (2002). Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4, 691-698. Mettlen, M., Pucadyil, T., Ramachandran, R., and Schmid, S.L. (2009). Dissecting dynamin's role in clathrin-mediated endocytosis. Biochem Soc Trans 37, 1022-1026. Mooren, O.L., Galletta, B.J., and Cooper, J.A. (2012). Roles for actin assembly in endocytosis. Annu Rev Biochem 81, 661-686. Muller, W.A. (2011). Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6, 323-344. Nucifora, P.G.P., and Fox, A.P. (1999). Tyrosine Phosphorylation Regulates Rapid Endocytosis in Adrenal Chromaffin Cells. The Journal of Neuroscience 19, 9739. Obar, R.A., Collins, C.A., Hammarback, J.A., Shpetner, H.S., and Vallee, R.B. (1990). Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256-261. Ochoa, G.C., Slepnev, V.I., Neff, L., Ringstad, N., Takei, K., Daniell, L., Kim, W., Cao, H., McNiven, M., Baron, R., et al. (2000). A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150, 377-389. Powell, K.A., Valova, V.A., Malladi, C.S., Jensen, O.N., Larsen, M.R., and Robinson, P.J. (2000). Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids. J Biol Chem 275, 11610-11617. Praefcke, G.J., and McMahon, H.T. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5, 133-147. Proszynski, T.J., Gingras, J., Valdez, G., Krzewski, K., and Sanes, J.R. (2009). Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A 106, 18373-18378. Roux, A., Uyhazi, K., Frost, A., and De Camilli, P. (2006). GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528-531. Salamero, J., Fougereau, M., and Seckinger, P. (1995). Internalization of B cell and pre-B cell receptors is regulated by tyrosine kinase and phosphatase activities. Eur J Immunol 25, 2757-2764. Salim, K., Bottomley, M.J., Querfurth, E., Zvelebil, M.J., Gout, I., Scaife, R., Margolis, R.L., Gigg, R., Smith, C.I., Driscoll, P.C., et al. (1996). Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. The EMBO Journal 15, 6241-6250. Schafer, D.A., Weed, S.A., Binns, D., Karginov, A.V., Parsons, J.T., and Cooper, J.A. (2002). Dynamin2 and Cortactin Regulate Actin Assembly and Filament Organization. Current Biology 12, 1852-1857. Shpetner, H.S., and Vallee, R.B. (1989). Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421-432. Shpetner, H.S., and Vallee, R.B. (1992). Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733-735. Sidiropoulos, P.N.M., Miehe, M., Bock, T., Tinelli, E., Oertli, C.I., Kuner, R., Meijer, D., Wollscheid, B., Niemann, A., and Suter, U. (2012). Dynamin 2 mutations in Charcot–Marie–Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination. Brain 135, 1395-1411. Song, B.D., Yarar, D., and Schmid, S.L. (2004). An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo. Mol Biol Cell 15, 2243-2252. Spinardi, L., Rietdorf, J., Nitsch, L., Bono, M., Tacchetti, C., Way, M., and Marchisio, P.C. (2004). A dynamic podosome-like structure of epithelial cells. Exp Cell Res 295, 360-374. Szaszak, M., Gaborik, Z., Turu, G., McPherson, P.S., Clark, A.J., Catt, K.J., and Hunyady, L. (2002). Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. J Biol Chem 277, 21650-21656. Takei, K., McPherson, P.S., Schmid, S.L., and De Camilli, P. (1995). Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374, 186-190. Vallis, Y., Wigge, P., Marks, B., Evans, P.R., and McMahon, H.T. (1999). Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Current Biology 9, 257-263. van den Dries, K., Meddens, M.B.M., de Keijzer, S., Shekhar, S., Subramaniam, V., Figdor, C.G., and Cambi, A. (2013). Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nature Communications 4, 1412. Veillat, V., Spuul, P., Daubon, T., Egaña, I., Kramer, I., and Génot, E. (2015). Podosomes: Multipurpose organelles? Int J Biochem Cell Biol 65, 52-60. Wang, L., Barylko, B., Byers, C., Ross, J.A., Jameson, D.M., and Albanesi, J.P. (2010). Dynamin 2 mutants linked to centronuclear myopathies form abnormally stable polymers. J Biol Chem 285, 22753-22757. Warnock, D.E., Baba, T., and Schmid, S.L. (1997). Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronal dynamin-I. Mol Biol Cell 8, 2553-2562. Warnock, D.E., Hinshaw, J.E., and Schmid, S.L. (1996). Dynamin self-assembly stimulates its GTPase activity. J Biol Chem 271, 22310-22314. Weller, S.G., Capitani, M., Cao, H., Micaroni, M., Luini, A., Sallese, M., and McNiven, M.A. (2010). Src kinase regulates the integrity and function of the Golgi apparatus via activation of dynamin 2. Proc Natl Acad Sci U S A 107, 5863-5868. Wilde, A., Beattie, E.C., Lem, L., Riethof, D.A., Liu, S.H., Mobley, W.C., Soriano, P., and Brodsky, F.M. (1999). EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96, 677-687. Yamada, H., Abe, T., Li, S.A., Masuoka, Y., Isoda, M., Watanabe, M., Nasu, Y., Kumon, H., Asai, A., and Takei, K. (2009). Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochem Biophys Res Commun 390, 1142-1148. Yamada, H., Kobayashi, K., Zhang, Y., Takeda, T., and Takei, K. (2016a). Expression of a dynamin 2 mutant associated with Charcot-Marie-Tooth disease leads to aberrant actin dynamics and lamellipodia formation. Neuroscience Letters 628, 179-185. Yamada, H., Takeda, T., Michiue, H., Abe, T., and Takei, K. (2016b). Actin bundling by dynamin 2 and cortactin is implicated in cell migration by stabilizing filopodia in human non-small cell lung carcinoma cells. Int J Oncol 49, 877-886. Zhu, J., Zhou, K., Hao, J.J., Liu, J., Smith, N., and Zhan, X. (2005). Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits. J Cell Sci 118, 807-817 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15521 | - |
dc.description.abstract | 侵襲體是一種受到Src 磷酸酶所調控、並且由肌動蛋白所組成的結構,這樣的結構對於細胞的貼附、移動、侵襲是非常重要的。另一方面,一個能夠調控膜組織的三磷酸鳥苷水解酶 dynamin-2 (Dyn2) 被發現會聚集到侵襲體的附近去幫助細胞貼附結構的胞吞作用,以及調控束狀的肌動蛋白進而影響侵襲體的軟硬程度。然而,目前還不清楚是什麼機制來調控Dyn2的活性以及如何促使他聚集到侵襲體附近。有鑑於酪胺酸磷酸酶Src 已經被發現是一個很重要的調控者來調控侵襲體的形成,同時又能夠去磷酸化Dyn2,因此我們猜測Src對於Dyn2的磷酸化也許是一個很重要的機制來去調控他在侵襲體上的活性。為了驗證以上的推測,我們針對Dyn2上會被Src磷酸酶磷酸化的位點進行突變,並且利用細胞實驗及生化實驗進行觀察。我們發現仿磷酸化(Y597E)及不能被磷酸化(Y597F)兩種Dyn2的突變蛋白都對於Dyn2本身的活性以及他和肌動蛋白之間的交互作用有很大的影響,甚至進一步的影響侵襲體的外觀形狀及功能。除此之外,仿磷酸化(Y597E) Dyn2突變會增加和肌動蛋白接合的能力,但會降低和脂質的親和力。總而言之,我們發現酪胺酸磷酸酶Src 對於Dyn2的磷酸化是一個很重要的機制來調控Dyn2在侵襲體附近的活性。 | zh_TW |
dc.description.abstract | Podosomes are Src kinase regulated, actin-rich structures critical for cell adhesion, migration and invasion. While the membrane remodeling GTPase dynamin-2 (Dyn2) has been found to be enriched at podosomes to mediate adhesion molecule endocytosis as well as to regulate the bundling of actin and the stiffness of podosome, the mechanism orchestrating the activity and recruitment of Dyn2 to podosome is still unclear. Given that tyrosine kinase Src is the critical regulator of podosome assembly and Dyn2 is a substrate of Src kinase, we hypothesize that Src kinase-mediated phosphorylation of Dyn2 may play an important role for its activity at podosome. We thus investigate the effect of Dyn2 mutants on the Src phosphorylation sites with cell biological and biochemical approaches. We found that both the phospho-mimetic (Y597E) and phospho-deficient (Y597F) mutants of Dyn2 have significant impacts on its activity as well as Dyn2-actin association that further alter podosome morphology and function. Strikingly, the phospho-mimetic Dyn2 displays higher actin bundling activity, but a decreased lipid binding ability. Together, our findings demonstrate that Src kinase phosphorylation serve as a critical regulation to dictate Dyn2 activity at podosome structures. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:47:24Z (GMT). No. of bitstreams: 1 U0001-0408202012214000.pdf: 3728979 bytes, checksum: 9a9cdb2e7532fb1a43500f1afafcfc25 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 論文審定書............................................................. i Acknowledgement........................................................ii 中文摘要 ...............................................................iii ABSTRACT...............................................................iv Table of Contents......................................................v Chapter 1 Introduction...............................................1 1.1 The structure and functions of podosome..........................1 1.2 The function of dynamin-2 at podosome............................4 1.3 Dyn2 is a substrate of Src kinase ...............................7 Chapter 2 Materials and Methods......................................10 2.1 Cell culture, transfection......................................10 2.2 Matrix degradation assay .......................................11 2.3 Immunofluorescent staining and imaging.............................12 2.4 Fix image quantification .......................................13 2.5 Transmission EM ...............................................13 2.6 Protein purification and GST pulldown assay.....................13 2.7 Liposome preparation............................................14 2.8 F-actin bundle/ liposome binding sedimentation assay............15 2.9 GTPase activity assay...........................................16 2.10 Transferrin uptake assay .......................................16 2.11 Statistical analysis............................................17 Chapter 3 Results....................................................18 3.1 Phospho-deficient dynamin-2 mutant (Dyn2Y597F) is unable to target to podosome .......................................................................18 3.2 Phospho-mimetic Dynamin-2 mutant (Dyn2Y597E) enriches at actin puncta in C2C12 myoblasts..............................................................19 3.3 The phosphorylation on Dyn2Y231 results in abnormal aggregation in C2C12 myoblasts..............................................................19 3.4 The Dyn2Y597E perfectly enrich to podosome rosette in c-Src transformed NIH3T3 cells. ...............................................................20 3.5 The expression of Dyn2Y597F inhibits ECM degradation function of c-Src transformed NIH3T3 cells...............................................21 3.6 The Dyn2Y597E increase podosome lifetime .......................22 3.7 Dyn2Y597E displays increased actin binding ability..............23 3.8 Dyn2Y597E has enhanced basal GTPase activity....................24 3.9 Dyn2Y597E has increased self-assembly ability...................24 3.10 Dyn2Y597E shows decreased lipid binding ability. ...............26 3.11 Dyn2Y597E disturbs transferrin uptake of c-Src transformed NIH3T3 cells. 26 3.12 Both Dyn2Y597E and Y597F disturb transferrin uptake internalization in HeLa cells. ...............................................................27 3.13 The Dyn2 biochemical activity mutant affect podosome degradation function. .......................................................................28 Chapter 4 Discussion ...............................................30 4.1 The Y597 phosphorylation switch Dyn2 affinity between actin and membrane 30 4.2 The Y597 phosphorylation regulate Dyn2 activity at podosome 32 4.3 The regulation of dynamin activity between phosphorylation/ dephosphorylation ........................................................................33 4.4 The Dyn2Y597E phosphorylation inhibit endocytosis................34 Chapter 5 Figures.....................................................36 Figure 1. Current understandings of podosome and dynamic................36 Figure 2. The phospho-deficient Dyn2Y597F mutant shows decreased enrichment to podosome in C2C12 myotube...............................................38 Figure 3. Dyn2Y597E mutant enriches with actin puncta in C2C12 myoblast.40 Figure 4. The mutant of Dyn2Y231 tyrosine site results in abnormal aggregation. 42 Figure 5. Dyn2Y597E strongly enriches to the podosome rosette in c-Src transformed NIH3T3 cells. ........................................................44 Figure 6. Dyn2Y597F affects podosome formation and ECM degradation function.46 Figure 7. The Dyn2Y597E increases the size of podosome. ................48 Figure 8. Dyn2Y597E increases podosome lifetime.........................50 Figure 9. Dyn2Y597E has higher F-actin bundling activity with GTP. 52 Figure 10. Dyn2Y597E shows enhanced actin bundling ability under TEM. 54 Figure 11. Dyn2 Y597E shows enhanced basal GTPase activity..............56 Figure 12. The self-assembly activity of Dyn2 mutants...................58 Figure 13. Dyn2Y597E shows decreased lipid binding ability..............60 Figure 14. Dyn2Y597E shows disturbed transferrin internalization in c-Src transformed NIH3T3 cells. ........................................................62 Figure 15. Dyn2Y597E disturbs transferrin uptake in HeLa cells. ........64 Figure 16. Dyn2Y597F is enriched at microtubule.........................66 Figure 17. The ECM degradation ability of different Dyn2 mutants........68 Figure 18. The schematic diagram of Src-mediated Dyn2 activity at podosome structure. ........................................................................70 Chapter 6 Reference ................................................72 | |
dc.language.iso | en | |
dc.title | 探討Src磷酸化調控之dynamin-2在侵襲體的活性及功能 | zh_TW |
dc.title | Src-mediated Dynamin-2 Phosphorylation Regulates Its Activity at Podosome | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李芳仁(Fang-Jen Lee),陳炳宏(Ping-Hung Chen) | |
dc.subject.keyword | 侵襲體,dynamin-2,Src 磷酸酶磷酸化, | zh_TW |
dc.subject.keyword | Podosome,dynamin-2,Src kinase phosphorylation, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU202002359 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0408202012214000.pdf 目前未授權公開取用 | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。