請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15308
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳逸聰(Yit-Tsong Chen) | |
dc.contributor.author | Sui-An Chou | en |
dc.contributor.author | 周邃安 | zh_TW |
dc.date.accessioned | 2021-06-07T17:32:43Z | - |
dc.date.copyright | 2020-08-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-15 | |
dc.identifier.citation | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, 'Electric Field Effect in Atomically Thin Carbon Films,' Science, 306 (2016) 666-669.
[2] M. J. Allen, V. C. Tung, R. B. Kaner, 'Honeycomb Carbon: A Review of Graphene,' Chem. Rev., 110 (2010) 132-145. [3] J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, K. Banerjee, 'Graphene and Beyond-graphene 2D Crystals for Next-generation Green Electronics,' Micro- Nanotechnol. Sensors, Syst. Appl. VI, 9083 (2014) 908305. [4] A. Sinha, Dhanjai, B. Tan, Y. Huang, H. Zhao, X. Dang, J. Chen, R. Jain, 'MoS2 Nanostructures for Electrochemical Sensing of Multidisciplinary Targets: A Review,' TrAC - Trends Anal. Chem., 102 (2018) 75-90. [5] V. Mazánek, C. C. Mayorga-Martinez, D. Bouša, Z. Sofer, M. Pumera, 'WSe2 Nanoparticles with Enhanced Hydrogen Evolution Reaction Prepared by Bipolar Electrochemistry: Application in Competitive Magneto-immunoassay,' Nanoscale, 10 (2018) 23149-23156. [6] T. Duangchuen, A. Karaphun, L. Wannasen, I. Kotutha, E. Swatsitang, 'Effect of SnS2 Concentrations on Electrochemical Properties of SnS2/RGO Nanocomposites Synthesized by a One-pot Hydrothermal Method,' Appl. Surf. Sci., 487 (2019) 634-646. [7] C. Cui, F. Xue, W. J. Hu, L. J. Li, 'Two-dimensional Materials with Piezoelectric and Ferroelectric Functionalities,' Npj 2D Mater. Appl., 2 (2018) 18. [8] W. Wu, L. Wang, Y. Li, F.Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F.Heinz, J. Hone, Z. L. Wang, 'Piezoelectricity of Single-atomic-layer MoS2 for Energy Conversion and Piezotronics,' Nature, 514 (2014) 470-474. [9] S. A. Han, J. Lee, J. Lin, S. W. Kim, J. H. Kim, 'Piezo/triboelectric Nanogenerators Based on 2-dimensional Layered Structure Materials,' Nano Energy, 57 (2019) 680-691. [10] Z. L. Wang, J. Song, 'Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,' Science, 312 (2006) 242-246. [11] S. S. Indira, C. A. Vaithilingam, K. S. P. Oruganti, F. Mohd, S. Rahman, 'Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges', Nanomaterials, 9 (2019) 773. [12] M. M. Alyörük, Y. Aierken, D. Çaklr, F. M. Peeters, C. Sevik, 'Promising Piezoelectric Performance of Single Layer Transition-metal Dichalcogenides and Dioxides,' J. Phys. Chem. C, 119 (2015) 23231-23237. [13] L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, A. Walsh, 'Electronic and Optical Properties of Single Crystal SnS2: An Earth-abundant Disulfide Photocatalyst,' J. Mater. Chem. A, 4 (2016) 1312-1318. [14] K. Persson, 'Materials Data on SnS2 (SG:164) by Materials Project,' (2014). [15] K. Persson, 'Materials Data on SnS2 (SG:186) by Materials Project,' (2014). [16] H. B. Song, I. Karakurt, M. Wei, N. Liu, Y. Chu, J. Zhong, L. Lin, 'Lead Iodide Nanosheets for Piezoelectric Energy Conversion and Strain Sensing,' Nano Energy, 49 (2018) 7-13. [17] H. Zhang, C. Xia, X. Zhao, T. Wang, J. Li, 'Tunable Electronic Structures in the Two-dimension SnX2 (X = S and Se) Nanosheets by Stacking Effects,' Appl. Surf. Sci., 356 (2015) 1200-1206. [18] J. Li, J. Shen, Z. Ma, K. Wu, 'Thickness-controlled Electronic Structure and Thermoelectric Performance of Ultrathin SnS2 Nanosheets,' Sci. Rep., 7 (2017) 8914. [19] R. V. Limpt, 'Studying the 2H to 1T ’ Phase Transition of Monolayer MoS2 on Gold Using Low Energy Electron Microscopy,' (2019). [20] B. Ram, A. Manjanath, A. K. Singh, 'Simultaneous Tunability of the Electronic and Phononic Gaps in SnS2 Under Normal Compressive Strain,' 2D Mater., 3 (2016) 015009. [21] L. Xiao, H. Zhu, 'Two-dimensional MoS2: Properties, Preparation, and Applications,' J. Materiomics, 1 (2015) 33-44. [22] A. J. Smith, P. E. Meek, W. Y. Liang, 'Raman Scattering Studies of SnS2 and SnSe2,' J. Phys. C Solid State Phys., 10 (1977) 1321-1333. [23] J. M. Gonzalez, I. I. Oleynik, 'Layer-dependent Properties of SnS2 and SnSe2 Two-dimensional Materials,' Phys. Rev. B, 94 (2016) 125443. [24] H. Zang, P. K. Routh, Y. Huang, J. S. Chen, E. Sutter, P. Sutter, M. Cotlet, 'Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-layer and Few-layer Tin Disulfide,' ACS Nano, 10 (2016) 4790-4796. [25] Y. Liu, X. Mi, J. Wang, M. Li, D. Fan, H. Lu, X. Chen, 'Two-dimensional SnS2 Nanosheets Exfoliated from An Inorganic-organic Hybrid with Enhanced Photocatalytic Activity Towards Cr(vi) Reduction,' Inorg. Chem. Front., 6 (2019) 948-954. [26] Y. B. Yang, J. K. Dash, A. J. Littlejohn, Y. Xiang, Y. Wang, J. Shi, L. H. Zhang, K. Kisslinger, T. M. Lu, G. C. Wang, 'Large Single Crystal SnS2 Flakes Synthesized from Coevaporation of Sn and S,' Cryst. Growth Des., 16 (2016) 961-973. [27] G. Ye, Y. Gong, S. Lei, Y. He, B. Li, X. Zhang, Z. Jin, L. Dong, J. Lou, R. Vajtai, W. Zhou, P. M. Ajayan, 'Synthesis of Large-scale Atomic-layer SnS2 Through Chemical Vapor Deposition,' Nano Res., 10 (2017) 2386-2394. [28] L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, Z. Liu, 'Creation of Nanostructures with Poly(methyl methacrylate)-mediated Nanotransfer Printing,' J. Am. Chem. Soc., 130 (2008) 12612-12613. [29] Y. C. Lin, C. Jin, J. C. Lee, S. F. Jen, K. Suenaga, P. W. Chiu, 'Clean Transfer of Graphene for Isolation and Suspension,' ACS Nano, 5 (2011) 2362-2368. [30] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, 'Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes,' Nature, 457 (2009) 706-710. [31] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. IlSong, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, 'Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes,' Nat. Nanotechnol., 5 (2010) 574-578. [32] J. Song, F. Y. Kam, R. Q. Png, W. L. Seah, J. M. Zhuo, G. K. Lim, P. K. H. Ho, L. L. Chua, 'A General Method for Transferring Graphene onto Soft Surfaces,' Nat. Nanotechnol., 8 (2013) 356-362. [33] T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T. S. Kim, B. J. Cho, 'Direct Measurement of Adhesion Energy of Monolayer Graphene As-grown on Copper and Its Application to Renewable Transfer Process,' Nano Lett., 12 (2012) 1448-1452. [34] W. H. Lin, T. H. Chen, J. K. Chang, J. I. Taur, Y. Y. Lo, W. L. Lee, C. S. Chang, W. BinSu, C. I. Wu, 'A Direct and Polymer-free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate,' ACS Nano, 8 (2014) 1784-1791. [35] Y. Ren, C. Zhu, W. Cai, H. Li, Y. Hao, Y. Wu, S. Chen, Q. Wu, R. D. Piner, R. S. Ruoff, 'An Improved Method for Transferring Graphene Grown by Chemical Vapor Deposition,' Nano, 7 (2012) 1150001. [36] J. Lee, Y. Kim, H. J. Shin, C. Lee, D. Lee, C. Y. Moon, J. Lim, S. ChanJun, 'Clean Transfer of Graphene and Its Effect on Contact Resistance,' Appl. Phys. Lett., 103 (2013) 103104. [37] L. G. P. Martins, Y. Song, T. Zeng, M. S. Dresselhaus, J. Kong, P. T. Araujo, 'Direct Transfer of Graphene onto Flexible Substrates,' Proc. Natl. Acad. Sci. U. S. A., 110 (2013) 17762-17767. [38] S. Katzir, 'The Discovery of the Piezoelectric Effect,' Springer, 246 (2006) 15-64. [39] M. DeJong, W. Chen, H. Geerlings, M. Asta, K. A. Persson, 'A Database to Enable Discovery and Design of Piezoelectric Materials,' Sci. Data, 2 (2015) 150053. [40] Z. L. Wang, 'On Maxwell’s Displacement Current for Energy and Sensors: The Origin of Nanogenerators,' Mater. Today, 20 (2017) 74-82. [41] L. Shu, F. Li, W. Huang, X. Wei, X. Yao, X. Jiang, 'Relationship Between Direct and Converse Flexoelectric Coefficients,' J. Appl. Phys., 116 (2014) 144105. [42] L. L. Shu , R. H. Liang , Y. Z. Yu , W. B. Huang, X. Y. Wei, F. Li, X. N. Jiang, X. Yao, 'Flexoelectricity in Crystalline Materials: Status and Perspective,' Adv. Ceram., 39 (2018) 223-246. [43] N. Ishida, V. S. J. Craig, 'Direct Measurement of Interaction Forces Between Surfaces in Liquids Using Atomic Force Microscopy,' KONA Powder Part. J., 36 (2019) 187-200. [44] J. Kopniczky, 'Nanostructures Studied by Atomic Force Microscopy,' Sci. Technol., (2003). [45] D. Denning, J. Guyonnet, B. J. Rodriguez, 'Applications of Piezoresponse Force Microscopy in Materials Research: From Inorganic Ferroelectrics to Biopiezoelectrics and Beyond,' Int. Mater. Rev., 61 (2016) 46-70. [46] S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, A. Gruverman, 'Vector Piezoresponse Force Microscopy,' Microsc. Microanal., 12 (2006) 206-220. [47] M. M. Rahman, A. Jamal, M. Faisal, 'Iron Oxide Nanoparticles,' Nanomaterials, (2011). [48] S. Harrison, G. Smith, 'Structure-property Polyimides Study of Piezoelectricity in Polyimides,' 1999 Electroact. Polym. Actuators Devices, (1999). [49] G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, H. Peng, 'Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application,' Nano Lett., 15 (2015) 506-513. [50] Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson, P. Sutter, 'Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics,' ACS Nano, 8 (2014) 10743-10755. [51] J. H. Ahn, M. J. Lee, H. Heo, J. H. Sung, K. Kim, H. Hwang, M. H. Jo, 'Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS2 and Orthorhombic p-Type SnS Crystals,' Nano Lett., 15 (2015) 3703-3708. [52] G. Liu, Z. Li, T. Hasan, X. Chen, W. Zheng, W. Feng, D. Jia, Y. Zhou, P. A. Hu, 'Vertically Aligned Two-dimensional SnS2 Nanosheets with a Strong Photon Capturing Capability for Efficient Photoelectrochemical Water Splitting,' J. Mater. Chem. A, 5 (2017) 1989-1995. [53] Z. Zhang, C. Shao, X. Li, Y. Sun, M. Zhang, J. Mu, P. Zhang, Z. Guo, Y. Liu, 'Hierarchical Assembly of Ultrathin Hexagonal SnS2 Nanosheets onto Electrospun TiO2 Nanofibers: Enhanced Photocatalytic Activity Based on Photoinduced Interfacial Charge Transfer,' Nanoscale, 5 (2013) 606-618. [54] L. Ma, L. Xu, X. Xu, L. Zhang, X. Zhou, 'Fabrication of SnO2/SnS2 Hybrids by Anchoring Ultrafine SnO2 Nanocrystals on SnS2 Nanosheets and Their Photocatalytic Properties,' Ceram. Int., 42 (2016) 5068-5074. [55] M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei, J. Li, P. M. Ajayan, P. Sharma, 'Anomalous Piezoelectricity in Two-dimensional Graphene Nitride Nanosheets,' Nat. Commun., 5 (2014) 4284. [56] L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G .O’Dowd, C. Reece, D. Cherns, D. J. Fermin, T. D. Veal, V. R. Dhanak, A. Walsh, 'Electronic and Optical Properties of Single Crystal SnS2: An Earth-abundant Disulfide Photocatalyst,' J. Mater. Chem. A, 4 (2016) 1312-1318. [57] B. Pałosz, W. Steurer, H. Schulz, 'Refinement of SnS2 Polytypes 2H, 4H and 18R,' Acta Crystallogr. Sect. B, 46 (1990) 449-455. [58] J. Morales, C. Perez-Vicente, J. L. Tirado, 'Chemical and Electrochemical Lithium Intercalation and Staging in 2H-SnS2,' Solid State Ion., 51 (1992) 133-138. [59] P. Sharma, F. X. Xiang, D. F. Shao, D. Zhang, E. Y. Tsymbal, A. R. Hamilton, J. Seidel, 'A Room-temperature Ferroelectric Semimetal,' Sci. Adv., 5 (2019) 5080. [60] R. Hinchet, U. Khan, C. Falconi, S. W. Kim, 'Piezoelectric Properties in Two-dimensional Materials: Simulations and Experiments,' Mater. Today, 21 (2018) 611-630. [61] K. N. Duerloo, M. T. Ong, E. J. Reed, 'Piezoelectricity in Monolayers and Bilayers of Inorganic Two-Dimensional Crystals,' Mater. Res. Soc. Symp. Proc., 1556 (2013) mrss13-1556. [62] J. H. Lee, J. Y. Park, E. B. Cho, T. Y. Kim, S. A. Han, T. H. Kim, Y. Liu, S. K. Kim, C. J. Roh, H. J. Yoon, H. Ryu, W. Seung, J. S. Lee, J. Lee, S. W. Kim, 'Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators,' Adv. Mater., 29 (2017) 1606667. [63] E. N. Esfahani, T. Li, B. Huang, X. Xu, J. Li, 'Piezoelectricity of Atomically Thin WSe2 via Laterally Excited Scanning Probe Microscopy,' Nano Energy, 52 (2018) 117-122. [64] S. K. Kim, R. Bhatia, T. H. Kim, D. Seol, J. H. Kim, H. Kim, W. Seung, Y. Kim, Y. H. Lee, S. W. Kim, 'Directional Dependent Piezoelectric Effect in CVD Grown Monolayer MoS2 for Flexible Piezoelectric Nanogenerators,' Nano Energy, 22 (2016) 483-489. [65] C. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. Lu, E. T. Yu, 'Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy,' Nano Lett., 17 (2017) 5464-5471. [66] A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, L. J. Li, 'Janus Monolayers of Transition Metal Dichalcogenides,' Nat. Nanotechnol., 12 (2017) 744-749. [67] F. Xue, J. Zhang, W. Hu, W. T. Hsu, A. Han, S. F. Leung, J. K. Huang, Y. Wan, S. Liu, J. Zhang, J. H. He, W. H. Chang, Z. L. Wang, X. Zhang, L. J. Li, 'Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In2Se3,' ACS Nano, 12 (2018) 4976-4983. [68] C. Tannous, 'Symmetry and Piezoelectricity: Evaluation of α-quartz Coefficients,' Eur. J. Phys., 38 (2017) 065502. [69] S. Kang, S. Kim, S. Jeon, W. S. Jang, D. Seol, Y. M. Kim, J. Lee, H. Yang, Y. Kim, 'Atomic-scale Symmetry Breaking for Out-of-plane Piezoelectricity in Two-dimensional Transition Metal Dichalcogenides,' Nano Energy, 58 (2019) 57-62. [70] S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, J. Hao, 'Room-temperature Ferroelectricity in MoTe2 Down to the Atomic Monolayer Limit,' Nat. Commun., 10 (2019) 1775. [71] Q. Zheng, B. Shi, Z. Li, Z. L. Wang, 'Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems,' Adv. Sci., 4 (2017) 1700029. [72] K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, J. Wu, 'Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,' Nano Lett., 14 (2014) 5097-5103. [73] M. Mnari, B. Cros, M. Amlouk, S. Belgacem, D. Barjon, 'Study of the Elastic Properties of Sprayed SnO2 and SnS2 Layers,' Can. J. Phys., 77 (1999) 705-715. [74] X. Pu, H. Guo, Q. Tang, J. Chen, L. Feng, G. Liu, X. Wang, Y. Xi, C. Hu, Z. L. Wang, 'Rotation Sensing and Gesture Control of a Robot Joint via Triboelectric Quantization Sensor,' Nano Energy, 54 (2018) 453-460. [75] J. Byun, Y. Lee, J. Yoon, B. Lee, E. Oh, S. Chung, T. Lee, K. J. Cho, J. Kim, Y. Hong, 'Electronic Skins for Soft, Compact, Reversible Assembly of Wirelessly Activated Fully Soft Robots,' Sci. Robot., 3 (2018) eaas9020. [76] J. C. Yeo, H. K. Yap, W. Xi, Z. Wang, C. H. Yeow, C. T. Lim, 'Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications,' Adv. Mater. Technol., 1 (2016) 1600018. [77] Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, 'Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring,' Adv. Funct. Mater., 24 (2014) 4666-4670. [78] M. G. Campbell, S. F. Liu, T. M. Swager, M. Dincə, 'Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks,' J. Am. Chem. Soc., 137 (2015) 13780-13783. [79] M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, 'Response to NO2 and Other Gases of Resistive Chemically Exfoliated MoS2-based Gas Sensors,' Sensors Actuators, B Chem., 207 (2015) 602-613. [80] S. A. Han, T. H. Kim, S. K. Kim, K. H. Lee, H. J. Park, J. H. Lee, S. W. Kim, 'Point-defect-passivated MoS2 Nanosheet-based High Performance Piezoelectric Nanogenerator,' Adv. Mater., 30 (2018) 1800342. [81] X. Xue, P. Deng, S. Yuan, Y. Nie, B. He, L. Xing, Y. Zhang, 'CuO/PVDF Nanocomposite Anode for a Piezo-driven Self-charging Lithium Battery,' Energy Environ. Sci., 6 (2013) 2616-2620. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15308 | - |
dc.description.abstract | 二硫化錫奈米薄片 (SnS2 nanosheets, SnS2 NSs) 在分類上屬於二維層狀金屬二硫族化物 (layered metal dichalcogenides, LMDCs),由於其出色的載子遷移率、化學穩定性及光電特性,使得其在眾多領域應用中引起了相當廣泛的關注,其中即包含了超級電容器、太陽能電池、光電感測器、催化反應和場效電晶體等等。與此同時,亦有理論計算指出二硫化錫奈米薄片具有優於其他同是層狀金屬二硫族化物之壓電常數,據此結論推知,其對於未來壓電元件之開發具備極大潛能。然而,迄今為止,對於二硫化錫的壓電特性仍無相關的實驗性數據與文獻發表。因此在本研究中,我們將探討由化學氣相沉積法 (chemical vapor deposition, CVD) 成長之高品質、低層數二硫化錫奈米薄片之壓電特性,並首次透過壓電力顯微鏡 (piezoresponse force microscope, PFM) 量測得二硫化錫薄片之壓電響應,同時根據量測結果,計算出二硫化錫奈米薄片之面外壓電常數 (d33) 約為5 pm/V。此外,我們亦將所合成之二硫化錫奈米薄片製作成壓電奈米發電機 (piezoelectric nanogenerator, PENG),並展示其應用於自供電技術和應變感測器的潛力。最重要的是,二硫化錫壓電奈米發電機可有效地整合入人機介面同步系統,顯示了其在未來先進人機介面應用、智慧語言系統和遠程互動中的可行性。 | zh_TW |
dc.description.abstract | Tin disulfide nanosheets (SnS2 NSs), belonging to the family of two-dimensional layered metal dichalcogenides (LMDCs), has attracted considerable attention in multidisplinary scientific applications owing to their outstanding carrier mobility, chemical stability, and electronic properties. These applications include SnS2-fabricated supercapacitors, solar cells, photodetectors, catalytic reactions, and field-effect transistors. Meanwhile, some theoretical predictions also point out that SnS2 possesses a relatively large piezoelectric constant, indicating its great potential to convert mechanical to electrical energy. To date, however, only very few attempts have been made to investigate the electromechanical characterisitcs of SnS2 nanosheets. Herein, we report, for the first time, a study to investigate the piezoresponse of SnS2 nanosheets produced by a chemical vapor deposition (CVD) method. The linear piezoresponse of SnS2 nanosheets was obtained via piezoresponse force microscope (PFM) measurements, where the out-of-plane piezoelectric coefficient (d33) of SnS2 nanosheets was estimated to be 5 pm/V. Moreover, the derived SnS2 nanosheets were integrated into an piezoelectric nanogenerator (PENG) device for the self-powered systems and strain sensing applications. Most importantly, the as-fabricated SnS2 PENG devices can be effectively applied to a human-robotic synchronous system, demonstrating its feasibility for the future advancements in human-machine interface applications、smart language systems and remote interactions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:32:43Z (GMT). No. of bitstreams: 1 U0001-0607202023035500.pdf: 22499319 bytes, checksum: 683f5475474137c7311b7c2c8e62ef89 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 i 謝誌 ii 中文摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xiii 簡稱用語對照表 xiv 第一章 緒論 1 1-1 二維材料於能源領域之發展 1 1-2 奈米發電機 3 1-3 人機介面 4 1-4 研究動機 5 第二章 文獻回顧 7 2-1 層狀二硫化錫之材料特性與結構 7 2-2 二硫化錫之製備方式 11 2-2-1 機械剝離法 11 2-2-2 液相剝離法 12 2-2-3 物理氣相沉積法 13 2-2-4 化學氣相沉積法 14 2-3 材料移轉方式 16 2-4 壓電響應簡介 17 2-4-1 壓電效應 17 2-4-2 撓曲電效應 23 2-5 壓電力顯微鏡 25 第三章 材料合成與方法 29 3-1 以化學氣相沉積法合成二硫化錫 29 3-1-1 基板前處理 29 3-1-2 化學氣相沉積系統架構 29 3-2 材料鑑定儀器 32 3-2-1 光學金相顯微鏡 32 3-2-2 共軛焦拉曼顯微鏡 33 3-2-3 穿透式電子顯微鏡 34 3-2-4 X射線光電子能譜 36 3-2-5 能量分散X射線光譜 37 3-2-6 壓電力顯微鏡 38 3-3 元件製作 38 3-3-1 可撓式壓電元件基板選擇 38 3-3-2 聚合物支撐轉置法 39 3-3-3 黃光微影與熱蒸鍍金屬電極 40 3-3-4 元件封裝 42 3-4 壓電響應量測系統 42 3-5 三維列印人造機械手臂 43 第四章 結果與討論 45 4-1 二硫化錫之鑑定 45 4-1-1 二硫化錫薄片厚度與拉曼光譜之鑑定 45 4-1-2 二硫化錫薄片之晶形鑑定 47 4-1-3 二硫化錫薄片之元素組成分析 48 4-1-4 二硫化錫薄片之壓電響應測試 50 4-2 二硫化錫奈米發電機之輸出效能 55 4-3 二硫化錫奈米發電機應用於人機同步系統 64 第五章 結論與未來展望 71 引用文獻 72 附錄 A1 | |
dc.language.iso | zh-TW | |
dc.title | 以二硫化錫薄片製備之壓電奈米發電機應用於生物力學能量收集與智能人機介面 | zh_TW |
dc.title | Tin Disulfide Piezoelectric Nanogenerators for Biomechanical Energy Harvesting and Intelligent Human-Robot Interface Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李連忠(Lain-Jong Li),廖尉斯(Wei-Ssu Liao) | |
dc.subject.keyword | 二維材料,二硫化錫,化學氣相沉積,壓電響應,自供電系統,人機介面, | zh_TW |
dc.subject.keyword | two-dimensional materials,tin disulfide,chemical vapor deposition,piezoresponse,self-powered system,human-machine interface, | en |
dc.relation.page | 116 | |
dc.identifier.doi | 10.6342/NTU202001347 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-07-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0607202023035500.pdf 目前未授權公開取用 | 21.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。