請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為(Chee Wee Liu) | |
| dc.contributor.author | Chung-Yi Lin | en |
| dc.contributor.author | 林宗毅 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:40:44Z | - |
| dc.date.copyright | 2020-07-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-23 | |
| dc.identifier.citation | [1] Suyog Gupta, Blanka Magyari-Köpe, Yoshio Nishi, and Krishna C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain.” J. Appl. Phys. 113, 073707 (2013). [2] H.-S. Lan and C. W. Liu, “Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors.” Appl. Phys. Lett. 104, 192101 (2014). [3] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S.Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si.” Nat. Photonics 9, 88 (2015). [4] Richard Soref,” Direct-bandgap compositions of the CSiGeSn group-IV alloy” Opt. Mater. Express 4, 836-842 (2014) [5] Yuan Dong, Wei Wang, Xin Xu, Xiao Gong, Dian Lei, Qian Zhou, Zhe Xu, Soon-Fatt Yoon, Gengchiau Liang, and Yee-Chia Yeo, “Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging.” in Proceedings of IEEE Symposia on VLSI Technology and Circuits (IEEE, 2014), pp. 21.2 [6] Yu-Shiang Huang, C.-H. Huang, F.-L. Lu, C.-Y. Lin, H.-Y. Ye, I-H. Wong, S.-R. Jan, H.-S. Lan, C. W. Liu, Y.-C. Huang, H. Chung, C.-P. Chang, S. S. Chu, and S. Kuppurao, “Record High Mobility (428cm2/V-s) of CVD-grown Ge/Strained Ge0.91Sn0.09 /Ge Quantum Well p-MOSFETs.” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 33.1. 1-33.1. 4. [7] Yee-Chia Yeo, Xiao Gong, Mark J. H. van Dal, Georgios Vellianitis, and Matthias Passlack., “Germanium-based transistors for future high performance and low power logic applications.” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2015), pp. 2.4.1. [8] Seyed Amir Ghetmiri, Yiyin Zhou, Joe Margetis, Sattar Al-Kabi, Wei Dou, Aboozar Mosleh, Wei Du, Andrian Kuchuk, Jifeng Liu, Greg Sun, Richard A. Soref, John Tolle, Hameed A. Naseem, Baohua Li, Mansour Mortazavi, and Shui-Qing Yu, “Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics.” Opt. Lett., 42, 387 (2017). [9] Chung-Yi Lin, Chih-Hsiung Huang, Shih-Hsien Huang, Chih- Chiang Chang, C. W. Liu, Yi-Chiau Huang, Hua Chung, and Chorng-Ping Chang, “Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells.” Appl. Phys. Lett., 109, 091103 (2016). [10] L. Qian, W. J. Fan, C. S. Tan, and D. H. Zhang, 'Temperature enhanced spontaneous emission rate spectra in GeSn/Ge quantum wells,' Opt. Mater. Express 7, 800-807 (2017) [11] R. W. Millar, D. C. S. Dumas, K. F. Gallacher, P. Jahandar, C. Macgregor, M. Myronov, and D. J. Paul, “Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks.” Opt. Express 25, 25374 (2017). [12] Hui Cong, Fan Yang, Chunlai Xue, Kai Yu, Lin Zhou, Nan Wang, Buwen Cheng, and Qiming Wang, “Multilayer Graphene–GeSn Quantum Well Heterostructure SWIR Light Source.” Small 14, 1704414 (2018) [13] Yu-Hui Huang, Guo-En Chang, Hui Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer.” Opt. Lett., 42, 1652 (2017). [14] Michael Oehme, Konrad Kostecki, Kaiheng Ye, Stefan Bechler, Kai Ulbricht, Marc Schmid, Mathias Kaschel, Martin Gollhofer, Roman Körner, Wogong Zhang, Erich Kasper, and Jörg Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz.” Opt. Express 22, 839 (2014). [15] H.-S. Lan, S. T. Chang, and C. W. Liu “Semiconductor, topological semimetal, indirect semimetal, and topological Dirac semimetal phases of Ge1−xSnx alloys” Phys. Rev. B 95, 201201 (2017) [16] Wei-Cheng Wang, Meng-Chen Tsai, Jason Yang, Chuck Hsu, and Miin-Jang Chen, “Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition” ACS Appl. Mater. Interfaces. 7 (19), 10228 (2015). [17] Yen-Yu Chen, H.-C. Chang, Y.-H. Chi, C.-H. Huang, and C. W. Liu, “GeO2 Passivation for Low Surface Recombination Velocity on Ge Surface” IEEE Electron Device Lett. 34(3), 444 (2013). [18] Chun-Ti Lu, Yu-Shiang Huang and C. W. Liu, “Passivation of Al2O3 / TiO2 on monocrystalline Si with relatively low reflectance” J. Phys. D: Appl. Phys. 49, 245105 (2016). [19] Y.-C. Fu, W. Hsu, Y.-T. Chen, H.-S. Lan, C.-H. Lee, H.-C. Chang, H.-Y. Lee, G.-L. Luo, C.-H. Chien, C. W. Liu, C. Hu, and F.-L. Yang, “High mobility high on/off ratio C-V dispersion-free Ge n-MOSFETs and their strain response,” in IEDM Tech. Dig., pp. 18.5.1–18.5.4 (2010) [20] Dun-Bao Ruan , Kuei-Shu Chang-Liao , Shih-Han Yi, Hsin-I Yeh, and Guan-Ting Liu “Low Equivalent Oxide Thickness and Leakage Current of pGe MOS Device by Removing Low Oxidation State in GeOx With H2 Plasma Treatment” IEEE Electron Device Letters, vol. 41, no. 4, pp. 529-532, (2020) [21] T. Takahashi, T. Nishimura, L. Chen, S. Sakata, K. Kita, and A. Toriumi, “Proof of Ge-interfacing concepts for metal/high-k/Ge CMOS – Ge-intimated material selection and interface conscious process flow,” in IEDM Tech. Dig., pp. 697–700. (2007). [22] A. W. Stephens, A. G. Aberle, and M. A. Green, “Surface recombination velocity measurements at the silicon–silicon dioxide interface by microwave‐detected photoconductance decay” J. Appl. Phys. 76 (l), 1 (1994) [23] Masayuki SOHGAWA, Masato YOSHIDA, Takuji NAOYAMA, Taizou TADA, Kouji IKEDA, Takeshi KANASHIMA, Akira FUJIMOTO and Masanori OKUYAMA, “Contactless Characterization of Fixed Charges in HfO2 Thin Film from Photoreflectance” Jpn. J. Appl. Phys. 44 2409 (2005) [24] W.-W. Hsu, J. Y. Chen, T.-H. Cheng, S. C. Lu, W.-S. Ho, Y.-Y. Chen, Y.-J. Chien, and C. W. Liu “Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3” Appl. Phys. Lett. 100, 023508 (2012) [25] Chung-Yi Lin, Chih-Hsiung Huang, Shih-Hsien Huang, Chih-Chiang Chang, C. W. Liu, Yi-Chiau Huang, Hua Chung, and Chorng-Ping Chang “Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells” Appl. Phys. Lett. 109, 091103 (2016) [26] Colleen K. Shang, Vivian Wang, Robert Chen, Suyog Gupta, Yi-Chiau Huang, James J. Pao, Yijie Huo, Errol Sanchez, Yihwan Kim, Theodore I. Kamins, and James S. Harris, “Dry-wet digital etching of Ge1−xSnx” Appl. Phys. Lett. 108, 063110 (2016). [27] G. Dingemans, N. M. Terlinden, M. A. Verheijen, M. C. M. van de Sanden, and W. M. M. Kessels, “Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition” Appl. Phys. Lett. 110, 093715 (2011) [28] P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, and J. Kouvetakisa, “Optical and structural properties of SixSnyGe1−x−y alloys” Appl. Phys. Lett. 84, 888 (2004). [29] E.H. Nicollian and J. R. Brews, Metal Oxide Semiconductor Physics and Technology, New York: Wiley, 1982 [30] S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications , Springer Series in Material Science Vol. 85 (Springer, Heidelberg, 2005) [31] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S.Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si.” Nat. Photonics 9, 88 (2015). [32] Yuan Dong, Wei Wang, Xin Xu, Xiao Gong, Dian Lei, Qian Zhou, Zhe Xu, Soon-Fatt Yoon, Gengchiau Liang, and Yee-Chia Yeo, “Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging.” in Proceedings of IEEE Symposia on VLSI Technology and Circuits pp. 21.2 (2014), [33] Yee-Chia Yeo, Xiao Gong, Mark J. H. van Dal, Georgios Vellianitis, and Matthias Passlack., “Germanium-based transistors for future high performance and low power logic applications.” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2015), pp. 2.4.1. [34] Michael Oehme, Konrad Kostecki, Kaiheng Ye, Stefan Bechler, Kai Ulbricht, Marc Schmid, Mathias Kaschel, Martin Gollhofer, Roman Körner, Wogong Zhang, Erich Kasper, and Jörg Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz.” Opt. Express 22, 839 (2014). [35] Yu-Hui Huang, Guo-En Chang, Hui Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer.” Opt. Lett., 42, 1652 (2017). [36] Seyed Amir Ghetmiri, Yiyin Zhou, Joe Margetis, Sattar Al-Kabi, Wei Dou, Aboozar Mosleh, Wei Du, Andrian Kuchuk, Jifeng Liu, Greg Sun, Richard A. Soref, John Tolle, Hameed A. Naseem, Baohua Li, Mansour Mortazavi, and Shui-Qing Yu, “Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics.” Opt. Lett., 42, 387 (2017). [37] Alexander A. Tonkikh, Christian Eisenschmidt, Vadim G. Talalaev,Nikolay D. Zakharov, Joerg Schilling, Georg Schmidt, and Peter Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing.” Appl. Phys. Lett., 103, 032106 (2013). [38] T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition.” Appl. Phys. Lett., 96, 211108 (2010). [39] M. J. Su¨ess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges.” Nat. Photonics 7, 466 (2013). [40] Qingfang Zhang, Yan Liu, Jing Yan, Chunfu Zhang, Yue Hao, and Genquan Han, “Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for midinfrared detector and modulator applications.” Opt. Express 23, 7924 (2015). [41] S.-H. Huang, F.-L. Lu, W.-L. Huang, C.-H. Huang, and C. W. Liu, “The ∼3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing.” IEEE Electron Device Lett. 36, 1114 (2015) [42] D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications.” Appl. Phys. Lett., 84, 906 (2004). [43] H.-S. Lan and C. W. Liu, “Band alignments at strained Ge1−x Sn x /relaxed Ge1−y Sny heterointerfaces.” J. Phys. D: Appl. Phys., 50, 13LT02 (2017). [44] H.-S. Lan, S. T. Chang, and C. W. Liu, “Semiconductor, topological semimetal, indirect semimetal, and topological Dirac semimetal phases of Ge1−xSnx alloys.” Phys. Rev. B 95, 201201 (2017). [45] Chung-Yi Lin, Hung-Yu Ye, Fang-Liang Lu, H. S. Lan, and C. W. Liu, 'Biaxial strain effects on photoluminescence of Ge/strained GeSn/Ge quantum well,' Opt. Mater. Express 8, 2795-2802 (2018) [46] Chung-Yi Lin, Chih-Hsiung Huang, Shih-Hsien Huang, Chih- Chiang Chang, C. W. Liu, Yi-Chiau Huang, Hua Chung, and Chorng-Ping Chang, “Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells.” Appl. Phys. Lett., 109, 091103 (2016). [47] S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate.” Opt. Express 17, 10019 (2009). [48] M. El Kurdi, H. Bertin, M. De Kersauson, G. Fishman, S.Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain.” Appl. Phys. Lett., 96, 041909 (2010). [49] C.-Y. Peng, C.-F. Huang, Y.-C. Fu, Y.-H. Yang, C.-Y. Lai, S.-T. Chang, and C. W. Liu, “Comprehensive study of the Raman shifts of strained silicon and germanium.” J. Appl. Phys., 105, 083537 (2009). [50] Cheng-Yi Peng, Ying-Jhe Yang, Yen-Chun Fu, Ching-Fang Huang, Shu-Tong Chang, and Chee Wee Liu, “Effects of Applied Mechanical Uniaxial and Biaxial Tensile Strain on the Flatband Voltage of (001), (110), and (111) Metal–Oxide–Silicon Capacitors.” IEEE Trans. Electron Devices, 56, 1736 (2009). [51] M. H. Liao, T.-H. Cheng, and C. W. Liu, “Infrared emission from Ge metal-insulator-semiconductor tunneling diodes.” Appl. Phys. Lett. 89, 261913 (2006). [52] M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium.” Appl. Phys. Lett. 94, 191107 (2009). [53] M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, G. Isella, H. von Kanel, and A. Neels, “Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers.” Phys. Rev. B, 78, 041407 (2008). [54] Steven K. Brierley, “Quantitative characterization of modulation‐doped strained quantum wells through line‐shape analysis of room‐temperature photoluminescence spectra.” J. Appl. Phys., 74, 2760 (1993). [55] Solomon Zwerdling, Benjamin Lax, Laura M. Roth, and Kenneth J. Button, “Internal Impurity Levels in Semiconductors: Experiments in p-Type Silicon Phys. Rev. Lett., 114, 80 (1959). [56] J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1−ySny alloys.” Appl. Phys. Lett., 105, 142102 (2014). [57] J. R. Sanchez-Perez, C. Boztug, F. Chen, F. F. Sudradjat, D. M. Paskiewicz, R. Jacobson, M. G. Lagally, and R. Paiella, “Direct-bandgap light-emitting germanium in tensilely strained nanomembranes.” Proc. Natl. Acad. Sci. U.S.A., 108, 18893-18898 (2011). [58] Seyed Amir Ghetmiri, Wei Du, Joe Margetis, Aboozar Mosleh, mLarry Cousar, Benjamin R. Conley, Lucas Domulevicz, Amjad Nazzal, Greg Sun, Richard A. Soref, John Tolle, Baohua Li,Hameed A. Naseem, and Shui-Qing Yu,” Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence”Appl. Phys. Lett., 105, 151109 (2014) [59] M. Kittler, T. Arguirov, M. Oehme, Y. Yamamoto, B. Tillack, and N. V. Abrosimov, “Photoluminescence study of Ge containing crystal defects” Phys. Status Solidi A, 208, 754 (2011). [60] H. B. Bebb and E. W. Williams, Semiconductors and Semimetals. R.K.W.a.A.C. Beer Vol. 8 (Academic, New York, 1972), p.181. [61] J. Wagner and L. Vina, “Radiative recombination in heavily doped p-type germanium” Phys. Rev. B, 30(12), 7030 (1984). [62] R. R. Lieten, K. Bustillo, T. Smets, E. Simoen, J. W. Ager, E. E. Haller, and J.-P. Locquet, “Photoluminescence of bulk germanium” Phys. Rev. B, 86, 035204 (2012). [63] D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Gr utzmacher, and D. Buca, “Optical Transitions in Direct-Bandgap Ge1–xSnx Alloys” ACS Photonics, 2, 1539 (2015). [64] H. Pérez Ladrón de Guevara, “Nonlinear behavior of the energy gap in Ge1−xSnx alloys at 4K“ Appl. Phys. Lett., 91, 161909 (2007) [65] J. West, Y. S. Choi, and C. Vartuli, “Practical implications of via-middle Cu TSV-induced stress in a 28nm CMOS technology for wide-IO logic memory interconnects,” in Proc. VLSI Symp. Technol., 2012, pp. 101–102. [66] Y. Yang, G. Katti, R. Labie, Y. Travaly, B. Verlinden, and I. De Wolf, “Electrical evaluation of 130-nm MOSFETs with TSV proximity in 3D-SIC structure,” in Proc. IEEE IITC, 2010, pp. 1–3. [67] S. Cho, S. Kang, K. Park, J. Kim, K. Yun, K. Bae, W. S. Lee, S. Ji, E. Kim, J. Kim, Y. L. Park, and E. S. Jung, 'Impact of TSV proximity on 45nm CMOS devices in wafer Level,' in Proc. IEEE IITC, 2011, pp. 1–3. [68] A. Mercha, G. Van der Plas, V. Moroz, I. De Wolf, P. Asimakopoulos, N. Minas, S. Domae, D. Perry, M. Choi, A. Redolfi, C. Okoro, Y. Yang, J. Van Olmen, S. Thangaraju, D. Sabuncuoglu Tezcan, P. Soussan, J.H. Cho, A. Yakovlev, P. Marchal, Y. Travaly, E. Beyne, S. Biesemans, and B. Swinnen, “Comprehensive analysis of the impact of single and arrays of through silicon vias induced stress on high-k/metal gate CMOS performance,” IEDM Tech. Dig., 2010, pp. 2.2.1-2.2.4. [69] M. Aoki, F. Furuta, K. Hozawa, Y. Hanaoka, H. Kikuchi, A. Yanagisawa, T. Mitsuhashi, and K. Takeda, “Fabricating 3D integrated CMOS devices by using wafer stacking and via-last TSV technologies,” IEDM Tech. Dig., 2013, pp. 29.5.1-29.5.4. [70] W. Guo, V. Moroz, G. Van der Plas, M. Choi, A. Redolfi, L. Smith, G. Eneman, S. Van Huylenbroeck, P. D. Su, A. Ivankovic, B. De Wachter, I. Debusschere, K. Croes, I. De Wolf, A. Mercha, G. Beyer, B. Swinnen, and E. Beyne, “Copper through silicon via induced keep out zone for 10nm node bulk FinFET CMOS technology,” IEDM Tech. Dig., 2013, pp. 12.8.1-12.8.4. [71] S.-R. Jan, T.-P. Chou, C.-Y. Yeh, C. W. Liu, R. V. Goldstein, V. A. Gorodtsov, and P. S. Shushpannikov, “A compact analytic model of the strain field induced by through silicon vias,” IEEE Trans. Electron Devices, Vol. 59, No. 3, pp. 777–782, Mar. 2012. [72] M.-Y. Tsai, P.-S. Huang, and P.-C. Lin, “A study of overlaying dielectric layer and its local geometry effects on TSV-induced KOZ in 3-D IC,” IEEE Trans. on Electron Devices, Vol. 61, No. 9, pp.3090-3095, 2014. [73] S. E. Thompson, S. Guangyu, Y. S. Choi, and T. Nishida, “Uniaxial process induced strained-Si: Extending the CMOS roadmap,” IEEE Trans. on Electron Devices, Vol. 53, No. 5, pp. 1010–1020, May 2006. [74] H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,' Appl. Phys. Lett. 98, 101106 (2011). [75] S. Suthram, J. C. Ziegert, T. Nishida, and S. E. Thompson, 'Piezoresistance coefficients of (100) silicon nMOSFETs measured at low and high (∼ 1.5 GPa) channel stress,' IEEE Electron Device Letters, Vol. 28, No. 1, pp. 58-61, 2007. [76] G. Sun, Y. Sun, T. Nishida, and S. E. Thompson 'Hole mobility in silicon inversion layers: Stress and surface orientation.' Journal of Applied Physics 102.8 (2007): 084501-084501. [77] Christopher T. DeRose, Douglas C. Trotter, William A. Zortman, Andrew L. Starbuck, Moz Fisher, Michael R. Watts, and Paul S. Davids “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current” Opt. Express 19, 24897-24904 (2011) [78] Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon” Nature, 437, 1334 (2005) [79] M. H. Liao, M.-J. Chen, T. C. Chen, P.-L. Wang, and C. W. Liu “Electroluminescence from metal/oxide/strained-Si tunneling diodes” Appl. Phys. Lett. 86, 223502 (2005) [80] M. H. Liao, T.-H. Cheng, and C. W. Liu “Infrared emission from Ge metal-insulator-semiconductor tunneling diodes” Appl. Phys. Lett. 89, 261913 (2006) [81] J. D. Gallagher, C. L. Senaratne, P. Sims, T. Aoki, J. Menéndez, and J. Kouvetakis, “Electroluminescence from GeSn heterostructure pin diodes at the indirect to direct transition” J. Appl.Phys. 106, 091103 (2015). [82] Jay Prakash Gupta, Nupur Bhargava, Sangcheol Kim, Thomas Adam, and James Kolodzey, “Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy” Appl. Phys. Lett. 102, 251117 (2013). [83] Chung-Yi Lin, Chih-Hsiung Huang, Shih-Hsien Huang, Chih- Chiang Chang, C. W. Liu, Yi-Chiau Huang, Hua Chung, and Chorng-Ping Chang, “Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells.” Appl. Phys. Lett., 109, 091103 (2016). [84] B.-C. Hsu, W. T. Liu, C.-H. Lin, and C. W. Liu, “A PMOS tunneling photodetector” IEEE Transactions on Electron Devices, 48(8), 1747 (2001) [85] Chung-Yi Lin, Hung-Yu Ye, Fang-Liang Lu, H. S. Lan, and C. W. Liu, 'Biaxial strain effects on photoluminescence of Ge/strained GeSn/Ge quantum well,' Opt. Mater. Express 8, 2795-2802 (2018) [86] V. V. Afanas’ev, M. Houssa, A. Stesmans, and M. M. Heyns, “Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al2O3 and ZrO2” J. Appl. Phys. 91, 3079 (2002). [87] Jhttps://www.liveultrahealthy.com/company/index.html [88] S.Joosten, E.Kaczanowicz, M.Ungaro, M.Rehfuss, K.Johnston, and Z.-E.Meziani “Enhanced UV light detection using a p-terphenyl wavelength shifter” Nuclear Inst. and Methods in Physics Research, A 870, 110–115 (2017) [89] T. Tsang, A. Bolotnikov, A. Haarahiltunen, and J. Heinonen, 'Quantum efficiency of black silicon photodiodes at VUV wavelengths,' Opt. Express 28, 13299-13309 (2020) [90] A. El Gamal and H. Eltoukhy, 'CMOS image sensors,' IEEE Circuits and Devices Magazine, vol. 21, no. 3, pp. 6-20, (2005) [91] W. S. Ho, C.-H. Lin, T.-H. Cheng, W. W. Hsu, Y.-Y. Chen, P.-S. Kuo, and C. W. Liu “Narrow-band metal-oxide-semiconductor photodetector” Appl. Phys. Lett. 94, 061114 (2009) [92] C.-H. Lin, and C.W. Liu, “Metal-Insulator-Semiconductor Photodetectors” Sensors, 10, 8797-8826. (2010) [93] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes” J. Phys. D:Appl. Phys., 4 , 1589 (1971) [94] Kern W and Puotinen D A. “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology” RCA Rev. 31 187 (1970) [95] G. K. Celler, P. L. F. Hemment, K. W. West, and J. M. Gibson ” High quality Si‐on‐SiO2 films by large dose oxygen implantation and lamp annealing” Appl. Phys. Lett. 48, 532 (1986) [96] P. -. Kuo, Y. -. Fu, C. -. Chang, C. -. Lee and C. W. Liu, 'Dark current reduction of Ge MOS photodetectors by high work function electrodes,' Electronics Letters, vol. 43, no. 20, pp. 1113-1114, (2007) [97] E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York , 1985). [98] I. Aberg, B. Ackland, J. V. Beach, C. Godek, R. Johnson, C. A. King, A.Lattes, J. O’Neill, S. Pappas, T. S. Sriram, and C. S. Rafferty, “A low dark current and high quantum efficiency monolithic germanium-on-silicon CMOS imager technology for day and night imaging applications,” IEEEInt. Electron Devices Meeting, Dec., pp. 14.4.1-14.4.4. (2010) [99] R. A. Soref, G. Sun, and H. H. Cheng “Franz-Keldysh electro-absorption modulation in germanium-tin alloys” J. Appl. Phys. 111, 123113 (2012) [100] Fr´ed´eric Boeuf, S´ebastien Cr´emer, Enrico Temporiti, Massimo Fer`e, Mark Shaw, Charles Baudot, Nathalie Vulliet, Thierry Pinguet, Attila Mekis, Gianlorenzo Masini, Herve Petiton, Patrick Le Maitre, Matteo Traldi, and Luca Maggi “Silicon Photonics R D and Manufacturing on 300-mm Wafer Platform” Journal of Lightwave Technology, vol. 34, no. 2, pp. 286-295, 15 Jan.15, (2016) [101] P. De Dobbelaere, A. Dahl, A. Mekis, B. Chase, B. Weber, B. Welch, D. Foltz, G. Armijo, G. Masini, G. McGee, G. Wong, J. Balardeta, J. Dotson, J. Schramm, K. Hon, K. Khauv, K. Robertson, K. Stechschulte, K. Yokoyama, L. Planchon, L. Tullgren, M. Eker, M. Mack, M. Peterson, N. Rudnick, P. Milton, P. Sun, R. Bruck, R. Zhou, S. Denton, S. Fathpour, S. Gloeckner, S. Jackson, S. Pang, S. Sahni, S. Wang, S. Yu, T. Pinguet, Y. De Koninck, Y. Chi, Y. Liang “Advanced Silicon Photonics Technology Platform Leveraging a Semiconductor Supply Chain” IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, pp. 34.1.1-34.1.4, (2017) [102] Yuan Dong, Wei Wang, Xin Xu, Xiao Gong, Dian Lei, Qian Zhou, Zhe Xu, Soon-Fatt Yoon, Gengchiau Liang, and Yee-Chia Yeo, “Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging.” in Proceedings of IEEE Symposia on VLSI Technology and Circuits pp. 21.2 (2014) [103] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S.Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si.” Nat. Photonics 9, 88 (2015). [104] Xiaochen Sun, Jifeng Liu, Lionel C. Kimerling, and Jurgen Michel “Direct gap photoluminescence of n -type tensile-strained Ge-on-Si” Appl. Phys. Lett. 95, 011911 (2009) [105] David Thomson, Aaron Zilkie, John E Bowers, Tin Komljenovic, Graham T Reed, Laurent Vivien, Delphine Marris-Morini, Eric Cassan, Léopold Virot, Jean-Marc Fédéli, Jean-Michel Hartmann, Jens H Schmid, Dan-Xia Xu, Frédéric Boeuf, Peter O’Brien, Goran Z Mashanovich and M Nedeljkovic “Roadmap on silicon photonics” J. Opt. 18 073003(2016) [106] P. Absil, K. Croes, A. Lesniewska, P. De Heyn, Y. Ban, B. Snyder, J. De Coster, F. Fodor, V. Simons, S. Balakrishnan, G. Lepage, N. Golshani, S. Lardenois, S.A. Srinivasan, H. Chen W. Vanherle, R. Loo, R. Boufadil, M. Detalle, A. Miller, P. Verheyen, M. Pantouvaki and J. Van Campenhout 'Reliable 50Gb/s silicon photonics platform for next-generation data center optical interconnects,' IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, pp. 34.2.1-34.2.4, (2017) [107] N. A. DiLello, D. K. Johnstone, and J. L. Hoyt “Characterization of dark current in Ge-on-Si photodiodes” Journal of Applied Physics 112, 054506 (2012) [108] H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, G. Roelkens, and J. Van Campenhout “Dark current analysis in high-speed germanium p-i-n waveguide photodetectors” Journal of Applied Physics 119, 213105 (2016) [109] J.Margetisa, A.Mosleh, S.Al Kabi, S.A.Ghetmiri, W.Du, W.Dou, M.Benamara, B.Li, M.Mortazavi, H.A.Naseem, S.-Q.Yu, J.Tollea “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas” Journal of Crystal Growth, 463, 128–133, (2017) [110] Matthew Morea, Corinna E. Brendel, Kai Zang, Junkyo Suh, Colleen S. Fenrich, Yi-Chiau Huang, Hua Chung, Yijie Huo, Theodore I. Kamins, Krishna C. Saraswat, and James S. Harris “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors” Appl. Phys. Lett. 110, 091109 (2017) [111] Yuan Dong, Wei Wang, Shengqiang Xu, Dian Lei, Xiao Gong, Xin Guo, Hong Wang, Shuh-Ying Lee, Wan-Khai Loke, Soon-Fatt Yoon, and Yee-Chia Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth” Opt. Express 25, 15818-15827 (2017) [112] S. Assali, J. Nicolas, and O. Moutanabbira “Enhanced Sn incorporation in GeSn epitaxial semiconductors via strain relaxation” J. Appl. Phys. 125, 025304 (2019) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15453 | - |
| dc.description.abstract | 由於鍺為間接能隙材料故其發光的效率及其吸收光的效率都有加強的空間,而我們發現摻入7%-10%錫可以使其Gamma valley下降甚至低於Gamma valley使其變成直接能隙材料,目前鍺錫材料已被用來利用光來產生雷射也用來製作電晶體因為其電洞之遷移率高於鍺,但是其材料特性、發光元件、以及光偵測器皆需要更進一步的研究,尤其是光偵測器的部分不管其吸收材料是矽、鍺、甚至鍺錫皆需要進一步的研究,因為目前在物聯網、自駕車或是在光聯結上在接受端的發展皆是非常需要的。 表面鈍化是可用來提升鍺錫材料之光電元件後的效率,表面鈍化可以利用兩個方式達成一個是降低表面斷鍵產生的缺陷但是這種方式需要高溫來產生,而在鍺錫材料上熱預算約為400度所以其降低表面斷鍵的效果並不好,第二種達到表面鈍化的方式是利用帶電的氧化物將表面載子與缺陷複合的機率降低,而這種方式也應用在高效率的太陽電池當中,在論文的第二章原子層堆積被利用來成長了二氧化矽以及氧化鋁在矽鍺表面利用其帶負電的特性來鈍化表面,金氧半的電容也被製作來萃取其帶電量,而光激發光的頻譜強度被用來判斷其鈍化的效果,當光打入鍺錫材料中會產生電子電洞對如果鈍化成功的話表面的載子就不會產生非放光式的複合,而在製程的優化下20-cycle的二氧化矽搭配上60-cycle的氧化鋁能產生最好的鈍化效果。 再來由於鍺錫材料在成長時需成長在鍺的虛擬基板上面因為錫跟矽的晶格大小差距約為20%,而錫跟鍺也具有14%的晶格差距所以在成長上會產生應力,而應力會影響載子的分佈也會影響其能隙之大小,在論文的第三章我們利用治具來施加額外的應力來了解經過應力以後載子的分佈及能隙之變化,利用經驗公式以及固態理論來fitting光激發光的頻譜可以得知鍺錫材料的能隙,再來我們發現經過外加拉伸應力鍺的直接能隙發光是十分敏感的但是鍺錫材料的直接能隙發光卻是非常不敏感的。 由於發光元件在目前的四族光電元件當中是十分缺乏的所以在第四章我們利用金氧半結構來製作電激發光的元件,目前的發光元件皆需要額外的摻雜利如p-n結構或是p-i-n的結構而摻雜皆有可能產生額外的缺陷,利用金氧半結構也可以偵測到真正的薄膜品質,我們利用原子層堆積極薄的3nm氧化鋁來達成金氧半的結構,由於為了不讓錫產生析出鍺錫材料的表面皆覆蓋了一層鍺的覆蓋層以提升磊晶後薄膜之品質,但是這層錫會影響載子的分佈,我們發現當有覆蓋鍺以後電激發光的頻譜會以鍺的直接能隙發光為主,那我們利用熱氧法去除覆蓋錫的以後就看到了以鍺錫的直接能隙發光為主。 研究完發光元件以後我們就將研究光接收端,目前窄頻的光偵測器尤其是紫外光的波段是非常重要的,在第五章我們也一樣利用金氧半結構來製作光偵測器並且利用上面的金屬來當作濾波器,那之前的研究發現銀可以當作紫外光的濾光片所以我們的金屬電極就利用銀再來我們利用原子層堆積成長了不同的氧化物在矽的表面,我們發現氧化鋁可以有效的鈍化表面所以金氧半結構的氧化物就利用氧化鋁,製作出來其窄頻的光偵測器可以達到0.174mW/A的光響應然後利用印刷電路板搭配上電路設計我們製作出了符合物聯網之窄頻光偵測器。但是光偵測器最重要的還是在光連結上面,在第六章我們製作了不同厚度的p型鍺虛擬基板的垂直式光偵測器並量測其直流跟交流的特性,我們發現p型鍺虛擬基板其直流跟交流式越厚越好的,那我們將虛擬基板抽掉直接成長鍺在矽基板上發現其直流特性會下降許多但是交流特性會提升,為了增加偵測的波段我們也將錫摻入鍺當中製作p-n二極體,我們利用了多層的磊晶方式來達到更高濃度的錫摻雜,那我們發現當最上層的鍺錫厚度會影響到元件的特性,越厚的最上層的鍺錫層可以達到越高的光響應但是相對的其暗電流密度也是最高的,暗電流密度之中我發現其主要是產生自空乏區而這樣證明了其較高光響應的原因。 | zh_TW |
| dc.description.abstract | The bandgap tuning and direct bandgap emission of GeSn can enhance the performance of group IV photonic devices on Si platform. The indirect-to-direct transition of relaxed Ge1-xSnx was reported at the Sn content of 6-11%. GeSn was proposed to be an active layer in electrically pumped laser with the advantage of wavelength tuning by adjusting Sn content and the tensile strain generated by underneath GeSn layers. GeSn high performace and low dark current photodetectors were also demonstrated due to GeSn can have higher absorption coefficient at optical interconnect wavelength and also extent the detection range to FIR regime. Surface passivation is a critical technique because it can enhance the photonic devices performance. There two methods can achieve surface passivation. The first one is lower surface dangling bond which can treat as defect and it can create non-radiation recombination. But this method usually needs thermal treatment which is not suitable for GeSn because GeSn has low thermal budget. The second scheme is using oxide charge to propel the carriers away from the surface. This method is widely used in high efficiency solar cell which also prove it can be used in the industry. In the second chapter of this dissertation, plasma-enhanced atomic layer deposition is applied to grow SiO2 and Al2O3. By using metal-oxide-semiconductor capacitors, the flat band voltage is extracted to estimate the oxide charge density. The SiO2 and Al2O3 has negative oxide charge around 2x1012 cm-3. The photoluminescence (PL) spectra intensity is also used to distinguish the success of surface passivation. After process optimization, 60-cycle Al2O3 on 20-cycle SiO2 can have the best surface passivation. Due to the 14% lattice mismatch between Sn and Ge, the GeSn needs Ge virtual substrate. But if the thickness is above critical thickness, the strain will relaxed. The strain will affect the carrier distribution and also the bandgap energies. In the chapter three, the external tensile strain is applied to the Ge/GeSn/Ge quantum well. By using EPM and model solid theory to fit the PL spectra, the bandgap energies are extracted. It is also found that Ge direct emission is sensitive to tensile strain while GeSn direct emission is not. Due to low emission efficiency for the group four material, light emitting devices is needed. In chapter four, a MIS structure light emitting diode (LED) is fabricated. Currently, the light emitting diode requires doping which can be made into p-n or p-i-n structure but doping will introduce more defect which will lower device performance. By utilizing MIS structure with ultrathin oxide layer, the MISLED can probe the epitaxy film quality without further processes. During epitaxial grown of GeSn layer, a thin Ge cap layer is deposited to prevent Sn segregation but the Ge cap layer will affect carrier distribution. It is found that with Ge cap layer the spectra of GeSn MISLED will mainly attribute by Ge direct emission while without Ge cap layer the spectra of GeSn MISLED will mainly attribute by GeSn direct emission. After discussing the transmit end devices, in chapter five and six the photodetectors are studied. For the narrow band photodetectors, UV regime detection is very popular due to outdoor activities. By using MIS structure, the metal layer can be treated as optical filter especially Ag. It is also found that Al2O3 can passivate the Si surface. By using ultrathin Al2O3 and Ag, the narrow band Si photodetector can achieve 0.174mA/W at -2V. With proper package and circuit, the device can be integrated into IoT circuit. For the silicon photonics, high performance Ge photodetector is required. It is found that Ge virtual substrate will affect the device DC and AC characteristic. With increasing Ge virtual substrate, the device DC and AC characteristic will also enhanced. In order to have larger 3dB bandwidth, Ge virtual substrate was removed to increase the bandwidth but the DC properties are worse than the devices with Ge virtual substrate. In order to enable extend the detection range, Sn was alloyed into Ge to decrease the bandgap to form a p-n diode by in-situ doping. To achieve high Sn content, three GeSn layer is grown. By increasing top layer GeSn the p-n diode will have better responsivity but the dark current density will also increase. By fabricated different size photodetectors, the dark current was mainly attributed by bulk defect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:40:44Z (GMT). No. of bitstreams: 1 U0001-2107202020541800.pdf: 3536263 bytes, checksum: 9b766144387917593c1e51992d052fef (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 2 1.1 Motivation 2 1.2 Dissertation Organization 4 1.3 References 7 Chapter 2 Surface Passivation of GeSn by PEALD Al2O3 and SiO2 11 2.1 Introduction 11 2.2 Material Characteristic s of Strained GeSn Layers 12 2.3 Surface passivation by ALD Al2O3 and SiO2 15 2.4 Electrical analyze of ALD Al2O3 and SiO2 22 2.5 Summary 25 2.6 References 26 Chapter 3 Biaxial Strain Effects and Temperature Dependent Photoluminescence of Ge/strained GeSn/Ge Quantum Well 30 3.1 Introduction 30 3.2 Biaxial strain effect on Photoluminescence of Ge/strained GeSn/Ge Quantum Well 31 3.3 Temperature Dependent Photoluminescence of Ge strained GeS /Ge Quantum Well 42 3.4 Summary 47 3.5 References 48 Chapter 4 Electroluminescence from Ge⁄strained GeSn⁄Ge Quantum Well by MIS Structure 58 4.1 Introduction 58 4.2 Device Fabrication 59 4.3 Result and Discussion 63 4.4 Summary 68 4.5 References 69 Chapter 5 UVB Detection of Ag/Al2O3/Si MIS Photodetetors 71 5.1 Introduction 71 5.2 Device Fabrication 72 5.3 Result and Discussion 74 5.4 Summary 79 5.5 References 80 Chapter 6 Low Dark Current Ge and GeSn Vertical Photodetectors 82 6.1 Introduction 82 6.2 Device Fabrication 83 6.3 Result and Discussion 86 6.4 Summary 97 6.5 Reference 97 Chapter 7 Summary and Future Work 102 7.1 Summary 102 7.2 Future Work 105 | |
| dc.language.iso | en | |
| dc.subject | 鍺錫合金 | zh_TW |
| dc.subject | 原子層堆積 | zh_TW |
| dc.subject | 表面鈍化 | zh_TW |
| dc.subject | 光激發光頻譜 | zh_TW |
| dc.subject | 鍺錫合金能隙 | zh_TW |
| dc.subject | 金氧半發光二極體 | zh_TW |
| dc.subject | 光偵測器 | zh_TW |
| dc.subject | photoluminescence | en |
| dc.subject | GeSn nandgap energies | en |
| dc.subject | surface passivation | en |
| dc.subject | atomic layer deposition | en |
| dc.subject | GeSn | en |
| dc.subject | photodetectors | en |
| dc.subject | light emitting diodes | en |
| dc.title | 鍺/鍺錫光激發光及其光電元件之研究 | zh_TW |
| dc.title | Photoluminescence Characterization and Photonic Applications of Ge/GeSn | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 孟慶宗(Chin-Chun Meng),林吉聰(Jyi-Tsong Lin),許晉瑋(Jin-Wei Shi),李敏鴻(Min-Hung Lee),張書通(Shu-Tong Chang) | |
| dc.subject.keyword | 鍺錫合金,原子層堆積,表面鈍化,光激發光頻譜,鍺錫合金能隙,金氧半發光二極體,光偵測器, | zh_TW |
| dc.subject.keyword | GeSn,atomic layer deposition,surface passivation,photoluminescence,GeSn nandgap energies,light emitting diodes,photodetectors, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202001712 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2107202020541800.pdf 未授權公開取用 | 3.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
