Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15360
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張茂山(Mau-Sun Chang)
dc.contributor.authorJhen-jia Fanen
dc.contributor.author范振家zh_TW
dc.date.accessioned2021-06-07T17:33:16Z-
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-10
dc.identifier.citation[1]. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
[2]. Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8(12):5574-5576.
[3]. Christofori G. New signals from the invasive front. Nature. 2006;441(7092):444-50.
[4]. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679-95.
[5]. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895-904.
[6]. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1-2):43-73.
[7]. Zeeshan R, Mutahir Z. Cancer metastasis - tricks of the trade. Bosn J Basic Med Sci. 2017;17(3):172-182.
[8]. Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016;43:7-13.
[9]. Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019;29(3):212-226.
[10]. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-96.
[11]. Tobar N, Villar V, Santibanez JF. ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem. 2010;340(1-2):195-202.
[12]. Lam CR, Tan C, Teo Z, Tay CY, Phua T, Wu YL, Cai PQ, Tan LP, Chen X, Zhu P, Tan NS. Loss of TAK1 increases cell traction force in a ROS-dependent manner to drive epithelial-mesenchymal transition of cancer cells. Cell Death Dis. 2013;4:e848.
[13]. Y. Matsuno, M. Matsuyama, T. Kiwamoto, Y. Morishima, Y. Ishii, N. Hizawa. ROS-Nrf2 Pathway Mediates the Development of TGF-b1-Induced Epithelial-Mesenchymal Transition Through the Interaction with Notch Signaling. Am J Respir Crit Care Med. 2018;197:A3805
[14]. Wang C1, Shao L, Pan C, Ye J, Ding Z, Wu J, Du Q, Ren Y, Zhu C. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res Ther. 2019;10(1):175.
[15]. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules. 2019;9(11).
[16]. Liao Z, Chua D, Tan NS. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer. 2019;18(1):65.
[17]. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1-13.
[18]. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245-313.
[19]. Martínez-Cayuela M. Oxygen free radicals and human disease. Biochimie. 1995;77(3):147-61.
[20]. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules. 2019;9(11).pii: E735.
[21]. Saikolappan S, Kumar B, Shishodia G, Koul S, Koul HK. Reactive oxygen species and cancer: A complex interaction. Cancer Lett. 2019;452:132-143.
[22]. Kim YS, Gupta Vallur P, Phaëton R, Mythreye K, Hempel N. Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel). 2017;6(4). pii: E86.
[23]. Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem. 2011;11(2):191-201.
[24]. Oberley LW, Oberley TD. The role of superoxide dismutase and gene amplification in carcinogenesis. J Theor Biol. 1984;106(3):403-22.
[25]. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A. 1993;90(7):3113-7.
[26]. Li JJ, Oberley LW, St Clair DK, Ridnour LA, Oberley TD. Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene. 1995;10(10):1989-2000.
[27]. Zhong W, Oberley LW, Oberley TD, St Clair DK. Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene. 1997;14(4):481-90.
[28]. Weydert C, Roling B, Liu J, Hinkhouse MM, Ritchie JM, Oberley LW, Cullen JJ. Suppression of the malignant phenotype in human pancreatic cancer cells by the overexpression of manganese superoxide dismutase. Mol Cancer Ther. 2003;2(4):361-9.
[29]. Huang Y, He T, Domann FE. Decreased expression of manganese superoxide dismutase in transformed cells is associated with increased cytosine methylation of the SOD2 gene. DNA Cell Biol. 1999;18(8):643-52.
[30]. Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal. 2009;11(12):2985-3011.
[31]. Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal. 2014;20(10):1618-27.
[32]. Kamarajugadda S, Cai Q, Chen H, Nayak S, Zhu J, He M, Jin Y, Zhang Y, Ai L, Martin SS, Tan M, Lu J. Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis. 2013;4:e504.
[33]. Connor KM, Hempel N, Nelson KK, Dabiri G, Gamarra A, Belarmino J, Van De Water L, Mian BM, Melendez JA. Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res. 2007;67(21):10260-7.
[34]. Chung-man Ho J, Zheng S, Comhair SA, Farver C, Erzurum SC. Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res. 2001;61(23):8578-85.
[35]. Miar A, Hevia D, Muñoz-Cimadevilla H, Astudillo A, Velasco J, Sainz RM, Mayo JC. Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer. Free Radic Biol Med. 2015;85:45-55.
[36]. Hempel N, Ye H, Abessi B, Mian B, Melendez JA. Altered redox status accompanies progression to metastatic human bladder cancer. Free Radic Biol Med. 2009;46(1):42-50.
[37]. Chang B, Yang H, Jiao Y, Wang K, Liu Z, Wu P, Li S, Wang A. SOD2 deregulation enhances migration, invasion and has poor prognosis in salivary adenoid cystic carcinoma. Sci Rep. 2016;6:25918.
[38]. Hemachandra LP, Shin DH, Dier U, Iuliano JN, Engelberth SA, Uusitalo LM, Murphy SK, Hempel N. Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma. Cancer Res. 2015;75(22):4973-84.
[39]. Liu Z, Li S, Cai Y, Wang A, He Q, Zheng C, Zhao T, Ding X, Zhou X. Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2-dependent Snail signaling. Free Radic Biol Med. 2012;53(1):44-50.
[40]. Chen PM, Wu TC, Shieh SH, Wu YH, Li MC, Sheu GT, Cheng YW, Chen CY, Lee H. MnSOD promotes tumor invasion via upregulation of FoxM1-MMP2 axis and related with poor survival and relapse in lung adenocarcinomas. Mol Cancer Res. 2013;11(3):261-71.
[41]. Malafa M, Margenthaler J, Webb B, Neitzel L, Christophersen M. MnSOD expression is increased in metastatic gastric cancer. J Surg Res. 2000;88(2):130-4..
[42]. Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res. 2011;71(21):6684-95.
[43]. Kinugasa H, Whelan KA, Tanaka K, Natsuizaka M, Long A, Guo A, Chang S, Kagawa S, Srinivasan S, Guha M, Yamamoto K, St Clair DK, Avadhani NG, Diehl JA, Nakagawa H. Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression. Oncogene. 2015;34(41):5229-39.
[44]. Chen PM, Wu TC, Wang YC, Cheng YW, Sheu GT, Chen CY, Lee H. Activation of NF-κB by SOD2 promotes the aggressiveness of lung adenocarcinoma by modulating NKX2-1-mediated IKKβ expression. Carcinogenesis. 2013;34(11):2655-63.
[45]. Che M, Wang R, Li X, Wang HY, Zheng XFS. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today. 2016;21(1):143-149.
[46]. Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci. 2020;6:160.
[47]. Nasser MW, Elbaz M, Ahirwar DK, Ganju RK. Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Lett. 2015;365(1):11-22.
[48]. Elíes J, Yáñez M, Pereira TMC, Gil-Longo J, MacDougall DA, Campos-Toimil M. An Update to Calcium Binding Proteins. Adv Exp Med Biol. 2020;1131:183-213.
[49]. Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020;1867(6):118677.
[50]. Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. Biochim Biophys Acta Mol Cell Res. 2019 Jul;1866(7):1197-1206.
[51]. Jia J, Duan Q, Guo J, Zheng Y. Psoriasin, a multifunctional player in different diseases. Curr Protein Pept Sci. 2014;15(8):836-42.
[52]. Madsen P, Rasmussen HH, Leffers H, Honoré B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B. Molecular cloning, occurrence, and expression of a novel partially secreted protein 'psoriasin' that is highly up-regulated in psoriatic skin. J Invest Dermatol. 1991;97(4):701-12.
[53]. Kesting MR, Sudhoff H, Hasler RJ, Nieberler M, Pautke C, Wolff KD, Wagenpfeil S, Al-Benna S, Jacobsen F, Steinstraesser L. Psoriasin (S100A7) up-regulation in oral squamous cell carcinoma and its relation to clinicopathologic features. Oral Oncol. 2009;45(8):731-6.
[54]. Tiveron RC, de Freitas LC, Figueiredo DL, Serafini LN, Mamede RC, Zago MA. Expression of calcium binding protein S100 A7 (psoriasin) in laryngeal carcinoma. Braz J Otorhinolaryngol. 2012;78(4):59-65
[55]. Tripathi SC, Matta A, Kaur J, Grigull J, Chauhan SS, Thakar A, Shukla NK, Duggal R, DattaGupta S, Ralhan R, Siu KW. Nuclear S100A7 is associated with poor prognosis in head and neck cancer. PLoS One. 2010;5(8):e11939.
[56]. Liu G, Wu Q, Liu G, Song X, Zhang J. Knockdown of S100A7 reduces lung squamous cell carcinoma cell growth in vitro and in vivo. Int J Clin Exp Pathol. 2014;7(11):8279-89.
[57]. Wang R, Li Y1, Hu E, Kong F, Wang J, Liu J, Shao Q, Hao Y, He D, Xiao X. S100A7 promotes lung adenocarcinoma to squamous carcinoma transdifferentiation, and its expression is differentially regulated by the Hippo-YAP pathway in lung cancer cells. Oncotarget. 2017;8(15):24804-24814.
[58]. Liu H, Wang L, Wang X, Cao Z, Yang Q, Zhang K. S100A7 enhances invasion of human breast cancer MDA-MB-468 cells through activation of nuclear factor-κB signaling. World J Surg Oncol. 2013;11:93.
[59]. Emberley ED, Niu Y, Njue C, Kliewer EV, Murphy LC, Watson PH. Psoriasin (S100A7) expression is associated with poor outcome in estrogen receptor-negative invasive breast cancer. Clin Cancer Res. 2003;9(7):2627-31.
[60]. Liu Y, Bunston C, Hodson N, Resaul J, Sun PH, Cai S, Chen G, Gu Y, Satherley LK, Bosanquet DC, Al-Sarireh B, Tian X, Hao C, Jiang WG, Ye L. Psoriasin promotes invasion, aggregation and survival of pancreatic cancer cells; association with disease progression. Int J Oncol. 2017;50(5):1491-1500.
[61]. Kataoka K, Ono T, Murata H, Morishita M, Yamamoto KI, Sakaguchi M, Huh NH. S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products. Oncol Lett. 2012;3(5):1149-1153.
[62]. Ye L, Sun PH, Martin TA, Sanders AJ, Mason MD, Jiang WG. Psoriasin (S100A7) is a positive regulator of survival and invasion of prostate cancer cells. Urol Oncol. 2013;31(8):1576-83.
[63]. Celis JE, Rasmussen HH, Vorum H, Madsen P, Honoré B, Wolf H, Orntoft TF. Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. J Urol. 1996;155(6):2105-12.
[64]. Lin M, Xia B, Qin L, Chen H, Lou G. S100A7 Regulates Ovarian Cancer Cell Metastasis and Chemoresistance Through MAPK Signaling and Is Targeted by miR-330-5p. DNA Cell Biol. 2018;37(5):491-500.
[65]. Tian T, Li X, Hua Z, Ma J, Wu X, Liu Z, Chen H, Cui Z. S100A7 promotes the migration, invasion and metastasis of human cervical cancer cells through epithelial-mesenchymal transition. Oncotarget. 2017;8(15):24964-24977.
[66]. Moubayed N, Weichenthal M, Harder J, Wandel E, Sticherling M, Gläser R. Psoriasin (S100A7) is significantly up-regulated in human epithelial skin tumours. J Cancer Res Clin Oncol. 2007;133(4):253-61.
[67]. Alowami S, Qing G, Emberley E, Snell L, Watson PH. Psoriasin (S100A7) expression is altered during skin tumorigenesis. BMC Dermatol. 2003;3:1.
[68]. Padilla L, Dakhel S, Adan J, Masa M, Martinez JM, Roque L, Coll T, Hervas R, Calvis C, Llinas L, Buenestado S, Castellsague J, Messeguer R, Mitjans F, Hernandez JL. S100A7: from mechanism to cancer therapy. Oncogene. 2017;36(49):6749-6761.
[69]. Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC, Watson PH. Psoriasin interacts with Jab1 and influences breast cancer progression. Cancer Res. 2003;63(8):1954-61.
[70]. Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN, Gibson SB, Murphy LC, Watson PH. The S100A7-c-Jun activation domain binding protein 1 pathway enhances prosurvival pathways in breast cancer. Cancer Res. 2005;65(13):5696-702.
[71]. Nasser MW, Wani NA, Ahirwar DK, Powell CA, Ravi J, Elbaz M, Zhao H, Padilla L, Zhang X, Shilo K, Ostrowski M, Shapiro C, Carson WE 3rd, Ganju RK. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment. Cancer Res. 2015;75(6):974-85.
[72]. Li Y, Kong F, Wang J, Hu E, Wang R, Liu J, Xiao Q, Zhang W, He D1, Xiao X. S100A7 induction is repressed by YAP via the Hippo pathway in A431 cells. Oncotarget. 2016;7(25):38133-38142.
[73]. West NR, Watson PH. S100A7 (psoriasin) is induced by the proinflammatory cytokines oncostatin-M and interleukin-6 in human breast cancer. Oncogene. 2010;29(14):2083-92.
[74]. Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, Limame R, Mestdagh P, Vandesompele J, Vanhove C, Maynard D, Lehuédé C, Muller C, Valet P, Gespach CP, Bracke M, Cocquyt V, Denys H, De Wever O. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 2014;74(23):6806-19.
[75]. Simanski M, Rademacher F, Schröder L, Schumacher HM, Gläser R, Harder J. IL-17A and IFN-γ synergistically induce RNase 7 expression via STAT3 in primary keratinocytes. PLoS One. 2013;8(3):e59531.
[76]. Lee H, Ryu WI, Kim HJ, Bae HC, Ryu HJ, Shin JJ, Song KH, Kim TW, Son SW. TSLP Down-Regulates S100A7 and ß-Defensin 2 Via the JAK2/STAT3-Dependent Mechanism. J Invest Dermatol. 2016;136(12):2427-2435.
[77]. Kandaswami CC, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT. The antitumor activities of flavonoids. In Vivo. 2005;19(5):895-909.
[78]. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients. 2020;12(2). pii: E457.
[79]. Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, Gondal TA, Mubarak MS. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother. 2019;112:108612.
[80]. Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS. Anticancer potential of quercetin: A comprehensive review. Phytother Res. 2018;32(11):2109-2130.
[81]. Lee LT, Huang YT, Hwang JJ, Lee AY, Ke FC, Huang CJ, Kandaswami CC, Lee PP, Lee MT. Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol. 2004;67(11):2103-14.
[82]. Huang YT, Lee LT, Lee PP, Lin YS, Lee MT. Targeting of focal adhesion kinase by flavonoids and small-interfering RNAs reduces tumor cell migration ability. Anticancer Res. 2005;25(3B):2017-25.
[83]. Tsai PH, Cheng CH, Lin CY, Huang YT, Lee LT, Kandaswami CC, Lin YC, Lee KP, Hung CC, Hwang JJ, Ke FC, Chang GD, Lee MT. Dietary Flavonoids Luteolin and Quercetin Suppressed Cancer Stem Cell Properties and Metastatic Potential of Isolated Prostate Cancer Cells. Anticancer Res. 2016;36(12):6367-6380.
[84]. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami CC, Middleton E Jr, Lee MT. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol. 1999;128(5):999-1010.
[85]. Chen SH, Lin CY, Lee LT, Chang GD, Lee PP, Hung CC, Kao WT, Tsai PH, Schally AV, Hwang JJ, Lee MT. Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Res. 2010;30(10):4177-86.
[86]. Lin CY, Tsai PH, Kandaswami CC, Chang GD, Cheng CH, Huang CJ, Lee PP, Hwang JJ, Lee MT. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells. Mol Cancer. 2011;10:87.
[87]. Kao WT, Lin CY, Lee LT, Lee PP, Hung CC, Lin YS, Chen SH, Ke FC, Hwang JJ, Lee MT. Investigation of MMP-2 and -9 in a highly invasive A431 tumor cell sub-line selected from a Boyden chamber assay. Anticancer Res. 2008;28(4B):2109-20.
[88]. Yokoyama K1, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, Hosokawa H, Nagayama M. Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol. 2003;22(4):891-8.
[89]. Lin CY, Tsai PH, Kandaswami CC, Lee PP, Huang CJ, Hwang JJ, Lee MT. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer Sci. 2011;102(4):815-27.
[90]. Lin YS, Tsai PH, Kandaswami CC, Cheng CH, Ke FC, Lee PP, Hwang JJ, Lee MT. Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells. Cancer Sci. 2011;102(10):1829-39.
[91]. Lin YC, Tsai PH, Lin CY, Cheng CH, Lin TH, Lee KP, Huang KY, Chen SH, Hwang JJ, Kandaswami CC, Lee MT. Impact of flavonoids on matrix metalloproteinase secretion and invadopodia formation in highly invasive A431-III cancer cells. PLoS One. 2013;8(8):e71903.
[92]. Lin TH, Hsu WH, Tsai PH, Huang YT, Lin CW, Chen KC, Tsai IH, Kandaswami CC, Huang CJ, Chang GD, Lee MT, Cheng CH. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct. 2017;8(4):1558-1568.
[93]. Lin CW, Lai GM, Chen KC, Lin TH, Fan JJ, Hsu RL, Chou CM, Lin CM, Kandaswami CC, Lee MT, Cheng CH. RPS12 increases the invasiveness in cervical cancer activated by c-Myc and inhibited by the dietary flavonoids luteolin and quercetin. J Funct Foods. 2015;19(A): 236-247.
[94]. Chen KC, Hsu WH, Ho JY, Lin CW, Chu CY, Kandaswami CC, Lee MT, Cheng CH. Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J Food Drug Anal. 2018;26(3):1180-1191.
[95]. Jiang Ren, Sijia Liu, Chao Cui, Peter Ten Dijke. Invasive Behavior of Human Breast Cancer Cells in Embryonic Zebrafish. J Vis Exp. 2017;(122):55459.
[96]. Utpal K Mukhopadhyay, Patrick Mooney, Lilly Jia, Robert Eves, Leda Raptis, Alan S Mak. Doubles Game: Src-Stat3 Versus p53-PTEN in Cellular Migration and Invasion. Mol Cell Biol. 2010;30(21):4980-95.
[97]. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol. 1998;18(5):2545-52.
[98]. Venkatesan B, Mahimainathan L, Das F, Ghosh-Choudhury N, Ghosh Choudhury G. Downregulation of catalase by reactive oxygen species via PI3 kinase/Akt signaling in mesangial cells. J Cell Physiol. 2007;211(2):457-67.
[99]. Liu Z, He Q, Ding X, Zhao T, Zhao L, Wang A. SOD2 is a C-myc target gene that promotes the migration and invasion of tongue squamous cell carcinoma involving cancer stem-like cells. Int J Biochem Cell Biol. 2015;60:139-46.
[100]. Leung HW, Kuo CL, Yang WH, Lin CH, Lee HZ. Antioxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis. Eur J Pharmacol. 2006;534(1-3):12-8.
[101]. Kang KA, Piao MJ, Ryu Y, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, Hyun JW. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol. 2017;51(4):1169-1178.
[102]. Röhrdanz E, Bittner A, Tran-Thi QH, Kahl R. The effect of quercetin on the mRNA expression of different antioxidant enzymes in hepatoma cells. Arch Toxicol. 2003;77(9):506-10.
[103]. Ali H, Dixit S. Quercetin attenuates the development of 7, 12-dimethyl benz (a) anthracene (DMBA) and croton oil-induced skin cancer in mice. J Biomed Res. 2015;29(2):139-44.
[104]. Masraksa W, Tanasawet S, Hutamekalin P, Wongtawatchai T, Sukketsiri W. Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway. Nutr Res Pract. 2020;14(2):127-133.
[105]. Dong Y, Yang J, Yang L, Li P. Quercetin Inhibits the Proliferation and Metastasis of Human Non-Small Cell Lung Cancer Cell Line: The Key Role of Src-Mediated Fibroblast Growth Factor-Inducible 14 (Fn14)/ Nuclear Factor kappa B (NF-κB) pathway. Med Sci Monit. 2020;26:e920537.
[106]. Ian Krop, Annette März, Hanna Carlsson, Xiaochun Li, Noga Bloushtain-Qimron, Min Hu, Rebecca Gelman, Michael S Sabel, Stuart Schnitt, Sridhar Ramaswamy, Celina G Kleer, Charlotta Enerbäck, Kornelia Polyak. A Putative Role for Psoriasin in Breast Tumor Progression. Cancer Res. 2005;65(24):11326-34.
[107]. Emman Shubbar, Jenny Vegfors, Maria Carlström, Stina Petersson, Charlotta Enerbäck. Psoriasin (S100A7) Increases the Expression of ROS and VEGF and Acts Through RAGE to Promote Endothelial Cell Proliferation. Breast Cancer Res Treat. 2012;134(1):71-80.
[108]. J Vegfor , A-K Ekman, S W Stoll, C Bivik Eding, C Enerbäck. Psoriasin (S100A7) Promotes Stress-Induced Angiogenesis. Br J Dermatol. 2016;175(6):1263-1273.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15360-
dc.description.abstract癌細胞從人體原發處擴散到他處組織或器官的惡性轉移一直是促成癌症病人死亡率居高不下的常見主因。上皮間質轉化(Epithelial-mesenchymal transition, EMT)是癌細胞後續得發展惡性轉移的重要且必須的環節之一。最近的研究發現氧化壓力的刺激不僅調節癌細胞的生長與增殖,在癌細胞的上皮間質轉化過程中亦扮演著重要的調節角色,而癌細胞亦可在不同階段與時期選擇性調控不同抗氧化物酶,以因應其所遭受到的氧化壓力,促進上皮間質轉化過程並使其獲得具有或更強的侵襲能力,這也使得這些抗氧化物酶非可單純歸類視為腫瘤抑制或致癌蛋白質,從而取決癌細胞正處於何種發展階段。在不同組織的癌細胞與臨床腫瘤樣本中可發現具有高度表現量的牛皮癬素(Psoriasin),並促使不同組織的癌細胞獲得較強的遷移及侵襲能力,有助於參與癌症的惡性轉移。相較於牛皮癬素所調控的下游其他蛋白質訊息傳遞路徑而強化癌細胞的侵襲能力,其所受到的上游調控分子機制較不明朗。類黃酮(flavonoids)廣泛並豐富存在於各種植物體及其相關食品中,透過參與細胞中各種不同的分子訊息傳遞路徑,類黃酮可對癌細胞於癌症進展中起多重抑制作用,顯著的展現其有效的抗癌活性,包括對上皮間質轉化及細胞侵襲能力的抑制影響,然而類黃酮所參與的相關分子訊息傳遞路徑相當廣泛且複雜,仍需待更多的研究揭露之,以有助於發展相關癌症的預防或治療方法。本研究分為二部分探討木犀草素(luteolin) 和槲皮素 (quercetin)等兩種類黃酮類,透過不同方式對抑制上皮間質轉化相關的A431子宮頸癌細胞之癌遷移和侵襲的影響。
在本研究的第一部分中,發現具有不同侵襲能力的A431子宮頸癌細胞可選擇性調控錳超氧化物歧化酶(Manganese superoxide dismutase, MnSOD)及過氧化氫酶(Catalase)的表現及活性,而使其具有不同的過氧化氫的含量並與癌細胞侵襲能力具有正向關聯。抑制錳超氧化物歧化酶所增加癌細胞內過氧化氫(H2O2)的氧化壓力及相關基質金屬蛋白酶(Matrix metalloproteinas)的表現及活性可強化癌細胞的細胞遷移及侵襲能力,然而活性氧物質抑制物N-acetyl-L-cysteine (NAC) 及 diphenyleneiodonium (DPI) 可降低抑制錳超氧化物歧化酶所增加癌細胞內過氧化氫的氧化壓力並進而顯著反轉其所造成癌細胞的細胞遷移及侵襲能力。木犀草素和槲皮素可正向調控具有高侵襲能力癌細胞內的過氧化氫酶表現量而顯著降低原有的高含量過氧化氫。本研究的第一部份結果顯示癌細胞的侵襲能力不僅受不同表現量的抗氧化酶所導致的氧化壓力正向調控外,也可受到抑制錳超氧化物歧化酶而造成細胞內氧化還原失衡所影響。另外,類黃酮類可透過正向調控過氧化氫酶的表現量而降低癌細胞內的過氧化氫含量進而達成其抗癌的活性。在本研究的第二部分中,發現在具高侵襲能力的A431子宮頸癌細胞株有較高表現量的牛皮癬素,並同時伴有較高Src及Signal transducer and activator of transcription 3 (Stat 3)蛋白質磷酸化現象,而亦發現Stat3蛋白質可正向調控牛皮癬素的核糖核酸轉錄活性。然而Src及Stat3蛋白質的化學抑制物SU6656 及 S3I-201可顯著降低牛皮癬素表現量,且同時使具高侵襲能力的A431子宮頸癌細胞株降低原有的高侵襲能力。在木犀草素與槲皮素等類黃酮處理下,發現癌細胞內的Src及Stat3蛋白質磷酸化現象及牛皮癬素表現量有所降低,且牛皮癬素的核糖核酸轉錄活性亦受到抑制。另亦發現木犀草素與槲皮素與SU6656 及 S3I-201相同,皆可降低A431子宮頸癌細胞株原有的高侵襲能力並調控有關上皮間質轉化相關的蛋白質,以抑制上皮間質轉化過程。透過人為調控牛皮癬素的表現量,發現牛皮癬素可調控有關上皮間質轉化相關的蛋白質,以促使癌細胞的上皮間質轉化過程。另亦透過癌細胞異種移植斑馬魚模式動物實驗,更進一步證明木犀草素與槲皮素等類黃酮可經由Src/Stat3訊息傳遞路徑抑制癌細胞的惡性轉移能力。
透過本研究可瞭解子宮頸癌細胞藉由選擇性調控抗氧化物酶及活化Src/Stat3訊息傳遞路徑分別正向影響癌細胞內過氧化氫的氧化壓力及牛皮癬素的表現量,促使子宮頸癌細胞進行上皮間質轉化及提升侵襲能力與後續惡性轉移,然而木犀草素與槲皮素可有效阻斷其機制並發揮類黃酮的抑癌功效,將有助於為癌症研究及發展與類黃酮相關藥物上提供癌症治療的新策略。
zh_TW
dc.description.abstractMalignant metastasis from the occurred place originally to disperse to another tissues or organs is always the major reason commonly to result in high mortality of patients suffering cancers globally. Epithelial-mesenchymal transition (EMT) is the one of crucial links for metastasis to make the cancer cells gain the migratory ability and invasive potential. Oxidative stress not only affects the growth and proliferation of cancer cells, but also plays important role in regulating EMT. Various antioxidant enzymes in different stages of cancer development could be controlled selectively by cancer cells to response the suffered oxidative stress and promote EMT. Depending on the role in the developmental stage of cancer, those enzymes could not simply be considered as tumor suppressors or oncogenes. The upregulated expression of psoriasin (S100A7) has been found in cancer cells and tumor specimens clinically from different tissues, and correlated with resulting in cancer cells with higher capability of migration and invasion for metastatic promotion. However, there is little known about the upstream regulation of S100A7 compared with the downstream regulations by S100A7. Enriched flavonoids in various plants and related foods and involving in different and complicated signaling pathway broadly in cancers show their multiple antitumor activities significantly including EMT and invasive potential of cancer cells, but many mechanisms correlated with the effect of flavonoids are still to elucidate further to develop the effective ways for cancer-related prevention and therapies. This research was divided into two parts to study the inhibitory effect of the two flavonoids, luteolin and quercetin, on the EMT-correlated migration and invasion through different ways in A431 cervical cancer cell line.
In the first part, A431 cells with different potential of invasion have been found the different content of hydrogen peroxide to correlate with the invasive potential positively through the selective regulation in the expression and activities of manganese superoxide dismutase (MnSOD) and catalase. Increased content of hydrogen peroxide and upregulation of matrix metalloproteinases (MMPs) resulted from MnSOD knockdown facilitated the migratory ability and invasive potential of A431 cells. But ROS inhibitors, N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI) relieved the MnSOD knockdown-induced augmentation of hydrogen peroxide to reverse significantly these aggressive phenotypes of A431 cells. Moreover, luteolin and quercetin were found to upregulate catalase expression to further decrease significantly the high content of hydrogen peroxide in A431 cells with higher invasive potential. The results in the first part showed the invasive potential of cervical cancer cells was affected positively not only by oxidative stress resulted from differential expression of antioxidant enzymes, but also by redox imbalance resulted from MnSOD knockdown; moreover, flavonoids relieved the oxidative stress through regulation of catalase expression to exhibit their anticancer activities. In the second part, A431 cells with higher invasive potential exhibited S100A7 upregulation accompanied with higher phosphorylation of Src and Signal transducer and activator of transcription 3 (Stat3) proteins. Moreover, the transactivation activity of S100A7 was also found to be regulated positively by Stat3 transcription factor, but S100A7 was significantly decreased by the SU6656 and S3I-201, the chemical inhibitors of Src and Stat3 protein, respectively. S100A7 downregulation correlated with decrease of aggressive potential and reduction of EMT-related proteins were found simultaneously in the A431 cell treated with SU6656 or S3I-201. The lower phosphorylation of Src and Stat3 accompanied with decreased expression and transactivation activity of S100A7 were also observed in the A431 cells treated with luteolin and quercetin. In the same as the chemical inhibitors of Src and Stat3 protein, both luteolin and quercetin decreased the invasive potential and EMT process through regulation of the proteins involving in EMT. Knockdown and overexpression of S100A7 was also suggested to regulate EMT-related proteins to promote EMT. Furthermore, both luteolin and quercetin were demonstrated to suppress the malignant metastasis in vivo through Src/Stat3/S100A7 signaling using the zebrafish xenograft. The results in the second part showed S100A7 could be regulated positively by Src/Stat3 signaling to further promote the EMT process and invasive potential of A431 cancer cells. In addition, flavonoids inhibited the aggression and metastasis of cervical cancer cells in vivo to display their antitumor functions via regulation of Src/Stat3/S100A7 signaling negatively.
This study revealed oxidative stress and S100A7 expression could be regulated by selectively control of antioxidant enzymes and activation of Src/Stat3 signaling, respectively to facilitate EMT and further metastasis of cervical cancer cells. Conversely, both luteolin and quercetin suppressed these molecular mechanisms effectively to highlight their multiple and pleiotropic anticancer activities and helpfully provide new strategies to advance cancer researches and develop new drugs correlated with flavonoids.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:33:16Z (GMT). No. of bitstreams: 1
U0001-2606202017165200.pdf: 4055530 bytes, checksum: a6080bce2772f2f9a591430f95e73bdf (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ i
Abstract‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ iii
Contents‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ v
Introduction‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1
Materials and Methods‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 12
Results‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 22
Discussion‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 34
References‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 41
Figures‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 48
dc.language.isoen
dc.subjectS100A7zh_TW
dc.subject癌症zh_TW
dc.subject惡性轉移zh_TW
dc.subject上皮間質轉化zh_TW
dc.subject槲皮素zh_TW
dc.subject木犀草素zh_TW
dc.subject類黃酮zh_TW
dc.subject氧化壓力zh_TW
dc.subject活性氧物質zh_TW
dc.subject過氧化氫zh_TW
dc.subject錳超氧化物歧化酶zh_TW
dc.subject牛皮癬素zh_TW
dc.subjectSrc/Stat3訊息傳遞路徑zh_TW
dc.subjectmetastasisen
dc.subjectquercetinen
dc.subjectmanganese-dependent superoxide dismutase (MnSOD)en
dc.subjectcatalaseen
dc.subjectS100A7en
dc.subjectReactive oxygen species (ROS)en
dc.subjectSrc/Stat3 signalingen
dc.subjectflavonoidsen
dc.subjectmalignanceen
dc.subjectcanceren
dc.subjectluteolinen
dc.subjectepithelial-mesenchymal transition (EMT)en
dc.title膳食類黃酮木犀草素與槲皮素調控氧化還原恆定性與抑制A431癌細胞侵襲能力之探討zh_TW
dc.titleStudying the effect of dietary flavonoids luteolin and quercetin on regulation of the redox homeostasis and inhibition of the cell motility in A431 cellsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-7982-5106
dc.contributor.oralexamcommittee張震東(Geen-Dong Chang),李明學(Ming-Shyue Lee),周志銘(Chih-Ming Chou),李崑豪(Kuen-Haur Lee)
dc.subject.keyword氧化壓力,活性氧物質,過氧化氫,錳超氧化物歧化酶,牛皮癬素,S100A7,Src/Stat3訊息傳遞路徑,類黃酮,木犀草素,槲皮素,上皮間質轉化,惡性轉移,癌症,zh_TW
dc.subject.keywordReactive oxygen species (ROS),catalase,manganese-dependent superoxide dismutase (MnSOD),S100A7,Src/Stat3 signaling,flavonoids,luteolin,quercetin,epithelial-mesenchymal transition (EMT),metastasis,malignance,cancer,en
dc.relation.page60
dc.identifier.doi10.6342/NTU202001157
dc.rights.note未授權
dc.date.accepted2020-07-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2606202017165200.pdf
  未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved