Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15378
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor石百達(Pai-Ta Shih)
dc.contributor.authorWei-Lin Huangen
dc.contributor.author黃威霖zh_TW
dc.date.accessioned2021-06-07T17:33:29Z-
dc.date.copyright2020-06-24
dc.date.issued2020
dc.date.submitted2020-06-22
dc.identifier.citationAlesina, A. (1988). Macroeconomics and politics. NBER macroeconomics annual, 3, 13-52.
Apel, M., BLIX GRIMALDI, M. A. R. I. A. N. N. A. (2014). How informative are central bank minutes?. Review of Economics/Jahrbuch für Wirtschaftswissenschaften, 65(1).
Armesto, M. T., HERNÁNDEZ‐MURILLO, R. U. B. É. N., Owyang, M. T., Piger, J. (2009). Measuring the information content of the beige book: A mixed data sampling approach. Journal of Money, Credit and Banking, 41(1), 35-55.
Balke, N. S., Petersen, D. A. (2002). How well does the Beige Book reflect economic activity? Evaluating qualitative information quantitatively. Journal of Money, Credit and Banking, 114-136.
Bandyopadhyay, A. (2006). Predicting probability of default of Indian corporate bonds: logistic and Z‐score model approaches. The Journal of Risk Finance.
Bjørnland, H. C., Leitemo, K. (2009). Identifying the interdependence between US monetary policy and the stock market. Journal of Monetary Economics, 56(2), 275-282.
Black, F., Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654.
Bourinet, J. M. (2016). Rare-event probability estimation with adaptive support vector regression surrogates. Reliability Engineering System Safety, 150, 210-221.
Bowman, D., Londono, J. M., Sapriza, H. (2015). US unconventional monetary policy and transmission to emerging market economies. Journal of International Money and Finance, 55, 27-59.
Carlson, J. B., McIntire, J. M., Thomson, J. B. (1995). Federal funds futures as an indicator of future monetary policy: a primer. Economic Review-Federal Reserve Bank of Cleveland, 31(1), 20.
Conover, C. M., Jensen, G. R., Johnson, R. R., Mercer, J. M. (2005). Is Fed policy still relevant for investors?. Financial Analysts Journal, 61(1), 70-79.
Culkin, R., Das, S. R. (2017). Machine learning in finance: the case of deep learning for option pricing. Journal of Investment Management, 15(4), 92-100.
Dornbusch, R. (1998). Debt and monetary policy: the policy issues. In The debt burden and its consequences for monetary policy (pp. 3-27). Palgrave Macmillan, London.
Hayo, B., Neuenkirch, M. (2010). Do Federal Reserve communications help predict federal funds target rate decisions?. Journal of Macroeconomics, 32(4), 1014-1024.
Hutchinson, J. M., Lo, A. W., Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851-889.
Farka, M., Fleissig, A. R. (2012). The effect of FOMC statements on asset prices. International Review of Applied Economics, 26(3), 387-416.
Grier, K. B. (1991). Congressional influence on US monetary policy: An empirical test. Journal of Monetary Economics, 28(2), 201-220.
Hibbs, D. A., Dennis, C. (1988). Income distribution in the United States. American Political Science Review, 82(2), 467-490.
Keasler, T. R., Goff, D. C. (2007). Using Fed Funds Futures to Predict a Federal Reserve Rate Hike. Journal of Economics and Finance Education, 6(2), 10.
Kuttner, K. N. (2001). Monetary policy surprises and interest rates: Evidence from the Fed funds futures market. Journal of monetary economics, 47(3), 523-544.
Loughran, T., McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10‐Ks. The Journal of Finance, 66(1), 35-65.
Malliaris, A. G., Malliaris, M. (2015). What drives gold returns? A decision tree analysis. Finance Research Letters, 13, 45-53.
Sadique, S., In, F., Veeraraghavan, M., Wachtel, P. (2013). Soft information and economic activity: Evidence from the Beige Book. Journal of Macroeconomics, 37, 81-92.
Pakko, M. R. (2005). On the information content of asymmetric FOMC policy statements: evidence from a Taylor‐rule perspective. Economic Inquiry, 43(3), 558-569.
Picault, M., Renault, T. (2017). Words are not all created equal: A new measure of ECB communication. Journal of International Money and Finance, 79, 136-156.
Rigobon, R., Sack, B. (2003). Measuring the reaction of monetary policy to the stock market. The quarterly journal of Economics, 118(2), 639-669.
Were, K., Bui, D. T., Dick, Ø. B., Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394-403.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15378-
dc.description.abstract過去對美國聯準會(Fed)的研究主要聚焦於利率決策對資產價格的影響,例如對股市和債市造成的變化,預測未來利率決策的研究則較為稀少。利率決策預測方法可分為結構性資料預測和非結構性資料預測,結構性資料預測最著名的為利用美國聯邦基金利率期貨(Fed Fund Futures)推估升降息機率;非結構性資料則以分析Fed所發布的文本、官員談話和演講為主。本研究便是使用非結構性資料預測的方式,使用的資料為Fed發布的褐皮書。
吾人採用1983至2019的褐皮書樣本並使用Python的自然語言處理工具(Natural Language Tool Kit, NLTK)進行文字探勘(Text Mining),篩選適合的文字變數建立升息模型和降息模型,並分別使用羅吉斯回歸(Logistic Regression)和支援向量分類(Support Vector Classification, SVC)模型進行訓練。研究結果顯示SVC在樣本內回測中幾乎可捕捉所有升降息且訊號準確率100%,但樣本外回測表現則有下修情形;Logistic樣本內回測和樣本外回測差異不大,表現不如SVC。同時,若在模型中加入執政黨變數,對Logistic模型表現有顯著改善。整體而言,褐皮書對未來利率決策具有解釋力。
zh_TW
dc.description.abstractPast research on Federal Reserve mainly focused on the impact of monetary policy on asset prices, such as stock market and bond market. However, research on predicting future monetary policy is relatively rare. Data used to predict monetary policy can be divided into structured data and unstructured data. Using Fed Fund Futures to predict future hike and cut probability is a well-known way to predict by structured data. For unstructured data, document released by Fed and speech of Board members are the most commonly used. This paper used unstructured data to predict future monetary policy, and the data we used is Beige Book released by Fed.
We collected Beige book from 1983 to 2019 and used Python's Natural Language Tool Kit (NLTK) as textual analysis software. After conducting text mining, we extracted several text variables from Beige Book and established hike model and cut model. We used two machine learning method, Logistic Regression and Support Vector Classification (SVC), to train our models. The result shows that SVC could almost seize every hike and cut event and the precision rate achieves 100% in the in-sample test. However, the out-sample test of SVC is not as good as the in-sample test. For Logistic Regression, the result of in-sample test and out-sample test are similar. Overall, Logistic Regression underperforms against SVC. Besides, the addition of partisan variable significantly improves the performance of Logistic Regression. To conclude, Beige Book has explanatory power against future monetary policy.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:33:29Z (GMT). No. of bitstreams: 1
U0001-2206202017122900.pdf: 1227843 bytes, checksum: b23e5c729aa44671c376577a1924d077 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究流程 3
第二章 文獻回顧 4
2.1 Fed利率決策重要性 4
2.2 Fed利率決策預測方法 4
2.3 機器學習在財金領域之應用 5
2.4 褐皮書簡介 6
第三章 研究方法 7
3.1 樣本期間和資料處理 7
3.2 文字變數挑選 7
3.3 利用機器學習建立升降息模型 9
3.4 區分時間維度 9
3.5 樣本內和樣本外回測 10
3.6 額外參數測試 10
第四章 研究結果 12
4.1 樣本內回測結果 12
4.2 樣本外回測結果 13
第五章 結論 18
5.1 結論與貢獻 18
5.2 建議 18
參考文獻 19
dc.language.isozh-TW
dc.subject利率決策zh_TW
dc.subject褐皮書zh_TW
dc.subject機器學習zh_TW
dc.subject文字探勘zh_TW
dc.subject聯準會zh_TW
dc.subjectFeden
dc.subjectText Miningen
dc.subjectMachine Learningen
dc.subjectBeige Booken
dc.subjectMonetary Policyen
dc.title利用褐皮書預測美國聯準會升降息決策zh_TW
dc.titleUse Beige Book to Predict FOMC Monetary Policyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor莊文議(Wen-I Chuang)
dc.contributor.oralexamcommittee盧佳琪(Chia-Chi Lu),蔡芸琤(Yun-Cheng Tsai)
dc.subject.keyword聯準會,利率決策,褐皮書,機器學習,文字探勘,zh_TW
dc.subject.keywordFed,Monetary Policy,Beige Book,Machine Learning,Text Mining,en
dc.relation.page20
dc.identifier.doi10.6342/NTU202001105
dc.rights.note未授權
dc.date.accepted2020-06-23
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
U0001-2206202017122900.pdf
  未授權公開取用
1.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved