Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15510
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭振華(Jen-Hwa Guo)
dc.contributor.authorScott David Yuen
dc.contributor.author游文孝zh_TW
dc.date.accessioned2021-06-07T17:41:25Z-
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-16
dc.identifier.citationChen-FenHuang,Yun-WenLi,andNaokazuTaniguchi“Mappingofoceancurrents in shallow water using moving ship acoustic tomography,” J. Acoust. Soc. Am., vol. 145, pp. 858–868, 2019.
李允文(2016) 利用拖曳式發收器於淺海環境聲測流研究 (碩士論文), 國立臺 灣大學,臺北市。.
D. V. Sarwate and M. B. Pursley. “Cross-Correlation properties of pseudo-random and related sequences,” Proc. IEEE, vol. 68, pp. 593-618, 1980.
G.Jourdain,andJ.P.Henrioux“Useoflargebandwidth-durationbinaryphaseshift keying signals in target delay Doppler measurements,” J. Acoust. Soc. Am., vol. 90, No. 299, 1991.
T. G. Birdsall, R. M. Heitmeyer, and K. Metzger. “Modulation by Linear Maximal Shift Register Sequences : Amplitude, Biphase and Complement - Phase Modula- tion,” C.E.L. Technical Report, No.216, 1971.
C.H. Sherman and J.L. Butler, “ElectroacousticTransduction,”in Transducers and Arrays for Underwater Sound, 2nd ed., Berlin: ASA Press and Springer, 2007.
劉金源,《水中聲學 − 水聲系統之基本原理操作》,國立編譯館,2001。
Qihu Li. “Implementation Methods of Various Functions of Digital Sonar,”in Dig- ital Sonar Design in Underwater Acoustics, 2nd ed., Heidelberg: ASA Press and Springer, 2012.
W. Munk, P. F. Worcester, and C. Wunsch, “Observational Methods,”in Ocean AcousticTomography. NewYork:CambridgeUniv.Press,1995.
NingXiang.“Reciprocalmaximum-lengthsequencepairsforacousticaldualsource measurements,” J. Acoust. Soc. Am., vol. 1133, no. 5, pp. 2754-2760, 2002.
Paul Horowitz and Winfield Hill. The Art of Electronics. 3rd ed., Cambridge University Press, 2015.
M.E. Van Valkenburg. Analog Filter Design. Holt, Rinehart and Winston ,1982
Ron Mancini, Bruce Carter. Op Amps for Everyone. Newnes/Elsevier, 2009
Geffe, P. R. Designer’s Guide to Active Band-Pass Filters. EDN, Apr. 5 1974, pp. 46-52.
“BANDPASS FILTER DESIGN USIN GGEFFE’S ALGORITHM” https://github.com/freq0ut/Bandpass-Geffes-Algorithm/blob/master/Geffe Friend Bandpass.py
Chen-FenHuang.“Moving vehicle tomography using distributed networked underwater sensors” (MoST 103-2611-M002-010). Taipei, Taiwan : Ministry of Science and Technology.
U-Blox Inc., NEO-6T / LEA-6T product summary. [Online]. Available: https://www.u-blox.com/sites/default/files/products/documents/LEA-NEO- 6T ProductSummary %28UBX-13003351%29.pdf. [Accessed: Oct. 7, 2019].
Micorsem. “SA.45s CSAC Datasheet.” [Online]. Available: https://www.microsemi.com/product-directory/clocks-frequency-references/3824- chip-scale-atomic-clock-csac.
D. Church and D. Pincock. “Predicting the electrical equivalent of piezoceramic transducers for small acoustic transmitters,” IEEE Trans. Sonics Ultrason., vol. SU-32, no. 1, pp. 61–64, 1985.
H.Radke. “Development of a Self-Tuning Amplifier for Piezoelectric Transducer Evaluations”, Open Access Master’s Thesis, University of Rhode Island, Kingston, Rhode Island, 2013. [Online]. Available: http://digitalcommons.uri.edu/theses/80
Neptune Sonar Limited. “MODEL T235 datasheet.” [Online]. Available: http://www.neptune-sonar.co.uk/wp-content/uploads/2016/03/Model-T235.pdf
Analog Devices. “Multi-stage amplifier configurations,” in Online Electronics II. Analog Devices Wiki. Nov. 18, 2015 [Online]. Available: https://wiki.analog.com/university/courses/electronics/text/chapter-10
Cypress Seimiconductor. “PSoC Creator Component Data Sheet — ADC Successive Approximation Register.” [Online]. Available: https://www.cypress.com/file/127571/download
D.E.Lucani,M.Stojanovic,andM.Medard.“OntheRelationshipbetweenTrans- mission Power and Capacity of an Underwater Acoustic Communication Channel,” OCEANS, pp. 1-6, 2008.
Richard P. Hodges. Underwater Acoustics: Analysis, Design and Performance of Sonar. Hoboken, NJ : Wiley, 2010.
L. Berkhovskikh and Y. Lysanov. Fundamentals of Ocean Acoustics. Springer, 1982.
Lord Rayleigh. The Theory of Sound. Dover Publications Inc., New York, 1945.
R. J. Urick. “Propagation of Sound in the sea: Transmission Loss,”in Principles of Underwater Sound. Los Altos Hills, CA: Peninsula Publishing, 1986.
M.B. Porter. ”The BELLHOP Manual and User’s Guide”.
G. Wenz. “Acoustic Ambient Noise in the Ocean: Spectra and Sources,” J. Acoust. Soc. Am., vol. 34, 1936.
C.A.Hamm and M.L.Taillefer “Development of an Underwater Acoustic Communications Simulator. (Contract Report DRDC-RDDC-2015-C217) ,” April, 2015.
Martin Siderius and Michael B. Porter. “Modeling broadband ocean acoustic trans- missions with time-varying sea surfaces,” J. Acoust. Soc. Am., No.1, vol. 124, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15510-
dc.description.abstract本研究實現一套用於移動載具聲層析聲納系統,以及發展一套預 測該系統在淺海環境表現的模擬方法。 移動聲層析藉由量測節點之間 的精確走時差以反算海洋特性,包括溫度場、流場等。此系統發射都 卜勒敏感之聲學訊號,最大長度序列訊號以相位調變方式結合載波之 上,在接收端以匹配濾波器求得相關函數,並推算走時。 若將聲納系 統以移動載具拖曳可以增加測量聲線並且擴增遙測範圍。然而載具之 間的相對移動所產生的都卜勒效應會造成訊號在中心頻率以及波形上 的改變,此失真必須採用多重都卜勒匹配之演算法加以補償,才得以 在接收端維持足夠的訊雜比。
本文提出一套適用於移動載具聲層析的聲納系統,該系統由控制電 路、發射裝置、接收電路以及都卜勒訊號處理算法組成,詳述聲納系 統設計原則,並且發展出一套模擬方法,根據聲納方程式評估此系統 在複雜淺海水聲通道中的表現和訊雜比,並由該模擬方法合成接收端 所收到的聲學訊號,通過電路模擬軟體驗證該系統之性能。 最後,為 了驗證該聲學傳播模擬方法,於基隆望海巷灣實施海事實驗,由三艘 漁船各拖曳一組聲納系統,並沿著指定路線航行。實驗數據與模擬結 果在複雜的環境下仍呈現良好的一致性。
zh_TW
dc.description.abstractMoving vehicle tomography is a technique used to sense temperatures and currents in the ocean by measuring precise travel times of acoustic signals. This study presents the construction of a SONAR system for moving vehicle tomography and develops a method evaluating its performance in coastal water by underwater sound simulations. Signal phase-modulated by maximum- length sequence is transmitted by the transducer, and the received waveform is correlated with a replica of the transmitted signal to obtain the arrival pat- tern. Towing the transceivers by moving vehicles significantly increases the number of ray paths and thus improves the accuracy and coverage of monitor- ing. However, the motion-induced Doppler effect would lead to distortion in the signal. To compensate the distortion both in center frequency and wave- form, the technique of multi-Doppler match filtering should be applied.
This study presents a constructed SONAR system for this application. The system is composed of a transmitter, receiver, control circuit, other peripheral modules and algorithm of multi-Doppler-match filtering. Also, this study develops a method based on SONAR equation to estimate the performance of the constructed system in the complex shallow water acoustic channel. This method uses several acoustic toolboxes to synthesize the received signal and passes it to circuit simulation tools for system verification. To validate the developed simulation procedures, a field experiment was carried out in WanHaiXiang Bay, Keelung, Taiwan on Sep.27, 2019, with three transceivers each towed by a moving ship. Comparison between the outputs of simulation and the results from the experiment is made with fair agreement in spite of complex environment.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:41:25Z (GMT). No. of bitstreams: 1
U0001-1307202009410800.pdf: 20908582 bytes, checksum: 58d340edc88d88f2e115ae28044d1595 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
List of Figures vii
List of Tables x
List of Symbols xii
1 Introduction 1
1.1 OverviewandMotivation.......................... 1
1.2 ThesisObjectives .............................. 2
1.3 ScopeoftheStudy ............................. 3
2 Theories of MVT 6
2.1 TheTravelTimeMethod .......................... 6
2.2 TheSONAREquation ........................... 8
2.2.1 SourceLevelofTheTransducer .................. 8
2.2.2 Transmission Loss, Bottom Reflection and Ambient Noise . . . . 10
2.2.3 ProcessingGain .......................... 14
2.3 Maximum-LengthSequence ........................ 17
2.4 BPSKModulationandDemodulation ................... 20
2.4.1 BPSKModulation ......................... 20
2.4.2 DemodulationofPSKSignals ................... 23
2.5 Multi-DopplerMatch-Filtering....................... 26
2.6 Summary .................................. 30
3 System Configuration and Hardware Implementation 32
3.1 TheArchitectureoftheOATSystem.................... 32
3.2 AccurateTimeReferences ......................... 35
3.3 ElectraoacousticTransduction ....................... 36
3.4 TheTransmitter............................... 37
3.4.1 Push-Pull Inverter and Step-Up Transformer . . . . . . . . . . . . 37
3.4.2 ResonantFrequencyandTheTunningCoil . . . . . . . . . . . . 42
3.4.3 Case Study: Tunning the Transceiver Model T235 . . . . . . . . 45
3.5 TheReceiver ................................ 48
3.5.1 pre-Amplifier............................ 48
3.5.2 Filter ................................ 49
3.6 Summary .................................. 52
4 System Evaluation Based on SONAR Equation and Simulation of Underwa-
ter Sound Transmission 53
4.1 AcousticResponseofTransducers ..................... 53
4.2 ReceiverGainandSignalpre-Conditioning . . . . . . . . . . . . . . . . 58
4.2.1 Pre-Amplifier............................ 59
4.2.2 TheBand-PassFilter........................ 62
4.3 Simulation of Underwater Acoustic Transmission and Reception . . . . . 64
4.4 FieldSimulationinWanHaiXiangBay................... 69
4.5 Summary .................................. 74
5 2019 Shallow-Water Feasibility Experiment 75
5.1 DescriptionoftheExperiment ....................... 75
5.2 EffectsofSedimentandGeometryProperties . . . . . . . . . . . . . . . 76
5.2.1 GeoacousticPropertiesoftheSeaBottom . . . . . . . . . . . . . 77
5.2.2 SourceReceiverGeometry .................... 78
5.3 Collected Data and Corresponding Simulation Results . . . . . . . . . . . 79
5.4 Summary .................................. 80
6 Conclusions 89
6.1 ConclusionsandContributionsoftheStudy . . . . . . . . . . . . . . . . 89
References. . . . . . . . . . . . . . . .95
dc.language.isoen
dc.title移動載具層析聲納系統之實現zh_TW
dc.titleRealization of a SONAR System for Moving Vehicles Tomographyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor黃千芬(Chen-Fen Huang)
dc.contributor.oralexamcommittee李佳翰(Jia-Han Li),張宏毅(Hung-Yi Chang),黃盛煒(Sheng-Wei Huang)
dc.subject.keyword移動聲層析,聲納系統,聲納方程式,水聲通道估測,都卜勒效應,zh_TW
dc.subject.keywordmoving ship tomography,SONAR system,SONAR equation,underwater acoustic channel estimation,Doppler effect,en
dc.relation.page95
dc.identifier.doi10.6342/NTU202001460
dc.rights.note未授權
dc.date.accepted2020-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1307202009410800.pdf
  目前未授權公開取用
20.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved