Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15322
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳錫侃(Shyi-Kaan Wu)
dc.contributor.authorChieh Linen
dc.contributor.author林杰zh_TW
dc.date.accessioned2021-06-07T17:32:52Z-
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-06
dc.identifier.citation[1] P. Fili, J. Lausmaa, J. Musialek, K. Mazanec, Structure and surface of TiNi human implants, Biomaterials 22 (2001) 2131-8.
[2] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater Sci. 50(5) (2005) 511-678.
[3] G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J. Van Humbeeck, Surface oxidation of NiTi shape memory alloy, Biomaterials 23(24) (2002) 4863-4871.
[4] P. Rocher, L. El Medawar, J.C. Hornez, M. Traisnel, J. Breme, H.F. Hildebrand, Biocorrosion and cytocompatibility assessment of NiTi shape memory alloys, Scripta Mater. 50(2) (2004) 255-260.
[5] M.C. Chen, S.K. Wu, Surface analyses and biocompatibility study of 500 °C oxidized Ni50Ti50 and Ni40Ti50Cu10 shape memory alloys, Surf. Coat. Technol. 203 (2009) 1715-1721.
[6] T. Yoneyama, S. Miyazaki, Shape Memory Alloys for Biomedical Applications, Elsevier Science, 2008.
[7] L. Lecce, A. Concilio, Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, Butterworth-Heinemann, Oxford, UK, 2014.
[8] L. Wang, L.C. Zhang, Development and Application of Biomedical Titanium Alloys, Bentham Science Publishers, Sharjah, U.A.E, 2018.
[9] G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, 1993.
[10] J.P. Oliveira, R.M. Miranda, F.M. Braz Fernandes, Welding and Joining of NiTi Shape Memory Alloys: A Review, Prog. Mater Sci. 88 (2017) 412-466.
[11] D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards, ASM Handbook Volume 6: Welding, Brazing, and Soldering, ASM International, OH, 1993.
[12] X.M. Qiu, M.G. Li, D.Q. Sun, W.H. Liu, Study on brazing of TiNi shape memory alloy with stainless steels, J. Mater. Process. Technol. 176(1) (2006) 8-12.
[13] C. van der Eijk, Z.K. Sallom, O.M. Akselsen, Microwave brazing of NiTi shape memory alloy with Ag–Ti and Ag–Cu–Ti alloys, Scripta Mater. 58(9) (2008) 779-781.
[14] H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, W.Q. Wang, Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer, Mater. Des. 39 (2012) 285-293.
[15] G.R. Mirshekari, A. Saatchi, A. Kermanpur, S.K. Sadrnezhaad, Laser welding of NiTi shape memory alloy: Comparison of the similar and dissimilar joints to AISI 304 stainless steel, Opt. Laser Technol. 54 (2013) 151-158.
[16] S.J. Lee, S.K. Wu, R.Y. Lin, Infrared joining of TiAl intermetallics using Ti—15Cu—15Ni foil—I. The microstructure morphologies of joint interfaces, Acta Mater. 46(4) (1998) 1283-1295.
[17] R.K. Shiue, S.K. Wu, S.Y. Chen, Infrared brazing of TiAl intermetallic using BAg-8 braze alloy, Acta Mater. 51(7) (2003) 1991-2004.
[18] R.K. Shiue, S.K. Wu, C.H. Chan, Infrared brazing Cu and Ti using a 95Ag-5Al braze alloy, Metall. Mater. Trans. A 35(10) (2004) 3177-3186.
[19] R.K. Shiue, S.K. Wu, J.Y. Shiue, Infrared brazing of Ti–6Al–4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer(s), Mater. Sci. Eng., A 488(1) (2008) 186-194.
[20] R.K. Shiue, C.P. Chen, S.K. Wu, Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers, Metall. Mater. Trans. A 46(6) (2015) 2364-2371.
[21] R.-K. Shiue, S.-K. Wu, S.-H. Yang, C.-K. Liu, Infrared Dissimilar Joining of Ti50Ni50 and 316L Stainless Steel with Copper Barrier Layer in between Two Silver-Based Fillers, Metals 7(7) (2017) 276.
[22] R.H. Shiue, S.K. Wu, Infrared brazing of Ti50Ni50 shape memory alloy using two Ag–Cu–Ti active braze alloys, Intermetallics 14(6) (2006) 630-638.
[23] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218.
[24] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A 35(5) (2004) 1465-1469.
[25] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6(5) (2004) 299-303.
[26] J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A 35(8) (2004) 2533-2536.
[27] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat. 31(6) (2006) 633-648.
[28] M.C. Gao, Progress in High-Entropy Alloys, JOM 65(12) (2013) 1749-1750.
[29] M.-H. Tsai, Physical Properties of High Entropy Alloys, Entropy 15(12) (2013) 5338-5345.
[30] M.C. Gao, Progress in High-Entropy Alloys, JOM 66(10) (2014) 1964-1965.
[31] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett. 2(3) (2014) 107-123.
[32] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater Sci. 61 (2014) 1-93.
[33] H.K.D.H. Bhadeshia, High entropy alloys, Mater. Sci. Technol. 31(10) (2015) 1139-1141.
[34] M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, 2016.
[35] E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev. 61(3) (2016) 183-202.
[36] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.
[37] Y. Shi, B. Yang, P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Metals 7(2) (2017) 43.
[38] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high–temperature properties, J. Alloys Compd. 760 (2018) 15-30.
[39] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res. 33(19) (2018) 3092-3128.
[40] B.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-Entropy Alloys, Elsevier Science,2019.
[41] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61(7) (2013) 2628-2638.
[42] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158.
[43] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61(15) (2013) 5743-5755.
[44] B. Gludovatz, E.P. George, R.O. Ritchie, Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy, JOM 67(10) (2015) 2262-2270.
[45] G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing, J. Alloys Compd. 647 (2015) 548-557.
[46] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131-140.
[47] W. Zhou, L.M. Fu, P. Liu, X.D. Xu, B. Chen, G.Z. Zhu, X.D. Wang, A.D. Shan, M.W. Chen, Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy, Intermetallics 85 (2017) 90-97.
[48] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258-268.
[49] J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, Z.P. Lu, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics 55 (2014) 9-14.
[50] E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi, Scripta Mater. 113 (2016) 106-109.
[51] Y.-C. Huang, C.-S. Tsao, S.-K. Wu, C. Lin, C.-H. Chen, Nano-precipitates in severely deformed and low-temperature aged CoCrFeMnNi high-entropy alloy studied by synchrotron small-angle X-ray scattering, Intermetallics 105 (2019) 146-152.
[52] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater. 112 (2016) 40-52.
[53] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428-441.
[54] W. Huo, H. Zhou, F. Fang, X. Hu, Z. Xie, J. Jiang, Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys, Mater. Sci. Eng. A 689 (2017) 366-369.
[55] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74-78.
[56] W. Huo, F. Fang, H. Zhou, Z. Xie, J. Shang, J. Jiang, Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures, Scripta Mater. 141 (2017) 125-128.
[57] C. Lin, R.K. Shiue, S.K. Wu, H.L. Huang, Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys, Entropy 21(3) (2019) 283.
[58] G. Humpston, D.M. Jacobson, Principles of soldering and brazing, ASM International, Materials Park, OH, 1993.
[59] A. Rabinkin, Brazing with (NiCoCr)–B–Si amorphous brazing filler metals: alloys, processing, joint structure, properties, applications, Sci. Technol. Weld. Joining 9(3) (2004) 181-199.
[60] D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng, A. Hu, Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal, Mater. Lett. 215 (2018) 11-14.
[61] M.F. Montemor, M.G.S. Ferreira, N.E. Hakiki, M. Da Cunha Belo, Chemical composition and electronic structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments, Corros. Sci. 42(9) (2000) 1635-1650.
[62] O. Kozlova, R. Voytovych, M.F. Devismes, N. Eustathopoulos, Wetting and brazing of stainless steels by copper–silver eutectic, Mater. Sci. Eng. A 495(1) (2008) 96-101.
[63] R.K. Shiue, S.K. Wu, C.P. Chen, S.H. Yang, Infrared brazing of Ti50Ni50 shape memory alloy and 316L stainless steel with Au-22Ni-8Pd filler, Gold Bull. 48(1-2) (2015) 57-62.
[64] M.M. Schwartz, Applications for gold-base brazing alloys, Gold Bull. 8(4) (1975) 102-110.
[65] R.K. Shiue, S.K. Wu, C.K. Liu, C.Y. Dai, Interfacial Reaction and Bonding Strength of Ti50Ni50 and Inconel 600 Dissimilar Brazed Joints, Mater. Trans. 58(9) (2017) 1308-1312.
[66] O.N. Senkov, S.L. Semiatin, Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloys Compd. 649 (2015) 1110-1123.
[67] N. Kashaev, V. Ventzke, N. Stepanov, D. Shaysultanov, V. Sanin, S. Zherebtsov, Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis, Intermetallics 96 (2018) 63-71.
[68] Z.G. Zhu, Y.F. Sun, F.L. Ng, M.H. Goh, P.K. Liaw, H. Fujii, Q.B. Nguyen, Y. Xu, C.H. Shek, S.M.L. Nai, J. Wei, Friction-stir welding of a ductile high entropy alloy: microstructural evolution and weld strength, Mater. Sci. Eng. A 711 (2018) 524-532.
[69] J. Guo, C. Tang, G. Rothwell, L. Li, Y.-C. Wang, Q. Yang, X. Ren, Welding of High Entropy Alloys—A Review, Entropy 21(4) (2019) 431.
[70] Z. Wu, S.A. David, Z. Feng, H. Bei, Weldability of a high entropy CrMnFeCoNi alloy, Scripta Mater. 124 (2016) 81-85.
[71] Z. Wu, S.A. David, D.N. Leonard, Z. Feng, H. Bei, Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy, Sci. Technol. Weld. Joining 23(7) (2018) 585-595.
[72] M.-G. Jo, H.-J. Kim, M. Kang, P.P. Madakashira, E.S. Park, J.-Y. Suh, D.-I. Kim, S.-T. Hong, H.N. Han, Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi, Met. Mater. Int. 24(1) (2018) 73-83.
[73] M. Schwartz, Brazing: For the Engineering Technologist, Springer, 1995.
[74] D.A. Canonico, N.C. Cole, G.M. Slaughter, Direct brazing of ceramics, graphite and refractory metals, Weld. J. 56(8) (1977) 31-38.
[75] W.D. Brewer, R.K. Bird, T.A. Wallace, Titanium alloys and processing for high speed aircraft, Mater. Sci. Eng. A 243(1) (1998) 299-304.
[76] X. Wu, R.S. Chandel, S.H. Pheow, H. Li, Brazing of Inconel X-750 to stainless steel 304 using induction process, Mater. Sci. Eng. A 288(1) (2000) 84-90.
[77] Y. Nakao, Bonding of AIN to metals, Welding International 8(1) (1994) 5-8.
[78] D. L Olson, B. Mishra, D.W. Wenman, Welding, Brazing and Joining of Refractory Metals and Alloys, Miner. Process. Extr. Metall. Rev. 22(1) (2001) 1-23.
[79] M.H. Scott, P.M. Knowlson, The welding and brazing of the refractory metals niobium, tantalum, molybdenum and tungsten — a review, J. Less Common Metals 5(3) (1963) 205-244.
[80] A.M. Hadian, R.A.L. Drew, Distribution and chemistry of phases developed in the brazing of silicon nitride to molybdenum, J. Eur. Ceram. Soc. 19(8) (1999) 1623-1629.
[81] A. Guedes, A. Pinto, M. Vieira, F. Viana, The effect of brazing temperature on the titanium/glass-ceramic bonding, J. Mater. Process. Technol. 92-93 (1999) 102-106.
[82] L.J. Whims, D.A. Bales, Porous Materials Brazing, United Technologies Corporation (Hartford, CT), United States, 1992.
[83] M.R. Matsen, Method of Inductively Brazing Honeycomb Panels, The Boeing Company (Seattle, WA), United States, 1986.
[84] D.G. Howden, R.W. Monroe, Suitable Alloys for Brazing Titanium Heat Exchangers, Weld. J. 1 (1972) 31.
[85] S. American Welding, B. Committee on, Soldering, Brazing Manual, American Welding Society; trade distributor: Reinhold Pub. Corp., New York, 1963.
[86] J.-G. Li, Influence of oxygen partial pressure on the wetting behaviour of titanium carbide by molten copper and other metals, Mater. Lett. 17(1) (1993) 74-78.
[87] J.E. Lazaroff, P.D. Ownby, D.A. Weirauch Jr., Wetting in an Electronic Packaging Ceramic System: 1, Wetting of Tungsten by Glass in Controlled Oxygen Partial Pressure Atmospheres, J. Am. Ceram. Soc. 78(3) (1995) 539-544.
[88] J.F. Lancaster, Metallurgy of welding, Chapman Hall, 1993.
[89] M.M. Schwartz, Brazing, 2nd Edition, ASM International, 2003.
[90] R.D. Eng, E.J. Ryan, J.R. Doyle, Nickel-base Brazing Filler Metals for Aircraft Gas Turbine Application, Weld. J. (1977) 15-21.
[91] D.P. Sekulić, Advances in Brazing: Science, Technology and Applications, Elsevier Science, 2013.
[92] J. Byrnes, Unexploded Ordnance Detection and Mitigation, Springer, 2008.
[93] 李訓杰, 鈦鋁介金屬紅外線加熱接合及其介面之研究, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 1997, p. 169.
[94] W.J. Buehler, J.V. Gilfrich, R.C. Wiley, Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, J. Appl. Phys. 34(5) (1963) 1475-1477.
[95] R. Nagarajan, K. Chattopadhyay, Intermetallic Ti2Ni/TiNi nanocomposite by rapid solidification, Acta Metall. Mater. 42(3) (1994) 947-958.
[96] K. Otsuka, T. Kakeshita, Science and Technology of Shape-Memory Alloys: New Developments, MRS Bull. 27(2) (2002) 91-100.
[97] K. Otsuka, T. Sawamura, K. Shimizu, C.M. Wayman, Characteristics of the martensitic transformation in TiNi and the memory effect, Metall. Trans. 2(9) (1971) 2583-2588.
[98] S. Miyazaki, S. Kimura, K. Otsuka, Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50.5 at.% Ni single crystals, Philos. Mag. A 57(3) (1988) 467-478.
[99] K. Otsuka, T. Sawamura, K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite, Phys. Status Solidi A 5(2) (1971) 457-470.
[100] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater. 50(17) (2002) 4255-4274.
[101] D. Xue, Y. Zhou, X. Ren, The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy, Intermetallics 19(11) (2011) 1752-1758.
[102] V. Pelosin, A. Riviere, Effect of thermal cycling on the R-phase and martensitic transformations in a Ti-rich NiTi alloy, Metall. Mater. Trans. A 29(4) (1998) 1175-1180.
[103] N. Resnina, S. Belyaev, Multi-stage martensitic transformations induced by repeated thermal cycling of equiatomic TiNi alloy, J. Alloys Compd. 486(1) (2009) 304-308.
[104] S. Miyazaki, Y. Igo, K. Otsuka, Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys, Acta Metall. 34(10) (1986) 2045-2051.
[105] T. Tadaki, Y. Nakata, K. Shimizu, Thermal Cycling Effects in an Aged Ni-rich Ti-Ni Shape Memory Alloy, Trans. Jpn. Ins. Met. 28(11) (1987) 883-890.
[106] H.C. Lin, S.K. Wu, Determination of heat of transformation in a cold-rolled martensitic tini alloy, Metall. Trans. A 24(2) (1993) 293-299.
[107] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys, J.Phys. Colloq. 43 (1982) 255-260.
[108] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation behaviour of a Ti50Ni47Fe3 alloy II. Subsequent premartensitic behaviour and the commensurate phase, Philos. Mag. A 47(1) (1983) 31-62.
[109] K.H. Eckelmeyer, Effect of Alloying on The Shape Memory Phenomenon in Nitinol, Scr. Metall. (1976) 667-672.
[110] J. Hanlon, S. Butler, R. Wasilewski, Effect of martensitic transformation on the electrical and magnetic properties of NiTi, T. Metall. Soc. AIME 239 (1967) 1323.
[111] M. Nishida, C.M. Wayman, A. Chiba, Electron microscopy studies of the martensitic transformation in an aged Ti-51at%Ni shape memory alloy, Metallography 21 (1988) 275-291.
[112] T. Saburi, T. Tatsumi, S. Nenno, Effects of heat treatment on mechanical behavior of Ti-Ni alloys, J. Phys. Colloq. 43 (1982) 261-266.
[113] H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy, Acta Metall. Mater. 39(9) (1991) 2069-2080.
[114] S.H. Chang, S.K. Wu, G.H. Chang, Grain size effect on multiple-stage transformations of a cold-rolled and annealed equiatomic TiNi alloy, Scripta Mater. 52(12) (2005) 1341-1346.
[115] T.W. Duerig, K.N. Melton, D. Stöckel, Engineering Aspects of Shape Memory Alloys, Elsevier Science, 2013.
[116] T.A. Schroeder, C.M. Wayman, Pseudoelastic effects in Cu-Zn single crystals, Acta Metall. 27(3) (1979) 405-417.
[117] C.S. Smith, Four Outstanding Researches in Metallurgical History, American Society for Testing and Materials, 1963.
[118] B. Cantor, K.B. Kim, P.J. Warren, Novel Multicomponent Amorphous Alloys, Mater. Sci. Forum 386-388 (2002) 27-32.
[119] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. sci. 85(5) (2003) 1404-1406.
[120] X. Yang, Y. Zhang, P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Procedia Eng. 36 (2012) 292-298.
[121] O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A 565 (2013) 51-62.
[122] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509(20) (2011) 6043-6048.
[123] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
[124] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 36(5) (2005) 1263-1271.
[125] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59(16) (2011) 6308-6317.
[126] M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater. 60(16) (2012) 5723-5734.
[127] Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C.D. Lundin, P.K. Liaw, Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater. 99 (2015) 247-258.
[128] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy 16(1) (2014) 494-525.
[129] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765.
[130] R. Kozak, A. Sologubenko, W. Steurer, Single-phase high-entropy alloys – an overview, 230(1) (2015) 55.
[131] P.-K. Huang, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, Adv. Eng. Mater. 6(1‐2) (2004) 74-78.
[132] S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Mater. 135 (2017) 177-187.
[133] D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC press, 2017.
[134] Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater Sci. 102 (2019) 296-345.
[135] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 36(4) (2005) 881-893.
[136] M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, E. Karapetrova, Absence of long-range chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett. 100(25) (2012) 251907.
[137] C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics 31 (2012) 165-172.
[138] C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloys Compd. 486(1) (2009) 427-435.
[139] F.J. Wang, Y. Zhang, G.L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy, J. Alloys Compd. 478(1) (2009) 321-324.
[140] C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, L. Wang, Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1−x high-entropy alloys, Mater. Des. 90 (2016) 601-609.
[141] J.-W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM 67(10) (2015) 2254-2261.
[142] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103(1) (2007) 41-46.
[143] R.W. Cahn, P. Haasen, Physical metallurgy, North-Holland, 1996.
[144] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61(13) (2013) 4887-4897.
[145] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM 65(12) (2013) 1759-1771.
[146] M.-H. Tsai, J.-W. Yeh, J.-Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films 516(16) (2008) 5527-5530.
[147] Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. Nieh, An assessment on the future development of high-entropy alloys: Summary from a recent workshop, Intermetallics 66 (2015) 67-76.
[148] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys, J. Appl. Phys. 109(10) (2011) 103505.
[149] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292-303.
[150] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM 65(12) (2013) 1780-1789.
[151] N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Scientific Reports 6(1) (2016) 35863.
[152] S. Zhao, G.M. Stocks, Y. Zhang, Stacking fault energies of face-centered cubic concentrated solid solution alloys, Acta Mater. 134 (2017) 334-345.
[153] S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy, Scripta Mater. 108 (2015) 44-47.
[154] S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics 93 (2018) 269-273.
[155] Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, C.T. Liu, The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys, Scripta Mater. 130 (2017) 96-99.
[156] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47(9) (2012) 4062-4074.
[157] A. Fernández-Caballero, J.S. Wróbel, P.M. Mummery, D. Nguyen-Manh, Short-Range Order in High Entropy Alloys: Theoretical Formulation and Application to Mo-Nb-Ta-V-W System, J. Phase Equilib. Diff. 38(4) (2017) 391-403.
[158] Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics 84 (2017) 153-157.
[159] A. Poulia, E. Georgatis, A. Lekatou, A. Karantzalis, Dry-Sliding Wear Response of MoTaWNbV High Entropy Alloy, Adv. Eng. Mater. 19(2) (2017) 1600535.
[160] B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process, Mater. Sci. Eng. A 712 (2018) 616-624.
[161] N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Aging behavior of the HfNbTaTiZr high entropy alloy, Mater. Lett. 211 (2018) 87-90.
[162] Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett. 130 (2014) 277-280.
[163] M.M. Schwartz, Introduction to Brazing and Soldering, in: D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), Welding, Brazing and Soldering, ASM International,1993.
[164] A.S.M. International, C. Handbook, ASM handbook. Volume 3, Volume 3, Alloy phase diagrams, ASM International, Materials Park, Ohio, 1992.
[165] R.H. Shiue, S.K. Wu, Infrared Brazing Ti50Ni50 and Ti-6Al-4V Using the BAg-8 Braze Alloy, Mater. Trans. JIM (46) (2005) 2057-2066.
[166] K.P. Gupta, Phase Diagrams of Ternary Nickel Alloys: ternary systems containing Co-Ni-X, Mn-Ni-X, Mo-Ni-X, Nb-Ni-X, Ni-Ta-X, Ni-Ti-X and Ni-V-X, Indian Institute of Metals, 1990.
[167] C.L. Ou, D.W. Liaw, Y.C. Du, R.K. Shiue, Brazing of 422 stainless steel using the AWS classification BNi-2 Braze alloy, J. Mater. Sci. 41(19) (2006) 6353-6361.
[168] E.P. Lugscheider, K.D, High temperature brazing of stainless steel with nickel-base filler metals BNi-2, BNi-5 and BNi-7, Weld 6 (1983) 160-164.
[169] S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Mater. Des. 133 (2017) 122-127.
[170] S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement, Mater. Sci. Eng. A 712 (2018) 603-607.
[171] J.W. Bae, J. Moon, M.J. Jang, D. Yim, D. Kim, S. Lee, H.S. Kim, Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy, Mater. Sci. Eng. A 703 (2017) 324-330.
[172] G.E. Dieter, D. Bacon, Mechanical Metallurgy, McGraw-Hill, 1988.
[173] T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, Binary alloy phase diagrams, American Society for Metals, Metals Park, Ohio, 1986.
[174] American Society for Metals, United States. National Bureau of Standards, Bulletin of alloy phase diagrams, American Society for Metals, Metals Park, Ohio, 1985.
[175] H.E. Swanson, Standard X-ray diffraction powder patterns, U.S. Dept. of Commerce, National Bureau of Standards, Washington, DC, 1953.
[176] H. Nam, C. Park, J. Moon, Y. Na, H. Kim, N. Kang, Laser weldability of cast and rolled high-entropy alloys for cryogenic applications, Mater. Sci. Eng. A 742 (2019) 224-230.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15322-
dc.description.abstract本研究紅外線硬銲接合Ti-15-3鈦合金與Ti50Ni50鈦鎳形狀記憶合金、同質接合CoCrFeMnNi高熵合金(HEA)、異質接合CoCrFeMnNi/CoCrFeNi (HEAs)與316不鏽鋼(SS),以及同質接合HfNbTiZr HEA,探討不同實驗參數下填料對於基材之潤濕性、顯微組織演化、剪應力強度以及破壞模式等。研究結果發現,BAg-8填料於Ti-15-3基材之潤濕性,可藉由添加4.5wt.%之鈦改善,使用BAg-8者破壞於Cu(Ti,V)及富銀相之間,用Ticusil®填料者則位於銲道中的Ti2Ni介金屬相。BNi-2及MBF601填料於CoCrFeMnNi基材之潤濕性於液相線溫度50 °C之上時相當優秀;CoCrFeMnNi/BNi-2/CoCrFeMnNi銲道主要由富鎳相基地、大顆CrB以及細小的硼化物所組成,其剪力強度會隨硬銲時間及溫度的增加而增加;接合CoCrFeMnNi /MBF601/ CoCrFeMnNi之最佳條件為1050 °C持溫600秒,其剪力強度為321 MPa,當於1080 °C接合時,因產生恆溫凝固縮孔使其剪力強度下降。異質接合CoCrFeMnNi/316 SS和同質皆合CoCrFeMnNi之結果相似;接合CoCrFeNi/BNi-2/316 SS時,最佳條件為1020°C持溫600秒,破壞於銲道中之CrB化合物;CoCrFeNi/MBF601/316 SS銲道由富鐵鎳相、磷化物及B/Cr/Fe/P化合物所組成,其最佳剪力強度324MPa。AuPdNi填料於CoCrFeMnNi/CoCrFeNi基材之潤濕性於1050°C時非常優秀;使用紅外線爐及傳統爐硬銲CoCrFeNi/AuPdNi/CoCrFeNi時,其銲道由富金相及富鎳相所組成,剪力強度皆大於300 MPa,且為延性破壞;CoCrFeMnNi/AuPdNi/CoCrFeMnNi銲道由CoCrFeNi相、富鎳相以及AuMn相所組成,但使用傳統爐因產生恆溫凝固縮孔導致其剪力強度較低。Ti-15Cu-15Ni填料於HfNbTiZr基材於970°C及1000 °C之潤濕性都非常良好,但Ti-20Cu-20Ni-20Zr填料於870°C及900 °C之潤濕性皆不佳。zh_TW
dc.description.abstractIn this study, different braze fillers are used to infrared brazing of Ti-15-3 alloy with Ti50Ni50 shape memory alloy, CoCrFeMnNi with CoCrFeMnNi high entropy alloy (HEA), CoCrFeMnNi/CoCrFeNi HEAs with 316 stainless steel (SS) and HfNbTiZr with HfNbTiZr HEA. Experimental results indicate that BAg-8 and Ticusil® fillers can wet Ti-15-3 substrate and the wettability greatly increases by alloyed with 4.5 wt.% Ti. For BAg-8 brazed joint, cracks propagate at the location between the interfacial Cu(Ti,V) and the Ag-rich phase. In Ticusil® brazed joint, cracks propagate along the central Ti2Ni intermetallics. The wettability of BNi-2 and MBF601 fillers on CoCrFeMnNi substrate is great at 50 °C above their liquidus temperatures. The CoCrFeMnNi/BNi-2/CoCrFeMnNi joints are dominated by Ni-rich matrix with huge CrB and a few tiny boride precipitates, and shear strengths of joints increase with increasing brazing temperature/time. The CoCrFeMnNi/MBF601/CoCrFeMnNi joint brazed at 1050 °C has the highest shear strength of 321 MPa, while that brazed at 1080 °C has a lower shear strength because of solidification shrinkage voids. The CoCrFeMnNi/316 SS joints have similar results like CoCrFeMnNi/CoCrFeMnNi joints. The CoCrFeNi/BNi-2/316 SS joint has the highest shear strength of 374 MPa and fractures at the CrB in the joint. The CoCrFeNi/MBF601/316 SS joint consists of a (Fe,Ni)-rich matrix, phosphides and B/Cr/Fe/P compounds, and has the highest shear strength of 324 MPa. The wettability of AuPdNi filler on CoCrFeNi/CoCrFeMnNi substrates is excellent at 1050°C. CoCrFeNi/AuPdNi/CoCrFeNi joints brazed using infrared and traditional furnaces are composed of Au/Ni-rich phases, and the shear strengths exceed 300 MPa with dimple fracture surfaces. CoCrFeMnNi/AuPdNi/CoCrFeMnNi brazed joints are composed of CoCrFeNi/Ni-rich phases and AuMn intermetallics, but the traditional furnace brazed joint has a much lower shear strength because of solidification shrinkage voids. The wettability of Ti-15Cu-15Ni on HfNbTiZr RHEA is great at 970 °C and 1000 °C, but that of Ti-20Cu-20Ni-20Zr is poor at 870 °C and 900 °C.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:32:52Z (GMT). No. of bitstreams: 1
U0001-0307202021025700.pdf: 9616660 bytes, checksum: 2d801d405ede3946bd87e754274f76b6 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAbstract i
摘要 iii
Contents iv
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 6
2.1 Joining 6
2.2 Brazing 8
2.2.1 Important Factors on Brazing 9
2.2.2 Heat source 14
2.3 TiNi-based Shape Memory Alloys 18
2.3.1 Shape Memory Effect (SME) 20
2.3.2 Pseudoelasticity (PE) 20
2.4 High Entropy Alloys (HEAs) 21
2.4.1 Definitions 22
2.4.2 Proposed Features 23
2.4.3 FCC-Structured High Entropy Alloys 28
2.4.4 Refractory High Entropy Alloys (RHEAs) 30
Chapter 3 Experimental Procedures 53
3.1 Sample Preparation 53
3.1.1 Ti50Ni50 Shape Memory Alloy 53
3.1.2 Ti-15-3 Titanium Alloy 53
3.1.3 Equiatomic CoCrFeMnNi and CoCrFeNi High Entropy Alloys 54
3.1.4 316 Stainless Steel 54
3.1.5 HfNbTiZr RHEA 55
3.2 Filler Metals 55
3.2.1 Silver-Based Filler Metal 55
3.2.2 Nickel-Based Filler Metal 56
3.2.3 AuPdNi Filler Metal 56
3.2.4 Titanium-Based Filler Metal 56
3.2.5 Filler Balls Preparation and Dynamic Wetting Angle Measurement 57
3.3 Brazing Furnace 57
3.4 SEM Microstructure 58
3.5 EPMA 58
3.6 Shear Tests 59
3.7 XRD 59
Chapter 4 Infrared Brazed Joints of Ti50Ni50 Shape Memory Alloy and Ti-15-3 Alloy Using Two Ag-Based Fillers 66
4.1 Dynamic Wetting Angle Measurement 66
4.2 Ti-15-3/BAg-8/Ti50Ni50 Infrared Brazed Joints 68
4.3 Ti-15-3/Ticusil®/Ti50Ni50 Infrared Brazed Joints 69
4.4 Shear Strengths and Failure Analyses 70
4.5 Summary 73
Chapter 5 Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys 83
5.1 Dynamic Wetting Angle Measurement 83
5.2 CoCrFeMnNi/BNi-2/CoCrFeMnNi Infrared Brazed Joints 84
5.3 CoCrFeMnNi/MBF601/CoCrFeMnNi Infrared Brazed Joints 86
5.4 Shear Strength and Failure Analyses 87
5.5 Summary 91
Chapter 6 Infrared Brazing of CoCrFe(Mn)Ni Equiatomic High Entropy Alloys and 316 Stainless Steel 100
6.1 Dynamic Wetting Angle Measurement 100
6.2 CoCrFeMnNi/BNi-2/316 Infrared Brazed Joints 102
6.3 CoCrFeMnNi/MBF601/316 Infrared Brazed Joints 103
6.4 CoCrFeNi/BNi-2/316 Infrared Brazed Joints 103
6.5 CoCrFeNi/MBF601/316 Infrared Brazed Joints 104
6.6 Shear Strength and Failure Analyses 105
6.7 Summary 109
Chapter 7 Brazing of CoCrFeNi and CoCrFeMnNi Equiatomic High Entropy Alloys Using 70Au-8Pd-22Ni Filler Foil 124
7.1 Dynamic Wetting Angle Measurement 124
7.2 CoCrFeNi/AuPdNi/CoCrFeNi Brazed Joints 124
7.3 CoCrFeMnNi/AuPdNi/CoCrFeMnNi Brazed Joints 126
7.4 XRD Structural Analyses of Brazed Joints 127
7.5 Shear Strengths and Failure Analyses 128
7.6 Summary 130
Chapter 8 Infrared Brazing of HfNbTiZr Refractory High Entropy Alloy Using Two Titanium-Based Fillers 141
8.1 Dynamic Wetting Angle Measurement 141
8.2 HfNbTiZr/Ti-20Cu-20Ni-20Zr/ HfNbTiZr Infrared Brazed Joints 141
8.3 HfNbTiZr/Ti-15Cu-15Ni/ HfNbTiZr Infrared Brazed Joints 142
8.4 Summary 143
Chapter 9 Conclusions 151
9.1 Infrared Brazed Joints of Ti50Ni50 Shape Memory Alloy and Ti-15-3 Alloy Using Two Ag-Based Fillers 151
9.2 Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys 152
9.3 Infrared Brazing of CoCrFe(Mn)Ni Equiatomic High Entropy Alloys and 316 Stainless Steel 153
9.4 Brazing of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys using 70Au-8Pd-22Ni filler foil 154
9.5 Infrared Brazing of HfNbTiZr Refractory High Entropy Alloy Using Two Titanium-Based Fillers 155
References 157
Publications 180
dc.language.isoen
dc.subject剪力強度zh_TW
dc.subject紅外線硬銲zh_TW
dc.subject鈦鎳形狀記憶合金zh_TW
dc.subject鈦合金zh_TW
dc.subject高熵合金zh_TW
dc.subject填料潤濕性zh_TW
dc.subject顯微組織zh_TW
dc.subjectTiNi Shape Memory Alloyen
dc.subjectHigh Entropy Alloyen
dc.subjectTitanium Alloyen
dc.subjectInfrared Brazingen
dc.subjectShear Strengthen
dc.subjectMicrostructural Observationen
dc.subjectWettabilityen
dc.title紅外線硬銲接合鈦合金及高熵合金之研究zh_TW
dc.titleThe Study of Infrared Brazing of Titanium Alloys and High Entropy Alloysen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.coadvisor薛人愷(Ren-Kae Shiue)
dc.contributor.oralexamcommittee周棟勝,薄慧雲,張世航
dc.subject.keyword紅外線硬銲,鈦鎳形狀記憶合金,鈦合金,高熵合金,填料潤濕性,顯微組織,剪力強度,zh_TW
dc.subject.keywordInfrared Brazing,TiNi Shape Memory Alloy,Titanium Alloy,High Entropy Alloy,Wettability,Microstructural Observation,Shear Strength,en
dc.relation.page182
dc.identifier.doi10.6342/NTU202001305
dc.rights.note未授權
dc.date.accepted2020-07-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0307202021025700.pdf
  未授權公開取用
9.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved