Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor石百達(Pai-Ta Shih)
dc.contributor.authorYuan-Peng Tsengen
dc.contributor.author曾院朋zh_TW
dc.date.accessioned2021-06-07T17:33:19Z-
dc.date.copyright2020-07-21
dc.date.issued2020
dc.date.submitted2020-06-30
dc.identifier.citation[1] An B., A. Ang, T.G. Bali and N. Cakici. 2014. The joint cross section of stocks and options. Journal of Finance 69, 2279-2337.
[2] Allaudeen H. and G. Mujtaba Mian. 2015. Industries and Stock Return Reversals. Journal of Financial and Quantitative Analysis 50, 89-117
[3] Pan J. and A. Poteshman. 2006. The information in option volume for future stock prices. Review of Financial Studies 19, 871-908.
[4] Ge L., T.-C. Lin and N. Pearson. 2016. Why does the option to stock volume ratio predict stock returns? Journal of Financial Economics 120, 601-622.
[5] Cremers M. and D. Weinbaum. 2010. Deviations from put-call parity and stock return predictability. Journal of Financial and Quantitative Analysis 45, 335-367.
[6] Jegadeesh N. and S.Titman. 1993. Returns to buying winners and selling losers: implications for stock market efficiency. Journal of Finance 48, 65-91.
[7] Ming-Shiun P., Kartono L. and Gow-Cheng H. 2004. Industry momentum strategies and autocorrelations in stock returns. Journal of Empirical Finance 11, 185–202
[8] Roll R., E. Schwartz and A. Subrahmanyam. 2010. O/S: The relative trading activity in options and stock. Journal of Financial Economics 96, 1-17.
[9] Bali T.G. and A. Hovakimian. 2009. Volatility spreads and expected stock returns. Management Science 55, 1797-1812.
[10] Johson T.L. and E.C. So. 2012. The option to stock volume ratio and future returns. Journal of Financial Economics 106, 262-286.
[11] Xing Y., X. Zhang and R. Zhao. 2010. What does the individual option volatility smirk tell us about future equity returns? Journal of Financial and Quantitative Analysis 45, 641-662.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15364-
dc.description.abstract本論文以波動度偏離為基礎建立股票買賣的周策略,本文先驗證該策略的確能帶來超額報酬,再進一步提出使用產業分類方法來增進策略表現,最後計算不同策略條件在樣本時間的報酬表現。實作結果發現,波動度偏離策略本身的確具有一定預測力,根據波動度偏離分出的好壞分類兩群的報酬差距顯著異於零。如果使用減去產業平均的調整方法減去產業特性影響,可以使報酬提升,同時波動度顯著下降,而且此策略報酬並不能被Fama–French 三因子所解釋;若將此策略拉到產業層面,使用平均波動度偏離挑選產業,這時策略的報酬雖然會明顯提升,但卻伴隨著更高的波動度。zh_TW
dc.description.abstractThis thesis establishes a weekly strategy for stock trading based on volatility skewness. I first verify that the strategy can bring excess returns, and then further proposes to use industry classification to improve the performance. Finally, I calculate the performance of different strategic conditions at the sample time. The results of practice show that the volatility skewness strategy itself has a certain predictive power, and the difference between the rewards of the two extreme groups is significantly different from zero. If one uses the adjustment method, subtraction the industry average from individual skewness, to neutralize the influence of industry characteristics, one can increase the return and reduce the volatility significantly. In addition, the return of this strategy cannot be explained by the Fama – French three-factor model. However, it is not so effective to put this strategy on the industry level and use the industry-average volatility skewness to filter industries. Although returns from filtering industries will increase significantly, it is accompanied by much higher volatility.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:33:19Z (GMT). No. of bitstreams: 1
U0001-2506202020534700.pdf: 927006 bytes, checksum: 31c1e4f0d711c7371e6bb187673beb24 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 III
ABSTRACT IV
第一章 前言 1
第二章 資料介紹 3
2.1 股票資料 3
2.2 波動度資料 3
2.3 產業資料 4
第三章 模型探討 5
3.1 策略表現 5
3.2 參數分析 6
3.3 產業曝險 8
第四章 產業調整 11
4.1 產業中和 11
4.2 產業篩選 15
第五章 結論 17
參考文獻 18
dc.language.isozh-TW
dc.title產業與波動度偏離對股價報酬的影響zh_TW
dc.titleIndustries and Skewness in Stock Returnsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor張景宏(Ching-Hung Chang)
dc.contributor.oralexamcommittee盧佳琪(Chia-Chi Lu)
dc.subject.keywordNULLen
dc.relation.page18
dc.identifier.doi10.6342/NTU202001153
dc.rights.note未授權
dc.date.accepted2020-07-01
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
U0001-2506202020534700.pdf
  未授權公開取用
905.28 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved