Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15410
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠(Ru-Jong Jeng)
dc.contributor.authorKuan-Liang Liuen
dc.contributor.author劉冠良zh_TW
dc.date.accessioned2021-06-07T17:40:24Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1.潘錫明,“認識發光二極體”,科學發展,2009,435,6-11。
2.Nikolay Zheludev, “The life and times of the LED-a 100-year history”, Nature, Photonics, 2007, 1, 189-192
3.Richard Stevenson, IEEE Spectrum: The LED's Dark Secret, August 2009.
4.張守進、尤信介,“現代的電光石火”,科學發展,2002,349,6-13。
5.莊賦祥,“藍綠光發光二極體”,科學發展,2002,349,47-53。
6.Osram Dulux EL electronic energy-saving lamps. Economical alternatives to ordinary light bulbs Technical Guide. Jan. 04, 2009.
7.ANSI method of light output measurement. 1993.
8.李豫華,“發光二極體的散熱技術”,科學發展,2009,435,18-27。
9.P. Judeinstein, C. Sanchez., “Hybrid organic-inorganic materials: a land of multidisciplinarity.” Journal of materials chemistry, 1996, 6, 511-525
10.詹佳樺,“溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究”,2001,國立中央大學化學工程研究所碩士論文。
11.林進益,“溶膠-凝膠/有機-無機混成高分子材料發展趨勢”,化工資訊月刊,1999,13,7-16。
12.M. Guglielmi, G. Brusatin, G. Facchin and M. Gleria, “Poly(organophosphazene)s and the Sol-gel Technique” Applied Organometallic Chemistry. 1999, 13, 339-351
13.Y. Takahashi, A. Maed, K. Kojim and K. Uchid, “Luminescence of dyes doped in a sol-gel coating film” Journal of Luminescence, 2000, 87-89, 767-769
14.M. Opallo, J. Kukulk, “Electrochemical redox reaction in a silica sol-gel glass with embedded organic electrolyte” Electrochemistry Communications, 2000, 2, 394-398
15.S. Mimura, H. Naito, Y. Kanemitsu, K. Matsukawa, H. Inoue, “Optical properties of organic–inorganic hybrid thin films containing polysilane segments prepared from polysilane–methacrylate copolymers” Journal of organometallic chemistry, 2000, 611, 40-44
16.S.H. Jang, M.G. Han, S.S. Im, “Preparation and characterization of conductive polyanilinersilica hybrid composites prepared by sol–gel process” Synthetic Metals, 2000, 110, 17-23
17.T.C. Chang, Y.T. Wang, Y.S. Hong, H.B. Chen, J.C. Yang, “Organic-inorganic hybrid materials 7: characterization and degradation of polyvinylimidazole-silica hybrids” Polymer Degradation and Stability, 2000, 69, 317-322
18.K. Dallmann, R. Buffon, “Sol-gel derived hybrid materials as heterogeneous catalysts for the epoxidation of olefins” Catalysis Communications, 2000, 1, 9-13
19.J. W. Cho, K. I. Sul, “Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride–tetrafluoroethylene) and SiO2” Polymer, 2001, 42, 727-736
20.C. J. Wung, Y. Pang and P. N. Prasad, F. E. Karasz, “Poly(p-phenylene vinylene)-silica composite: a novel sol-gel processed non-linear optical material for optical waveguides” Polymer, 1991, 32, 605-608
21.B. L.-Davies, M. Samoc, and M. Woodruff, “Comparison of the Linear and Nonlinear Optical Properties of Poly(p-phenylenevinylene)/Sol-Gel Composites Derived from Tetramethoxysilane and Methyltrimethoxysilane” Chemistry of materials, 1996, 8, 2586-2594
22.S. Motakef, T. Suratwala, R.L. Roncone, J.M. Boulton, G. Teowee, G.F. Neilson, D.R. Uhlmann, “Processing and optical properties of inorganic-organic hybrids (polycerams). I. MPEOU-based waveguides” Journal of non-crystalline solids, 1994, 178, 31-36
23.S. Motakef, T. Suratwala, R.L. Roncome, J.M. Boulton, G. Teowee, D.R. Uhlmann, “Processing and optical properties of inorganic-organic hybrids (polycerams). II. PDMS-based waveguides” Journal of non-crystalline solids, 1994, 178, 37-43
24.M. Yoshida and P. N. Prasad, “Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/ SiO2 composite materials” Applied optics, 1996, 35, 1500-1506
25.C. Xu, L. Eldada, C. Wu, R. A. Norwood, L. W. Shacklette, and J. T. Yardley “Photoimageable, Low Shrinkage Organic-Inorganic Hybrid Materials for Practical Multimode Channel Waveguides” Chemistry of materials, 1996, 8, 2701-2703
26.B. C. Dave, B. Dunn, J. S. Valentine, J. I. Zink “Sol-gel encapsulation methods for biosensors” Analytical chemistry, 1994, 66, 1120A-1127A
27.C. Claude, B. Garetz, Y. Okamoto, S. Tripathy, “The preparation and characterization of organically modified silicates that exhibit nonlinear optical properties” Materials letters, 1992, 14, 336-342
28.J. D. Mackenzie, “Structures and properties of Ormosils” Journal of Sol-Gel Science and Technology, 1994, 2, 81-86
29.U. Schubert, N. Husing, and A. Lorenz, “Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides” Chemistry of materials, 1995, 7, 2010-2027
30.Douglas A. Loy, Kenneth J. Shea, “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials” Chemical reviews, 1995, 95, 1431-1442
31.T. R. O'Toole, T. J. Meyer, and B. P. Sullivan, “Electrocatalytic Reduction of CO2 by Thin Polymeric Films Containing Metallic Rhodium” Chemistry of materials, 1989, 1, 574-576
32.K. J. Shea, D. A. Loy, O. Webster, “Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks” Journal of the American Chemical Society, 1992, 114, 6700-6710.
33.K. M. Choi, K. J. Shea, “Preparation of Nano-Sized Chromium Clusters and Intimate Mixtures of Chromium/CdS Phases in a Porous Hybrid Xerogel by an Internal Doping Method” Journal of the American Chemical Society, 1994, 116, 9052-9060
34.Kyung Moon Choi, K. J. Shea, “Amorphous Polysilsesquioxanes as a Confinement Matrix for Quantum-Sized Particle Growth. Size Analysis and Quantum Size Effect of CdS Particles Grown in Porous Polysilsesquioxanes” Journal of physical chemistry, 1994, 98, 3207-3214
35.K. M. Choi, J. C. Hemminger, K. J. Shea, “New procedures for the preparation of CdS and heterogeneous Cr/CdS phases in hybrid xerogel matrixes. Pore structure analysis and characterization” Journal of physical chemistry, 1995, 99, 4720-4732
36.H. W. Oviatt Jr., K. J. Shea, S. Kalluri, Y. Shi, and W. H. Steier, “Applications of Organic Bridged Polysilsesquioxane Xerogels to Nonlinear Optical Materials by the Sol-Gel Method” Chemistry of materials, 1995, 7, 493-498
37.H. W. Oviatt Jr., K. J. Shea, James H. Small, “Alkylene-bridged silsesquioxane sol-gel synthesis and xerogel characterization. Molecular requirements for porosity” Chemistry of materials, 1993, 5, 943-950
38.D. A. Loy, G. M. Jamison, B. M. Baugher, S. A. Myers, R. A. Assink, and K. J. Shea, “Sol−Gel Synthesis of Hybrid Organic−Inorganic Materials. Hexylene- and Phenylene-Bridged Polysiloxanes” Chemistry of materials, 1996, 8, 656-663
39.Corriu, R.J.P. Leclercq; Vioux, D.; Pauthe, A.; Phalippou, M.; Mackenzie, J. in: J.D. Ulrich(Eds.), D.R. Ultrastructure Processing of Advanced Ceramics, J. Wiley and Sons. 1988, 113
40.R. J. P. Corriu and D. Leclercq, “Recent Developments of Molecular Chemistry for Sol–Gel Processes” Angewandte Chemie International Edition in English, 1996, 35, 1420-1436
41.S. Sakka, K. Kamiya, “Glasses from metal alcoholates” Journal of non-crystalline solids, 1980, 42, 403-421
42.C.J. Brinker, G.W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.
43.J.W. Hagan, K.C. Stueben, Ch.14 in “Adhesives in Manufacturing”, ed. by G.L. Schnerberger, Marcel Dekker, Inc. 1983.
44.D. Satas, ch 1 in “Handbook of Pressure-sensitive Adhesive Technology”, ed. by D. Satas, 2nd ed.,Van Nostrand Reinhold Company, NY, 1989.
45.黃慶怡,探究共聚合物系統之多元化結構衍變,物理雙月刊,廿三卷四期,2001.
46.T.G. Fox, Bull. Am. Phys. Soc., 1956, 1, 123.
47.K.H. Hsieh, et al., “A novel polyurethane-based root canal-obturation material and urethane acrylate-based root canal sealer - Part 1: Synthesis and evaluation of mechanical and thermal properties”, Journal of Endodontics, 2008, 34, 303-305.
48.Nakayama, N. and T. Hayashi, “Synthesis of novel UV-curable difunctional thiourethane methacrylate and studies on organic-inorganic nanocomposite hard coatings for high refractive index plastic lenses”, Progress in Organic Coatings, 2008, 62, 274-284.
49.Tung, C.J. and T.C.J. Hsu, “Vibration Damping With Urethane Acrylate Simultaneous Seminterpenetrating Polymer Networks”, Journal of Applied Polymer Science, 1992, 46, 1759-1773.
50.P. Roose, et al., “Radiation curing technology: An attractive technology for metal coating”, Progress in Organic Coatings, 2009, 64, 163-170.
51.G. Odian. Principles of polymerization. John Wiley Sons, Inc. 2004, 4th ed.
52.S. Carraher著, 薛敬和譯, 高分子化學, 高立出版社. 2000, 3rd ed., 367-422.
53.S.P. Pappas. UV curing: science and technology Vol. II. Technology Marketing Corporation. 1985, 4-22.
54.Croce F, Appetecchi GB, Persi L, Scrosati B, Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394, 456.
55.Gangopadyay R, De A (2000) Conducting Polymer Nanocomposites: A Brief Overview. Chem. Mater. 12, 608.
56.Li D, Wang YL, Xia YN, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters, 2003, 3, 1167.
57.Huang F, Motealleh B, Zheng WJ, Janish MT, Carter CB, Cornelius CJ, Electrospinning amorphous SiO2-TiO2 and TiO2nanofibers using sol-gel chemistry and its thermal conversion into anatase and rutile. Ceram Int, 2018, 44, 4577.
58.Martinu L, Plasma deposition of optical films and coatings: A review. J Vac Sci Technol A , 2000, 18, 2619.
59.Shimizu W, Nakamura S, Sato T, Murakami Y, Creation of high-refractive-index amorphous titanium oxide thin films from low-fractal-dimension polymeric precursors synthesized by a sol-gel technique with a hydrazine monohydrochloride catalyst. Langmuir, 2012, 28, 12245.
60.Carp O, Huisman CL, Reller A, Environmental Toxicity and Antimicrobial Efficiency of Titanium Dioxide Nanoparticles in Suspension. Prog Solid State Chem, 2004, 32, 33.
61.Liu XY, Chu PK, Ding CX, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R, 2004, 47, 49.
62.Cushing BL, Kolesnichenko VL, O'Connor CJ, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev, 2004, 104, 3893.
63.Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L, Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol. Chemical Reviews, 2009, 108, 2064.
64.Abbas Z, Holmberg JP, Hellström AK, et al., Synthesis, characterization and particle size distribution of TiO2 colloidal nanoparticles. Colloids Surf A, 2011, 384, 254.
65.Ciavatta L, Ferri D, Riccio G On the hydrolysis of the titanium(IV) ion in chloride media. Polyhedron, 1985, 4, 15.
66.Lee JH, Yang SY, Effect of HCl concentration and reaction time on the change in the crystalline state of TiO2 prepared from aqueous TiCl4 solution by precipitation. J Eur Ceram Soc, 2005, 25, 3573.
67.Chen HJ, Jian PC, Chen JH, Wang LY, Chiu WY, Nanosized-hybrid colloids of poly(acrylic acid)/titania prepared via in situ sol–gel reaction. Ceram Int, 2007, 33, 643.
68.K. H. Von, Thiele and M. Z. Panse, Anorg. Allg. Chem. Einzel. 1978, 441, 23.
69.W. C. Du, H. T. Wang, W. Zhong, L. Shen and Q. G. Du, J Sol-Gel Sci Techn, 2005, 34, 227.
70.H. J. Chen, P. C. Jian, J. H. Chen, L. Y. Wang and W. Y. Chiu, Ceram Int, 2007, 33, 643.
71.H. W. Su and W. C. Chen, Macromol Chem Phys, 2008, 209, 1778.
72.R. Campostrini, M. Ischia and L. Palmisano, J Therm Anal Calorim , 2004, 75, 13.
73.Z. J. Li, B. Hou, Y. Xu, D. Wu and Y. H. Sun, J Colloid Interf Sci, 2005, 288, 149.
74.M.G. Kanatzidis, C. Wu, H.O. Marcy, D.C. DeGroot and C.R. Kannewurf, Chem. Mater., 1990, 2, 222.
75.H. K. Schmidt, Macromol. Symp., 1996, 101 , 333.
76.G. Cartenuto, Y.S. Her and E. Matijevic, Ind. Eng. Chem. Res., 1996, 35, 2929.
77.Y.G. Ju, G. Almuneau, T.H. Kim and B.W. Lee, Jpn. J. Appl. Phys., 2006, 45, 2546.
78.D. Steigerwald, IEEE J. Sel. Top. Quantum Electron., 2002, 8, 310.
79.W.F. Su and C.F. Lin, U.S. Patent No. 6838816, 2005.
80.L. Martinu and D. Poitras, J. Vac. Sci. Technol., A , 2000, 18, 2619.
81.V. V. Gite, P. P. Mahulikar and D. Hundiwale, Progress in Organic Coatings, 2010, 68, 307.
82.M. G. Lu, J. Y. Lee, M. J. Shim and S. W. Kim, Journal of Applied Polymer Science, 2002, 85, 2552.
83.J. C. Seo, E. S. Jang, J. H. Song, S. Choi, S. B. Khan and K. Han, Journal of Applied Polymer Science, 2010, 118, 2454.
84.R. N. Wenzel, Industrial Engineering Chemistry, 1936, 28, 988.
85.Nagendran, R.. Chapter 24 - Agricultural Waste and Pollution. Waste. T. M. Letcher and D. A. Vallero. Boston, Academic Press, 2011, 341-355.
86.Hsiao, S.T. F. and M. C. W. Hsiao, Economic Development of Taiwan: Early Experiences and the Pacific Trade Triangle, World Scientific, 2015, 578.
87.Erlich, C., M. Öhman, E. Björnbom and T. H. Fransson, 'Thermochemical characteristics of sugar cane bagasse pellets.' Fuel, 2005, 84(5), 569-575.
88.Anggono, J., Á. E. Farkas, A. Bartos, J. Móczó, Antoi, H. Purwaningsih and B. Pukánszky, 'Deformation and failure of sugarcane bagasse reinforced PP' European Polymer Journal, 2019, 112, 153-160.
89.Luz, S. M., A. R. Gonçalves and A. P. Del’Arco, 'Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites.' Composites Part A: Applied Science and Manufacturing, 2007, 38(6), 1455-1461.
90.Wirawan, R. and S. M. Sapuan, ' 7-Sugarcane Bagasse-Filled Poly(Vinyl Chloride) Composites: A Review' In S. M. Sapuan, H. Ismail, E. S. Zainudin (Eds.), Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites, 2018, 157-168, Woodhead Publishing.
91.Cestari, S. P., G. A. V. Albitres, L. C Mendes, V. Altstadt, J. B. Gabriel, G. C. B. Avila and I. de S. dos S. Silveira, 'Advanced properties of composites of recycled high-density polyethylene and microfibers of sugarcane bagasse' Journal of Composite Materials, 2018, 52(7), 867–876.
92.Mulinari, D. R., H. J. C. Voorwald, M. O. H. Cioffi and M. L. C. P. da Silva, 'Cellulose fiber-reinforced high-density polyethylene composites-Mechanical and thermal properties' Journal of Composite Materials, 2017, 51(13), 1807–1815.
93.Lei, Y., Q. Wu, F. Yao and Y. Xu, 'Preparation and properties of recycled HDPE/natural fiber composites.' Composites Part A: Applied Science and Manufacturing, 2007, 38(7), 1664-1674.
94.Kian, L. K., N. Saba, M. Jawaid and M. T. H. Sultan, 'A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites' International Journal of Biological Macromolecules, 2019, 121, 1314–1328
95.Mohammad, F., T. Arfin and H. A. Al-lohedana, 'Enhanced biosorption and electrochemical performance of sugarcane bagasse derived a polylactic acid-graphene oxide-CeO2 composite' Materials Chemistry and Physics, 2019, 229, 117-123.
96.Huda, M. S., L. T. Drzal, A. K. Mohanty and M. Misra, 'Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers.' Composites Science and Technology, 2008, 68(2), 424-432.
97.Sperling, L. H., Interpenetrating Polymer Networks and Related Materials, 1981.
98.Paluvai, N. R., S. Mohanty and S. K. Nayak, 'Synthesis and Modifications of Epoxy Resins and Their Composites: A Review.' Polymer-Plastics Technology and Engineering, 2014, 53(16), 1723-1758.
99.Roşu, D., C. N. Caşcaval, F. Mustątǎ and C. Ciobanu, 'Cure kinetics of epoxy resins studied by non-isothermal DSC data.' Thermochimica Acta, 2002, 383(1), 119-127.
100.Touhsaent, R. E., D. A. Thomas and L. H. Sperling, 'Epoxy/acrylic simultaneous interpenetrating networks.' Journal of Polymer Science: Polymer Symposia, 1974, 46(1), 175-190.
101.Paul, D. R., In Polymer Blends, S. Newman, Academic Press: New York, 1978.
102.Hsieh, K. H., J. L. Han, C. T. Yu and S. C. Fu, 'Graft interpenetrating polymer networks of urethane-modified bismaleimide and epoxy (I): mechanical behavior and morphology.' Polymer, 2001, 42(6), 2491-2500.
103.Bakar, M., R. Duk, M. Przybyłek and M. Kostrzewa, 'Mechanical and Thermal Properties of Epoxy Resin Modified with Polyurethane.' Journal of Reinforced Plastics and Composites, 2009, 28(17), 2107-2118.
104.Hua, F. J. and C. P. Hu, 'Interpenetrating polymer networks of epoxy resin and urethane acrylate resin: 2. Morphology and mechanical property.' European Polymer Journal, 2000, 36(1), 27-33.
105.Wang, H. F., W. J. Han, H. B. Tian and Y. I. Wang, 'The preparation and properties of glass powder reinforced epoxy resin.' Materials Letters, 2005, 59(1), 94-99.
106.Sawpan, M. A., K. L. Pickering and A. Fernyhough, 'Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites.' Composites Part A: Applied Science and Manufacturing, 2012, 43(3), 519-526.
107.Qin, C. L., W. M. Cai, J. Cai, D. Y. Tang, J. S. Zhang and M. Qin, 'Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network.' Materials Chemistry and Physics, 2004, 85(2), 402-409.
108.劉冠良,'甘蔗渣/環氧樹脂為基材之互穿型網狀結構聚合物複合材料之研究',2010,國立宜蘭大學化學工程與材料工程學系碩士論文。
109.I. Díaz, B. Chico, D. de la Fuente, J. Simancas, J.M. Vega, M. Morcillo 'Corrosion resistance of new epoxy–siloxane hybrid coatings. A laboratory study', Prog. Org. Coat. 2010, 69, 278
110.M. Qian, A. M. Soutar , X. H. Tan, X. T. Zeng, S. L. Wijesinghe 'Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel', Thin Solid Films. 2009, 517, 5237.
111.Ł. Byczyński, M. Dutkiewicz, H. Haciejewskic 'Synthesis and properties of high-solids hybrid materials obtained from epoxy functional urethanes and siloxanes', Progress in Organic Coatings, 2015, 84, 59-69.
112.Hsieh, K. H. and J. L. Han, 'Graft interpenetrating polymer networks of polyurethane and epoxy. I. mechanical behavior.' Journal of Polymer Science Part B: Polymer Physics, 1990, 28(5), 623-630.
113.Lee, M., S. Han and Y. Seo, 'Red algae fibre/poly(butylene succinate) biocomposites: The effect of fibre content on their mechanical and thermal properties.' Composites Science and Technology, 2008, 68(6), 1266-1272.
114.Correia, C. A., L. M. d. Oliveira and T. S. Valera, 'The influence of bleached jute fiber filler on the properties of vulcanized natural rubber.' Materials Research, 2017, 20, 466-471.
115.Hsieh, K. H. and J. L. Han, 'Graft interpenetrating polymer networks of polyurethane and epoxy. II. toughening mechanism.' Journal of Polymer Science Part B: Polymer Physics, 1990, 28(6), 783-794.
116.Saba, N., P. M. Tahir and M. Jawaid, 'A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites.' Polymers, 2014, 6(8), 2247-2273.
117.Indulekha, K., D. Thomas, N. Supriya, R.S. Rajeeva, D. Mathew, K.N. Ninan, C. Gouri “Inherently flame retardant vinyl bearing hyperbranched polysiloxanes having improved thermal stability-Ceramization and analysis of associated thermal properties”, Polymer Degradation and Stability, 2018, 147, 12-24.
118.Drupitha, M.P., G.B. Nando, K. Naskar “Nanocomposites of TPU-PDMS blend based on chitosan wrapped hydroxyapatite nanorods”, European Polymer Journal, 2018, 105, 194-203.
119.Bera, B., T.K. Rout, G. Udayabhanu, R. Narayan “Water-based eco-friendly epoxy-silane hybrid coating for enhanced corrosion protection adhesion on galvanized steel”, Progress in Organic Coatings, 2016, 101, 24-44.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15410-
dc.description.abstract本論文為有機/無機高分子混成複合材料與聚氨酯改性環氧樹脂複合材料之研究。分成四個部分進行探討,第一部份以四氯化鈦(TiCl4)作為起始劑通過溶膠-凝膠反應合成二氧化鈦(TiO2)。然後將丙烯酸(AA)引入系統中進行表面改性,防止奈米顆粒團聚且提供壓克力官能基團以利應用。熱重分析儀(TGA)分析顯示,所製備的TiO2奈米顆粒之熱裂解溫度為200℃,且AA改性TiO2之重量損失與添加的AA量成正比。由傅立葉轉換紅外線光譜儀(FTIR)分析,觀察到羧酸基和羥基之間的縮合或螯合在表面改性中起重要作用,由FTIR監控分析顯示完成反應時間需要48小時。為了確定最佳的反應條件,於25℃和50℃下進行AA改性TiO2合成反應,在25℃下添加的丙烯酸越多,對TiO2顆粒避免團聚的保護作用就越好。觀察AA改性TiO2照片,當TiO2與AA的莫耳數比等於1:6或1:14時在溫度升至50°C下皆發生團聚。然而有適量AA的T1A10H仍能保持球狀且奈米級(10-15 nm)結構,並在50°C下很好地分散在水溶液中。
第二部分為探討多官能基之壓克力樹脂以及與奈米TiO2摻混成複合材料後之性質研究,以紫外光硬化的方式進行多官能壓克力樹脂固化後性質分析,觀察到以三官能基季戊四醇三丙烯酸酯(PETA)改性之聚氨酯壓克力樹脂(MUA)擁有最佳熱性質,熱裂解溫度(Td10%)可達386℃。
第三部分以聚氨酯壓克力樹脂(MUA)混成奈米TiO2複合材料進行研究,奈米複合材料顯示出高折射率和良好的熱性質。以異丙氧基鈦(TTIP)為起始劑,在限水環境中合成TiO2,並以3-甲基丙烯醯氧丙基三甲氧基矽烷(MSMA)進行TiO2表面改性,使表面包含疏水基團,增加與MUA樹脂的相容性,提高其折射率。通過動態光散射粒徑分析儀(DLS)進行測量,MSMA-TiO2有機/無機複合材料的最高折射率可以達到1.71,由TGA分析熱裂解溫度(Td 10%)可達415℃。
第四部份為探討聚氨酯改性環氧樹脂應用於有機甘蔗纖維與無機岩石添加物之性質分析。這項研究分析了生物添加劑對動態力學性質,由結果顯示添加未改性的生物添加劑後,生物添加劑的含量與tanδ峰值之間存在不規則的趨勢。由於結果不一致,很難得出任何可靠的結論。因此,使用3-環氧丙氧基丙基三甲氧基矽烷(GPS)偶合劑對生物添加劑甘蔗渣進行了改性,以增強其相容性。結果顯示,當增加生物添加量時,tanδ峰值在一定範圍內線性下降(R2>0.99)。但是由於線性模型的截距值和其他問題,因此使用對數分析有更好地趨勢(R2>0.95)。與tanδ值不同,每增加10wt%的甘蔗渣,IPN的Tg線性降低約5℃。基於這些發現,推測GPS不會在高分子基材和生物添加劑之間產生任何共價鍵。相反,偶合劑通過均勻分散生物添加劑並減少這些生物添加劑的團聚來改善界面。研究無機岩石添加物觀察到3-氨基丙基三乙氧基矽烷(APS)改性環氧樹脂(AE)/岩石複合材料撓曲強度皆高於APS改性聚氨酯交聯環氧樹脂(APU-EP)/岩石複合材料,主要是因AE主鏈段為線性,分子量也較小,分子較易浸潤(wetting)岩石中,岩石表面能有良好的樹脂包覆,使複合材料撓曲強度較高,而值得注意的是,APU-EP雖然有較多的Si-OMe基團,但因聚氨酯交聯環氧樹脂(PU-EP)分子量也較高,使得分子間不易形成鍵結,導致撓曲強度低於AE。AE/岩石複合材料於岩石含量達到40wt%擁有最大值,可達28.5MPa,而APU1000-EP/岩石複合材料與APU2000-EP/岩石複合材料最大值則在岩石含量達50wt%分別為24.3MPa與20.2MPa。
zh_TW
dc.description.abstractIn this study, organic and inorganic polymer composite were synthesized and researched. The first part, titanium tetrachloride (TiCl4) served as the precursor to synthesize amorphous titanium dioxide (TiO2) via a sol-gel reaction. Acrylic acids (AA) were then introduced into the system for surface-modification so as to provide not only the protection from aggregation but also hydroxyl groups to react with the functional groups for further applications. Thermal gravimetric analysis (TGA) showed that the thermal decomposition temperature of as-prepared TiO2 nanoparticle was 200°C and the weight loss of AA-modified TiO2 was linear corresponding to the amount of AA added. From FTIR, we found that either condensation or chelating between the carboxylic acid groups and hydroxyl groups plays an important role in the surface modification. FTIR analysis also suggested that 48 hours was required for completing the reaction. The synthesis of AA-modified TiO2 was operated at both 25°C and 50°C in order to determine the optimized reacting condition. At room temperature, the more acrylic acids added, the better the protection of the TiO2 particles from coagulation. When the temperature was raised to 50°C with the AA-modified TiO2 with a molar ratio of TiO2 to AA equal to 1:6 or 1:14, neither T1A6H nor T1A14H could preserve the original nanostructure under 50°C because of the lack of protection or the occurrence of over-polymerization, respectively. However, the T1A10H, with just the right amount of AA, remained spherical, nanosized (10-15 nm) and well-dispersed in aqueous solution under 50°C.
The second part was the UV-curable multiple functionality acrylate resins mixed with high refractive index TiO2 nanoparticles are proposed and designed to meet the requirements of light-emitting diode (LED) package material. The obtained novel LED package material is expected to exhibit high refractive index (>1.6), high thermal stability (thermal decomposition temperature>400℃) and high light transmission (>92%).
The third part, the UV-curable multi-functional urethane acrylate resin (MUA) was prepared through condensation reaction by isophorone diisocynante (IPDI), pentaerythritol triacrylate (PETA). The TiO2 was synthesized via non-aqueous and sol-gel process and then employ 3-(trimethoxysilyl)propyl methacrylate (MSMA) modification of the TiO2 surface not only contain hydrophobic group increased compatibility with MUA resin but also enhance the refractive index of the resins. The MUA structure was characterized by Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The characteristics of the TiO2 and MSMA-TiO2 were measured by means of dynamic light scattering (DLS). The highest refractive index of the organic–inorganic hybrid material can reach 1.71 and the thermal properties of the cured coating were investigated by means of thermal gravimetric analysis, with the decomposition temperature (Td 10%) reaching up to 415℃.
The fourth part, investigated the effect of bio-additives on dynamic mechanical properties of IPNs. The results show that the neat PU-EP, without bio-additives, has a stable interpenetrating polymer network represented by its singular sharp tan δ peak. After adding unmodified bio-additives, there is an irregular trend between bio-additive amounts and tan δ peak value. It is difficult to derive any solid conclusions on account of the inconsistent results. Thus, the bio-additives, sugarcane bagasse, were modified using a 3-glycidoxypropyltrimethoxysilane (GPS) coupling agent to enhance its compatibility. The results show tan δ peak value decreased linearly at certain range when increasing bio-additive amounts (R2>0.99). On the other hand, the flexural strength of 3-aminopropyl-trimethoxysilane (APS) modified epoxy resin (AE)/sand composite was higher than that of APS modified polyurethane cross-linked epoxy (APU-EP)/sand composite, owing to the AE main chain was linear and the molecular weight was smaller, the molecules were easier to wetting in the sand, and the sand surface can be wetting well, which makes the AE/sand composite higher than APU-EP/sand in bending strength.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:40:24Z (GMT). No. of bitstreams: 1
U0001-2707202008502400.pdf: 8243555 bytes, checksum: e4f47743493f4edf60b76f3d62071080 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract IV
目錄 VII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
第二章 文獻回顧與基礎理論 3
2.1 LED之原理與其發展 3
2.2 有機/無機混成(hybrid)材料之簡介 5
2.3 壓克力材料之簡介 10
2.4 高分子聚合原理之簡介 11
2.5 光可硬化樹脂聚合機制之簡介 12
2.5.1 自由基鏈鎖反應機制 12
2.5.2 光聚合反應機制 15
第三章 丙烯酸表面改性二氧化鈦合成與性質研究 18
3.1 前言 18
3.2 實驗材料與方法 19
3.2.1 實驗材料 19
3.2.2 溶膠-凝膠反應製備二氧化鈦 19
3.2.3 丙烯酸對奈米二氧化鈦顆粒的表面改性 19
3.2.4 實驗儀器 20
3.3 結果與討論 21
3.3.1 FTIR分析確定反應時間 21
3.3.2 外觀與穩定性測試 23
3.3.3 反應溫度與可見光的影響 24
3.3.4 奈米二氧化鈦顆粒形態變化 27
3.3.5 奈米二氧化鈦顆粒之特性 28
3.4 結論 29
第四章 高折射奈米有機無機壓克力複合材料的合成與應用 31
4.1 前言 31
4.2 實驗材料與方法 31
4.2.1 實驗材料 31
4.2.2 多官能基壓克力樹脂之合成 32
4.2.2.1 雙官能基壓克力樹脂合成 32
4.2.2.2 三官能基壓克力樹脂合成 32
4.2.2.3 六官能基壓克力樹脂合成 33
4.2.3 表面具壓克力官能基之二氧化鈦奈米顆粒之製備 33
4.2.4 二氧化鈦與壓克力混成複合材料之製備 35
4.2.5 實驗儀器 36
4.3 結果與討論 36
4.3.1 奈米二氧化鈦FTIR分析 36
4.3.2奈米二氧化鈦形態學分析 39
4.3.2奈米二氧化鈦的動態光散射(DLS)分析 43
4.3.3 奈米二氧化鈦X-ray繞射儀(XRD)分析 44
4.3.4 多官能基壓克力樹脂FTIR分析 45
4.3.5 多官能基壓克力聚合物外觀 46
4.3.6 多官能基有機/無基壓克力複合材料FTIR分析 47
4.3.7 多官能基有機/無機壓克力複合材料橢偏儀分析 50
4.4 結論 52
第五章 聚氨酯壓克力樹脂(MUA)與高折射奈米二氧化鈦可紫外光硬化有機無機複合材料之合成與應用 53
5.1 前言 53
5.2 實驗材料與方法 53
5.2.1 實驗材料 53
5.2.2 多官能基聚氨酯壓克力樹脂(MUA)之製備. 54
5.2.3 表面改性奈米二氧化鈦顆粒之製備(MSMA-TiO2). 54
5.2.4 MUA/MSMA-TiO2奈米複合膜之製備 55
5.2.5 實驗儀器 55
5.3 結果與討論 56
5.3.1 奈米二氧化鈦粒徑分析 56
5.3.2 聚氨酯壓克力樹脂(MUA)和MSMA-TiO2奈米顆粒之FTIR分析 56
5.3.3 奈米二氧化鈦顆粒X-ray繞射儀(XRD)分析 58
5.3.4 MUA/MSMA-TiO2奈米複合材料熱性質分析 59
5.3.5 MUA/MSMA-TiO2奈米複合材料折射率分析(Refractive Index) 60
5.4 結論 61
第六章 不同添加劑對聚氨酯改性環氧樹脂之製備與應用 62
6.1 前言 62
6.2 實驗材料與方法 63
6.2.1 實驗材料 63
6.2.2 實驗方法 64
6.2.2.1 甘蔗渣生物添加劑的製備[108] 64
6.2.2.2 生物添加劑的表面改性[108] 64
6.2.2.3 聚氨酯(PU)改性環氧樹脂的製備[112] 64
6.2.2.4 在聚氨酯改性環氧樹脂中添加甘蔗渣纖維 64
6.2.2.5 APU-EP樹脂合成方法 65
6.2.2.6 高分子岩石複合材料製備 66
6.2.3 實驗儀器 66
6.3 結果與討論 67
6.3.1 生物添加物添加聚氨酯環氧樹脂互穿型網狀高分子樹脂性質分析 67
6.3.2 無機岩石添加物添加聚氨酯交聯環氧樹脂之性質分析 70
6.4 結論 83
第七章 總結與未來展望 84
7.1 總結 84
7.2 未來展望 85
7.2.1 壓克力混成複合材料光學性質提升 85
7.2.2 添加劑對於聚氨酯改性環氧樹脂之影響 85
參考文獻 86
附錄1 Properties of Sugarcane Fiber/Polyurethane-crosslinked Epoxy Composites under Different Interfacial Treatments 96
附錄2 Influence of Bio-additives Made from Sugarcane Bagasse on Interpenetrating Polymer Networks 127
dc.language.isozh-TW
dc.subject表面改性zh_TW
dc.subject聚氨酯壓克力zh_TW
dc.subject二氧化鈦zh_TW
dc.subject混成材料zh_TW
dc.subject折射率zh_TW
dc.subject熱穩定性zh_TW
dc.subjecthybrid materialen
dc.subjectsurface modificationen
dc.subjecturethane-acrylateen
dc.subjecttitanium dioxideen
dc.subjectthermal stabilityen
dc.subjectrefractive indexen
dc.title高折射奈米有機無機壓克力混成複合材料與聚氨酯改性環氧樹脂複合材料之性質研究
zh_TW
dc.titleSynthesis and characterization of high refractive index organic/inorganic urethane-acrylate nanocomposite and urethane modified epoxy compositeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-4755-6378
dc.contributor.advisor-orcid鄭如忠(0000-0002-0913-4975)
dc.contributor.coadvisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.coadvisor-orcid謝國煌(0000-0002-5666-0265)
dc.contributor.oralexamcommittee韓錦鈴(Jin-Lin Han),賴森茂(Sun-Mou Lai),郭佩鈺(Pei-Yu Kuo)
dc.contributor.oralexamcommittee-orcid韓錦鈴(0000-0002-4541-4448),郭佩鈺(0000-0002-9582-3039)
dc.subject.keyword二氧化鈦,聚氨酯壓克力,表面改性,混成材料,折射率,熱穩定性,zh_TW
dc.subject.keywordtitanium dioxide,urethane-acrylate,surface modification,hybrid material,refractive index,thermal stability,en
dc.relation.page151
dc.identifier.doi10.6342/NTU202001887
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2707202008502400.pdf
  未授權公開取用
8.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved