Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬(Ruey-Fen Liou)
dc.contributor.authorYa-Yuan Yangen
dc.contributor.author楊雅媛zh_TW
dc.date.accessioned2021-06-07T17:41:09Z-
dc.date.copyright2020-07-29
dc.date.issued2020
dc.date.submitted2020-07-16
dc.identifier.citationAlbert, I., Böhm, H., Albert, M., Feiler, C. E., Imkampe, J., Wallmeroth, N., Brancato, C., Raaymakers, T. M., Oome, S., Zhang, H., Krol, E., Grefen, C., Gust, A. A., Chai, J., Hedrich, R., Van den Ackerveken, G., and Nürnberger, T. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1:15140.
Albert, M., and Fürst, U. 2017. Quantitative detection of oxidative burst upon activation of plant receptor kinases. Methods Mol. Biol.1621:69-76.
Albert, I., Zhang, L. S., Bemm, H., and Nürnberger, T. 2019. Structure-function analysis of immune receptor AtRLP23 with its ligand nlp20 and coreceptor AtSOBIR1 and AtBAK1. Mol. Plant-Microbe Interact. 32:1038-1046.
Almeida, D., and Huber, D. 1999. Apoplastic pH and inorganic ion levels in tomato fruit: A potential means for regulation of cell wall metabolism during ripening. Physiol. Plant. 105:506-512.
Alsam, N., Shiekh, M., Ashraf, M., and Jamil, A. 2010. Expression pattern of Trichoderma cellulases under different carbon sources. Pak. J. Bot. 42:2895-2902.
Amaro, T., Thilliez1, G., Motion, G., and Huitema, E. 2017. A perspective on CRN proteins in the genomics age: Evolution, classification, delivery and function revisited. Front. Plant Sci. 8:99.
Anderson, R. G., Deb, D., Fedkenheuer, K., and McDowell, J. 2015. Recent progress in RXLR effector research. Mol. Plant-Microbe Interact. 28:1063-1072.
Armstrong, M., Whisson, S., Pritchard, L., Bos, J., Venter, E., Avrova, A., Rehmany, A., Böhme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M., Churcher, C., Hall, N., Berriman, M., Huang, S. W., Kamoun, S., Beynon, J., and Birch, P. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc. Natl. Acad. Sci. 102:7766-7771.
Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gómez-Gómez, L., Boller, T., Ausubel, F. M., and Sheen, J. 2002. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977-983.
Attard, A., Gourgues, M., Callemeyn‐Torre, N., and Keller, H. 2010. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol. 187:449-460.
Ayer, A., Valent, B., Ebel, J., and Albersheim, P. 1976. Host-pathogen interactions: XI. Composition and structure of wall-released elicitor fractions. Plant Physiol. 57:766-774.
Azevedo-Souza, C., Li, S. D., Lin, A., Boutrot, F., Grossmann, G., Zipfel, C., and Somerville, S. 2017. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol. 173:2383-2398.
Aziz, A., Gauthier, A., Bezier, A., Poinssot, B., Joubert, J. M., Pugin, A., Heyraud, A., and Baillieul, F. 2007. Elicitors and resistance-inducing activities of β̞-1,4 cellodextrins in grapevine, comparison with β̞-1,3 glucans and α-1,4 oligogalacturonides. J. Exp. Bot. 58:1463-1472.
Bailey, B. A., Korcak, R. F., and Anderson, J. D. 1993. Sensitivity to an ethylene biosynthesis-inducing endoxylanases in Nicotiana tabacum L. cv. Xanthi is controlled by a single dominant gene. Plant Physiol. 101-1081-1088.
Baker, C. J., Kovalskaya, N. Y., Mock, N. M., Owens, R. A., Deahl, K. L., Whitaker, B. D., Roberts, D. P., Hammond, R. W., and Averyanov, A. A. 2012. An internal standard technique for improved quantitative analysis of apoplastic metabolites in tomato leaves. Physiol. Mol. Plant Path. 78:31-38.
Barbeyron, T., Gerard, A., Potin, P., Henrissat, B., and Kloareg, B. 1998. The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol. Biol. Evol. 15:528-537.
Bartels, S., and Boller, T. 2015. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J. Exp. Bot. 66:5183-5193.
Benedetti, M., Pontiggia, D., Raggi, S., Cheng, Z. Y., Scaloni, F., Ferrari, S., Ausubel, F., Cervone, F., and Lorenzo, G. 2015. Plant immunity triggered by engineered in vivo released of oligosaccharides, damage-associated molecular pattern. Proc. Natl. Acad. Sci. 112:5533-5538.
Bigeard, J., Colcombet, J., and Hirt, H. 2014. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8:521-539.
Billard, V., Bruneteau, M., Bonnet, P., Ricci, P., Pernollet, J. C., Huet, J. C., Vergne, A., Richard, G., and Michel, G. 1988. Chromatographic purification and characterization of elicitors of necrosis on tabacco produced by incompatible Phytophthora species. J. Chromatogr. A 440:87-94.
Birch, P., Boevink, P., Gilroy, E., Hein, I., Pritchard, L., and Whisson, S. 2008. Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Cuur. Opin. Plant Biol. 11:373-379.
Bisceglia, N., Gravino, M., and Savatin, D. 2015. Luminol-based assay for detection of immunity elicitor-induced peroxide production in Arabidopsis thaliana leaves. Methods Mol. Biol. 5:1685-1692.
Blackman, L., Cullerne, D., and Hardham, A. 2014. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 15:785.
Boller, T., and Felix, G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406.
Bostock, R. M. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43:545-580.
Boudart, G., Charpentier, M., Lafitte, C., Martinez, Y., Jauneau, A., Graulin, E., Esquerre-Tugaye, M. T., and Dumas, B. 2003. Elicitor activity of a fungal endogalacturonase in tabacco requires a functional catalytic site and cell wall localization. Plant Physiol. 131:93-101.
Bozkurt, T., Schornack, S., Banfield, M., and Kamoun, S. 2012. Oomycetes, effectors, and all that jazz. Cuur. Opin. Plant Biol. 15:483-492.
Brefort, T., Doehlemann, G., Mendoza-Mendoza, A., Reissmann, S., Djamei, A., and Kahmann, R. 2009. Ustilago maydis as a Pathogen. Annu. Rev. Phytopathol. 47:423-445.
Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nürnberger, T. 2002. Pep‐13, a plant defense‐inducing pathogen‐associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688.
Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123-136.
Chaparro-Garcia, A., Wilkinson, R., Gimenez-Ibanez, S., Findlay, K., Coffey, M., Zipfel, C., Rathjen, J., Kamoun, S., and Schornack, S. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One 6:e16608. doi: 10.1371/journal.pone.0016608.
Cheong, J. J., and Hahn, M. G. 1991. A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. Plant Cell 3:137-147.
Chiu, Y. S., Chen, P. Y., Kuan, T., Wang, P. C., Chen, Y. J., Yang, Y. L., and Yeh, H. H. 2018. A polysaccharide derived from a Trichosporon sp. culture strongly primes plant resistance to viruses. Mol. Plant-Micorbe Interact. 31:1257-1270.
Cho, C. C. 2016. The role of OPEL homologs form Phytophthora parasitica in plant responses. Master Thesis, National Taiwan University, Taipei, Taiwan.
Choi, J. M., Tanaka, K., Cao, Y. R., Qi, Y., Qiu, J., Liang, Y., Lee, S. Y., and Stacey, G. 2014. Identification of a Plant Receptor for Extracellular ATP. Science 343-290-294.
Couto, D., and Zipfel, C. 2016. Regulation of pattern recognition receptor signaling in plants. Nat. Plants 16:537-552.
Dalio, R., Maximo, H., Oliveira, T., Dias, R., Breton, M., Felizatti, H., and Machado, M. 2018. Phytophthora parasitica effector PpRxLR2 suppresses Nicotiana benthamiana immunity. Mol. Plant-Microbe Interact. 31:481-493.
de Azevedo Souza, C., Li, S., Lin, A. Z., Boutrot, F., Crossman, G., Zipfel, C., and Somerville, S. C. 2017. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol. 173:2383-2398.
Derevnina, L., Dagdas, Y. F., De la Concepcion, J. C., Bialas, A., Kellner, R., Petre, B., Domazakis, E., Du, J., Wu, C. H., Lin, X., Aguilera‐Galvez, C., Cruz‐Mireles, N., Vleeshouwers, V., and Kamoun, S. 2016. Nine things to know about elicitins. New Phytol. 212:888-895.
Desaki, Y., Shimada, H., Takahashi, S., Sakurayama, C., Kawai, M., Kaku, H., and Shibuya, N. 2019. Handmade leaf cutter for efficient and reliable ROS assay. Plant Biotechnol. 36:275-278.
Dodds, P., and Rathjen, J. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nature 11:539-548.
Doehlemann, G., and Hemetsberger, C. 2013. Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol. 198:1001-1016.
Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, P., Zhou, J., Liebrand,, T., Xie, C. H., Govers, F., Robatzek, S., van der Vossen, E., Jacobsen, E., Visser, R., Kamoun, S., and Vleeshouwers, V. 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1:15034.
Duran-Flores, D., and Heil, M. 2016. Sources of specificity in plant damaged-self recognition. Curr. Opin. Plant Biol. 32:77-87.
Ebel, J., Ayer, A. R., and Alberaheim, P. 1976. Host-pathogen interactions: XII. Response of suspension-cultured soybean cells to the elicitor isolated from Phytophthora megasperma var. sojae, a fungal pathogen of soybeans. Plant Physiol. 57:775-779.
Enkerli, J., Felix, G., and Boller, T. 1999. The enzymatic activity of fungal xylanase is not necessary for its elicitor activity. Plant Physiol. 121:391-397.
Fauth, M., Schweizer, P., Buchala, A., Markstädter, C., Riederer, M., Kato, T., and Kauss, H. 1998. Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors. Plant Physiol. 117:1373-1380.
Fawke, S., Doumane, M., and Schornack, S. 2015. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 79:263-280.
Felix, G., Duran, J. D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most concerved domain of bacterial flagellin. Plant J. 18:265-276.
Ferrari, S., Savatin, D., Sicilia, F., Gramegna, G., Cervone, F., and Lorenzo, G. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4:49.
Fesel, P., and Zuccaro, A. 2016. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90:53-60.
Foster, C., Martin, T., and Pauly, M. 2010. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: Lignin. J. Vis. Exp. 11:1745.
Furukawa, T., Inagaki, H., Takai, R., Hirai, H., and Che, F. S. 2014. Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant-Microbe Interact. 27:113-124.
Furman-Matarasso, N., Cohen, E., Du, Q. S., Chejanovsky, N., Hanania, U., and Avni, A. 1999. A point mutation in the ethylene-inducing xylanase elicitor inhibits the β-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol. 121:345-351.
Gaulin, E., Dramé, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerré-Tugayé, M-T., and Rickauer, M. 2006. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766-1777.
Geilfus, C. 2017. The pH of the apoplast: Dynamic factor with functional impact under stress. Mol. Plant 10:1371-1386.
Gentzel, I., Giese, L., Zhao, W. Y., Alonso, A. P., and Mackey, D. 2019. A simple method for measuring apoplast hydration and collecting apoplast contents. Plant Physiol. 179:1265-1272.
Gómez-Gómez, L., and Boller, T. 2000. FLS2: an LRR-receptor like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. cell 5:1003-1011.
Götesson, A., Marshall, J., Jones, D., and Hardham, A. Characterization and evolutionary analysis of a large polygalacturonase gene family in the Oomycete plant pathogen Phytophthora cinnamomi. Mol. Plant-Microbe Interact. 15:907-921.
Gust, A., Pruitt, R., and Nürnberger, T. 2017. Sensing danger: Key to activating plant immunity. Trends Plant Sci. 22:779-791.
Hua, C. W., Yan, Q. J., Jiang, Z. Q., Li, Y. N., and Katrolia, P. 2010. High-level expression of a specific beta-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces Thermophila in Pichia Pastoris. Appl. Microbiol. Biotechnol. 88:509-518.
Huang, G. Y., Liu, Z. R., Zhou, H., Jia, J. B., Fan, G. J., Meng, Y. L., Du, Y., and Shan, W. X. 2018. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Mol. Plant Pathol. 20:356-371.
Huffaker, A., Pearce, G., and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. 103:10098-10103.
Jachetta, J., Appleby, A., and Boersma, L. 1986. Use of the pressure vessel to measure concentrations of solutes in apoplastic and membrane-filtered symplastic sap in sunflower leaves. Plant Physiol. 82:995-999.
Jiang, R., Tyler, B., Whisson, S. C., Hardham, A. R., and Govers, F. 2005. Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol. Biol. Evol. 23:338-351.
Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nat. Plants 444:323-329.
Joosten, M. H., and de Wit, P. G. 1999. Versatile experimental system to study plant-pathogen interactions. Annu. Rev. Phytopathol. 37:335-367.
Joosten, M. H. 2012. Isolation of apoplastic fluid from leaf tissue by the vacuum infiltration-centrifugation technique. Methods Mol. Biol. 835:603-610.
Joubert, D. A., Kars, I., Wagemakers, L., Bergmann, C., Kemp, G., Vivier, M. A., and van Kan, J. A. 2007. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol. Plant-Microbe Interact. 20:392-402.
Judelson, H., and Blanco, F. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nat. Rev. Microbiol. 3:47-58.
Kadota, Y., Shirasu, K., and Zipfel, C. 2015. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56:1472-1480.
Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. 103:11086-11091.
Kamoun, S., Young, M., Förster, H., Coffey, M., and Tyler, B. 1994. Potential role of elicitins in the interaction between Phytophthora species and tobacco. Appl. Environ. Microbiol. 60:1593-1598.
Kamoun, S., Lindqvist, H., and Govers, F. 1997. A Novel Class of Elicitin-like Genes from Phytophthora infestans. Mol. Plant-Microbe Interact. 10:1028-1030.
Kamoun, S. 2006. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44:41-60.
Kamoun, S., Furzer, O., Jones, J., Judelson, H., Ali, G. S., Dalio, R., Roy, S. G., Schena, L., Zambounis, A., Panabières, F., Cahill, D., Ruocco, M., Figueiredo, A., Chen, X. R., Hulvey, J., Stam, R., Lamour, K., Gijzen, M., Tyler, B., Grünwald, N., Mukhtar, M. S., Tomé, D., Tör, M., Van Den Ackerveken, G., McDowell, J., Daayf, F., Fry, W., Lindqvist‐Kreuze, H., Meijer, H., Petre, B., Ristaino, J., Yoshida, K., Birch, P., and Govers, F. 2014. The Top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 16:413-434.
Kawasaki, T., Yamada, K., Yoshimura, S., and Yamaguchi, K. 2017. Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signal Behav. 12(9):e1361076.
Ke, T. Y., 2019. Transcriptome analysis to investigate the effect of OPEL, an apoplastic effector from Phytophthora parasitica, on Nicotiana tabacum. Master Thesis, National Taiwan University, Taipei, Taiwan.
Khatib, M., Lafutte, C., Esquerré‐Tugayé, M. T., Bottin, A., and Rickauer, M. 2014. The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defense in Arabidopsis thaliana via three different signaling pathways. New Phytol. 162:501-510.
K. Petutschnig, E., M. E. Jones, A., Serazetdinova, L., Lipka, U., and Lipka, V. 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 285:28902-28911.
Kroon, L., Brouwer, H., de Cock, A., and Govers, F. 2012. The genus Phytophthora anno 2012. Phytopathology 102:348-364.
Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507.
Kutschera, A., Dawid, C., Gisch, N., Schmid, C., Raasch, L., Gerster, T., Schäffer, M., Smakowska-Luzan, E., Belkhadir, Y., Vlot, A., Chandler, C. E., Schellenberger, R., Schwudke, D., Ernst, R., Dorey, S., Hückelhoven, R., Hofmann, T., and Ranf, S. 2019. Bacteria medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 364:178-181.
Lai, M. W., and Liou, R. F. 2018. Two genes encoding GH10 xylanases are essential for the virulence of the Oomycete plant pathogen Phytophthora Parasitica. Curr. Genet. 64:931-943.
Liu, T. T., Liu, Z., Song, C. J., Hu, Y. F., Han, Z. F., She, J., Fan, F. F., Wang, J. W., Jin, C. W., Zhou, J. M., and Chai, J. J. 2012. Chitin-induced dimerization activates a plant immune receptor. Science 336:1160-1164.
Lohaus, G., Pennewiss, K., Sattelmacher, B., Hussmann, M., and Muehling, K. H. 2001. Is the infiltration‐centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol. Plant 111:457-465.
Malinovsky, A., Fangel, J., and Willats, W. 2014. The role of the cell wall in plant immunity. Front. Plant Sci. 5:178.
Ma, Z. C., Song, T. Q., Zhu, L., Ye, W. W., Wang, Y., Shao, Y. Y., Dong, S. M., Zhang, Z. G., Dou, D. L., Zheng, X. B., Tyler, B., and Wang, Y. C. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057-2072.
Ma, Z. C., Zhu, L., Song, T. Q., Wang, Y., Zhang, Q., Xia, Y. Q., Qiu, M., Lin ,Y. C., Li, H. Y., Kong, L., Fang, Y. F., Ye, W. W., Wang, Y., Dong, S. M., Zheng, X. B., Tyler, B., and Wang, Y. C. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355:710-714.
Mateos, F., Rickauer, M., and Esquerré-Tugayé, M-T. 2007. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant-Microbe Interact. 10:1045-1053.
Meng, Y., Zhang, Q., Ding, W., and Shan, W. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5:43-51.
Miró, M., and Frenzel, W. 2005. The potential of microdialysis as an automatic sample-processing technique for environmental research. Trends Analyt. Chem. 24:324-333.
Moore, J., Nguema-Ona, E., Fangel, J., Willats, W., Hugo, A., and Vivier, M. 2014. Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods. Carbohydr. Polym. 99:190-198.
Nishinaka, Y., Aramaki, Y., Yoshida, H., Masuya, H., Sugawara, T., and Ichimori, Y. 1993. A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells. Biochem. Biophys. Res. 193:554-559.
Nouchi, I., Hayashi, K., Hiradate, S., Ishikawa, S., Fukuoka, M., Chen, C. P., and Kobayashi, K. 2012. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration–centrifugation method. Plant Cell Physiol. 53:1659-1668.
Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449-460.
Ökmen, B., Bachmann, D., and Wit, P. 2019. A conserved GH17 glycosyl hydrolase from plant pathogenic Dothideomycetes releases a DAMP causing cell death in tomato. Mol. Plant Pathol. 20:1710-1721.
O’Leary, B. M., Rico, A., McCraw, S., Fones, H. N., and Preston, G. M. 2014. The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example. J. Vis. Exp. (94),e52113, doi:10.3791/52113.
O'Leary, B. M., Neale, H., Geilfus, M., Jackson, R., Arnold, D., and Preston, G. 2016. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae pv. phaseolicola. Plant Cell Environ. 39:2172-2184.
Orozco-Cardenas, M., Gurl, B., and Ryan, C. A. 1993. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc. Natl. Acad. Sci. 90:8273-8276.
Parker, J. E., Schulte, W., Hahlbrock, K., and Scheel, D. 1991. An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol. Plant-Microbe Interact. 4:19-27.
Pel, M., and Pieterse, C. 2013. Microbial recognition and evasion of host immunity. J. Exp. Bot. 64:1237-1248.
Peng, K. C., Wang, C. W., Wu, C. H., Huang, C. T., and Liou, R. F. 2015. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol. Plant-Microbe Interact. 28:913-926.
Pettolino, F., Walsh, C., Fincher, G., and Bacic, A. 2012. Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7:1590-1607.
Pieterse, C., Zamioudis, C., Berendsen, R., Weller, D., Wees, S., and Bakker, P. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375.
Planas, A. 2000. Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochim. Biophys. Acta 1543:361-382.
Pusztahelyi, T. 2018. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 15:189-201.
Qi, J., Wang, J., Gong, Z., and Zhou, J. M. 2017. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38:92-100.
Qin, H. M., Miyakawa, T., Inoue, A., Nakamura, A., Nishiyama, R., Ojima, T., and Tanokura, M. 2017. Laminarinase from Flavobacterium Sp. reveals the structural basis of thermostability and substrate specificity. Sci. Rep. 7:11425.
Qin, Z., Yang, S. Q., Zhao, L. M., You, X., Yan, Q. J., and Jiang, Z. Q., 2017. Catalytic mechanism of a novel glycoside hydrolase family 16 'elongating' β-transglycosylase. J. Biol. Chem. 292:1666-1678.
Ranf, S., Gisch, N., Schäffer, M., Illig, T., Westphal, L., Knirel, Y., Sánchez-Carballo, P., Zähringer, U., Hückelhoven, R., Lee, J., and Scheel, D. 2015. A lectin S-domain receptor like kinase mediates lipopolysaccharides sensing in Arabidopsis thaliana. Nat. Immunol. 16:426-433.
Regente, M., Monzón, G. C., and Canal, L. 2008. Phospholipids are present in extracellular fluids of imbibing sunflower seeds and are modulated by hormonal treatments. J. Exp. Bot. 59:553-562.
Rodríguez-Celma, J., Ceballos-Laita, L., Grusak, M., Abadía, J., and López-Millán, A-F. 2016. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochem. Biophys. Acta 1864:991-1002.
Sang, Y. Y., and Macho, A. Analysis of PAMP-triggered ROS burst in plant immunity. Methods Mol. Biol. 1578:143-153.
Sasabe, M., Takeuchi, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., Shiraishi, T., and Yamada, T. 2001. Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur. J. Biochem. 267:5005-5013.
Séjalon, N., Dargent, R., Villalba, F., Bottin, A., Rickauer, M., and Esquerré-Tugayé, M. T. 1995. Characterization of a cell-surface antigen isolated from the plant pathogen Phytophthora parasitica var. nicotianae. Can. J. Botany 73:1104-1108.
Shimizu, T., Nakano, T., Takamizawa, T., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., and Shibuya N. 2010. Two LysM receptor molecules, CEBiP1 and OsCERK1 cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204-214.
Shine, M. B., Xiao, X., Kachroo, P., and Kachroo, A. 2019. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci. 279:81-86.
Stam, R., Jupe, J., Howden, A., Morris, J., Boevink, P., Hedley, P., and Huitema, E. 2013. Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity. PLoS One 8:e59517.
Stassen, J., and van den Ackerveken, G. 2011. How do oomycete effectors interfere with plant life? Cuur. Opin. Plant Biol. 14:407-414.
Steczkiewicz, K., Knizewski, L., Rychlewski, L., and Ginalski, K. 2010. TOS1 is circularly permuted 1,3-beta-glucanase. Cell Cycle 9:201-204.
Stennis, M., Chandra, S., Ryan, C., and Low, P. S. 1998. Systemins potentiates the oxidative burst in cultured tomato cells. Plant Physiol. 117:1031-1036.
Tavernier, E., Wendehenne, D., Blein, J. P., and Pugin, A. 1995. Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol. 109:1025-1031.
Torto, T., Li, S., Styer, A., Huitema, E., Testa, A., Gow, N., van West, P., and Kamoun, S. 2003. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 13:1675-1685.
Viborg, A., Terrapon, N., Lombard, V., Michel, G., Czjzek, M., Henrissat, B., and Brumer, H. 2019. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J. Biol. Chem. 294:15973-15986.
Voxeur, A., Habrylo, O., Guénin, S., Miart, F., Soulié, M., Rihouey, C., Pau-Roblot, C., Domon, J., Gutierrez, L., Pelloux, J., Mouille, G., Fagard, M., Höfte, H., and Vernhettes, S. 2019. Oligogalacturonide production upon Arabidopsis thaliana- Botrytis cinerea interaction. Proc. Natl. Acad. Sci. 116:19743-19752.
Wang, Y., Xu, Y. P., Sun, Y. J., Wang, H. B., Qi, J. M., Wan, B. W., Ye, W. W., Lin, Y. C., Shao, Y. Y., Dong, S. M., Tyler, B., and Wang, Y. C. 2018. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9:594.
Wanke, A., Rovenich, H., Schwanke, F., Velte, S., Becke, S., Hehemann, J. H., Wawra, S., Zuccaro, A. 2020. Plant species-specific recognition of long and short b-1,3-linked glucans is mediated by different receptor systems. Plant J. 102:1142-1156.
Wawra, S., Trusch, F., Matena, A., Apostolakis, K., Linne, U., Zhukov,, I., Stanek,, J., Koźmiński, W., Davidson, I., Secombes, C., Bayer, P., and van West, P. 2017. The RxLR motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion. Plant Cell 29:1184-1195.
Wu, C. H., Yan, H. Z., Liu, L. F., Liou, R. F. 2008. Functional characterization of a gene family encoding polygalacturonases in Phytophthora parasitica. Mol. Plant-Microbe Interact. 21:480-489.
Yamaguchi, T., Yamada, A., Hong, N. G., Ogawa, T., Ishii, T., and Shibuya, N. 2000. Difference in the recognition of glucan elicitor signals between rice and soybean: β̞-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12:817-826.
Yamaguchi, T., Maehara, Y., Kodama, O., Okada, M., Matsumura, M., and Shibuya, N. 2002. Two different oligosaccharide elicitors, N-acetylchitohepatose and tetraglucosyl glucitol, derived from Magnaporthe grisea cell walls, synergistically activate biosynthesis of phytoalexin in suspension-cultured rice cells. J. Plant Physiol. 159:1147-1149.
Yamaguchi, Y., and Huffaker, A. 2011. Endogenous peptide elicitors in higher plants. Curr. Opin. Plant Biol. 14:351-357.
Yan, H. Z. 2001. Cloning and characterization of OPEL, a secretory protein, from Phytophthora parasitica. Master Thesis, National Taiwan University, Taipei, Taiwan.
Yan, H. Z., and Liou, R. F. 2005. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 42:339-350.
Yang, X., Tyler, B., and Hong, C. X. 2017. An expanded phylogeny for the genus Phytophthora. IMA Fungus 8:355-384.
Zechmann, B. 2018. Compartment-specific importance of ascorbate during environmental stress in plants. Antioxid. Redox. Signal 29:1488-1051.
Zhang, B., Ramonell, K., Somerville, S., and Stacey, G. 2002. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant-Microbe Interact. 15:963-970.
Zhang, J., and Zhou, J. M. 2010. Plant immunity triggered by microbial molecular signatures. Mol. Plant 3:783-793.
Zhang, L. S., Kars, I., Essenstam, B., Liebrand, T., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., and van Kan, J. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164-352-364.
Zhu, W., Ronen, M., Gur, Y., Minz-Dub, A., Masrati, G., Ben-Tal, N., Savidor, A., Sharon, I., Eizner, E., Valerius, O., Braus, G. H., Bowler, K., Bar-Peled, M., and Sharon, A. 2017. BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiol. 175:438-456.
Zielonka, J., Lambeth, D., and Kalyanaraman, B. 2013. On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: A reevaluation. Free Radic. Biol. Med. 65:1310-1314.
Ziemann, S., Linde, K., Lahrmann, U., Acar, B., Kaschani, F., Colby, T., Kiaser, M., Ding, Y. Z., Schmelz, E., Huffaker, A., Holton, N., Zipfel, C., and Doehlemann, G. 2018. An apoplastic peptide activates salicylic acid signalling in maize. Nat. Plant 4:172-180.
Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T., and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749-760.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15491-
dc.description.abstractOPEL為Phytophthora parasitica所分泌的質外體效應蛋白 (apoplastic effector),序列分析顯示其具有signal peptide, thaumatin-like domain, glycine-rich domain及glycosyl hydrolase (GH) 16 domain,後者包含β-1,3-glucanase的保守性序列。以OPEL重組蛋白處理Nicotiana tabacum cv. Samsun-NN可引發明顯之壞疽斑 (necrosis)、癒傷葡聚醣 (callose) 沉積、活性氧分子 (reactive oxygen species, ROS) 累積及誘導防禦相關基因表現。此外,OPEL引發植物免疫反應的關鍵構造為GH16 domain,將其預測的酵素活性位點進行單點突變後,即大幅降低OPEL激發植物防禦反應的能力,因此OPEL很可能藉由分解植物細胞壁產生DAMP而引發免疫反應。為探討這個可能性,本研究製備OPEL重組蛋白及其酵素活性區雙點突變蛋白 (OPEL-dm),用以處理菸草後,收集質外體液 (分別稱為AF-OPEL及AF-OPEL-dm),防禦反應分析結果顯示AF-OPEL可引發菸草細胞壞疽、誘導防禦相關基因表現及增加對P. parasitica的抗性,但AF-OPEL-dm僅在菸草葉片引發微弱黃化。以95 oC加熱15分鐘後,AF-OPEL仍具有引發菸草細胞壞疽的活性;除此之外,AF-OPEL也較AF-OPEL-dm含有較多的還原糖。為了進一步找出AF-OPEL內引發植物免疫反應的活性物質,先後以正己烷及乙酸乙酯萃取,將AF-OPEL的成分分成低極性、中極性以及高極性等三個部份,續以the luminol-based chemiluminescence分析方法檢測各極性層萃取物引發活性氧分子累積的活性。結果顯示AF-OPEL的低極性層 (AF-OPEL/H)、中極性層 (AF-OPEL/EA) 及高極性層 (AF-OPEL-A) 萃取物均具有誘導活性氧分子累積的能力,但AF-OPEL/EA展現的活性明顯高於其他二者。進一步以高效液相層析法分析,發現三個AF-OPEL/EA特有的波峰,分別稱為peak I, peak II與peak III,其中僅peak II具有誘導活性氧分子累積的能力。這些結果顯示OPEL引發植物免疫反應之機制很可能是藉由辨識DAMPs而不是PAMPs且與其酵素活性密切相關。未來研究目標將著重於找出peak II所代表之物質,以瞭解其對於OPEL及植物間的交互作用。zh_TW
dc.description.abstractOPEL is an elicitor protein identified in Phytophthora parasitica, which contains signal peptide in the N-terminus, followed by a thaumatin-like domain, a glycine rich domain and a GH16 domain. GH16 domain is characterized by the presence of a conserved active site for beta-1,3-glucanase. It has been shown previously that infiltration of OPEL recombinant protein into leaves of Nicotiana tabacum cv. Samsun-NN resulted in necrosis, callose deposition, ROS production as well as the induction of defense gene expression. Moreover, domain analysis indicated the elicitor activity of OPEL depends solely on the GH16 domain. Interestingly, the elicitor activity is compromised with OPEL recombinant protein harboring a single-point mutation in the predicted active site. It suggests an essential role of the enzymatic activity of OPEL in inducing plant defense responses, which might involve the generation of damage/danger-associated molecular pattern in the apoplast. To investigate this possibility, we prepared OPEL recombinant protein and OPEL mutant (OPEL-dm) with mutations at two key residues in the putative active site of the GH16 domain, infiltrated them individually into N. tabacum leaves, and then collected apoplastic fluid from the treated leaves, named AF-OPEL and AF-OPEL-dm, respectively. When infiltrated into tobacco leaves, AF-OPEL caused necrosis as well as induced defense gene expression and resistance against P. parasitica. In contrast, the activity of AF-OPEL-dm was significantly compromised. After heat treatment at 95 oC for 15 mins, AF-OPEL still retained most of its necrosis-inducing activity. Moreover, AF-OPEL contained more reducing sugars than AF-OPEL-dm. To identify the PTI-inducing substances, AF-OPEL was extracted by using n-hexane (H) and then ethyl acetate (EA) as the solvent, resulting in the collection of three fractions: AF-OPEL/H (low polar), AF-OPEL/EA (medium polar), and AF-OPEL/A (high polar). All three fractions induced ROS production as shown by the luminol-based chemiluminescence assay. However, the activity of AF-OPEL/EA was much higher than the other two.Further purification by high performance liquid chromatography (HPLC) identified three peaks (known as peak I, peak II, and peak III), which were found only in AF-OPEL/EA but not in the control experiment.Notably, only peak II induced ROS production. Based on these results, the mechanism for OPEL to induce PTI is through recognition of DAMP rather than PAMP and related to its putative site. In the future, we hope to identify the peak II-represented substance to understand the interaction between OPEL and plants.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:41:09Z (GMT). No. of bitstreams: 1
U0001-1507202013072000.pdf: 2432927 bytes, checksum: a8bc53c2dc3f80ba21fe0fffddd80380 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝………………………………………………………………………………………i
中文摘要………………………………………………………………………………..iii
英文摘要………………………………………………………………………………...v
壹、 前言………………………………………………………………………..1
1. 植物防禦反應…………………………………………………………...1
1.1 MAMPs簡介…………………………………………………………….2
1.2 DAMPs簡介……………………………………………………………..4
1.3 PTI反應…………………………………………………………………....6
2. 細胞壁分解酵素在植物防禦反應扮演的角色……………………7
3. 疫病菌簡介……………………………………………………………….7
4. 植物對疫病菌之防禦反應…………………………………………….9
4.1 質外體效應蛋白………………………………………………………...9
4.2 細胞質效應蛋白………………………………………………………...11
5. 疫病菌外泌蛋白OPEL於植物防禦反應的角色………………….12
5.1 醣苷水解酶家族16 (GH16 family) 的特性……………………..12
5.2 OPEL同源性基因於植物免疫反應的角色………………………..13
6. 植物質外體液 (apoplastic fluid, AF) 的組成分……………….14
7. 研究動機…………………………………………………………………..14
貳、 材料與方法………………………………………………………………..15
1. 供試植株及菌種來源……………………………………………………15
1.1 植物材料及生長條件…………………………………………………...15
1.2 表現重組蛋白之大腸桿菌菌株來源及保存………………………..15
2. 以大腸桿菌表現OPEL重組蛋白……………………………………...15
2.1 OPEL重組蛋白表現及純化…………………………………………….15
2.2 凝膠過濾法 (Gel filtration)…………………………………………...16
3. 植物抗病反應分析………………………………………………………..16
3.1 農桿菌注入法 (Agroinfiltration)…………………………………....16
3.2 質外體液之收集……………………………………………………….......17
3.3 癒傷葡聚醣堆積分析 (callose deposition assay)……………...17
3.4 活性氧分子染色……………………………………………………….......18
3.5 以化學冷光法 (chemiluminescence) 檢測活性氧分子………..18
3.6 防禦反應相關基因表現分析…………………………………………....19
3.6.1 純化植物total RNA………………………………………………...........19
3.6.2 製備cDNA………………………………………………………................20
3.6.3 即時定量聚合酶連鎖反應分析…………………………………..........20
3.7 疫病菌接種…………………………………………………………….......20
4. 植物質外體液之分析…………………………………………………….21
4.1 以DNS法檢測還原糖含量……………………………………………...21
4.2 植物質外體液之萃取………………………………………………….....21
4.3 高效液相層析法 (High Performance Chromatography, HPLC)……….22
5. 統計分析方法………………………………………………………………...22
參、 結果……………………………………………………………………………….23
1. 自表現OPEL之Nicotiana tabacum cv. Samsun-NN葉片所收集之質外
體液可導致菸草葉片細胞死亡………………………………………….......23
2. OPEL全長度蛋白及突變蛋白之表現及純化………………………………23
3. 突變酵素活性區降低OPEL重組蛋白在菸草葉片引發細胞死亡的活性...24
4. 突變酵素活性區降低OPEL重組蛋白在菸草引發活性氧分子累積的活
性……………………………………………………………………………...24
5. 突變酵素活性區降低OPEL重組蛋白在菸草引發癒傷葡聚醣沉積的能
力……………………………………………………………………………...25
6. 自處理OPEL重組蛋白之菸草葉片所收集的質外體液可引發菸草葉片
死亡…………………………………………………………………………...25
7. 自處理OPEL重組蛋白之菸草葉片所收集之質外體液可誘導植物防禦
反應基因表現………………………………………………………………...26
8. 經處理OPEL所收集之質外體液可提升菸草對疫病菌之抗性…………...26
9. 自處理OPEL重組蛋白之菸草葉片所收集之質外體液含有較多還原糖...27
10. 經處理OPEL所收集之質外體液可引發活性氧分子累積………………...28
11. 經處理MES及OPEL後所收集之質外體液於中極性層具有成分差異….29
12. OPEL處理後的質外體液經高效液相層析分離後的物質具有誘導活性
氧分子累積的能力…………………………………………………………...29
13. 經處理MES及OPEL後所收集之質外體液於高極性層具有成分差異….30
肆、 討論……………………………………………………………………………….31
1. OPEL雙點突變蛋白仍保留部分elicitor活性……………………………...31
2. OPEL處理後的質外體液引發植物PTI反應………………………………32
3. OPEL引發植物PTI反應的物質具有耐熱性………………………………33
4. OPEL處理後的質外體液經萃取後於各極性層均存在引發活性氧分子
累積的活性…………………………………………………………………...34
5. OPEL如何引發植物防禦反應………………………………………………35
6. 結語…………………………………………………………………………...36
伍、引用文獻………………………………………………………………………….37
陸、附表……………………………………………………………………………….55
柒、附圖……………………………………………………………………………….56
dc.language.isozh-TW
dc.title探討疫病菌質外體效應蛋白OPEL如何引發植物免疫反應zh_TW
dc.titleInvestigation of how OPEL, an apoplastic effector from Phytophthora parasitica, elicits plant immune responsesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李宗徽(Tzong-Huei Lee),林乃君(Nai-Chun Lin),吳志航(Chih-Hang Wu)
dc.subject.keyword細胞壁分解酵素,OPEL,植物免疫反應,疫病菌,醣苷水解酶,zh_TW
dc.subject.keywordcell wall degrading enzymes,OPEL,plant immunity,Phytophthora parasitica,glycosyl hydrolase,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202001537
dc.rights.note未授權
dc.date.accepted2020-07-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-1507202013072000.pdf
  目前未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved