請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15306
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
dc.contributor.author | Heng-Yu Shen | en |
dc.contributor.author | 沈恆榆 | zh_TW |
dc.date.accessioned | 2021-06-07T17:32:42Z | - |
dc.date.copyright | 2021-02-22 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-05 | |
dc.identifier.citation | 1. Alshafeei, Mahmoud E, Abdelrahman Hosney, Anke Klingner, Sarthak Misra, and Islam SM Khalil. 2014. 'Magnetic-Based motion control of a helical robot using two synchronized rotating dipole fields.' In 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 151-56. IEEE. 2. Amjadi, Morteza, Ki‐Uk Kyung, Inkyu Park, and Metin %J Advanced Functional Materials Sitti. 2016. 'Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review', 26: 1678-98. 3. Banerjee, Hritwick, Mohamed Suhail, and Hongliang %J Biomimetics Ren. 2018. 'Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges', 3: 15. 4. Cacucciolo, Vito, Jun Shintake, Yu Kuwajima, Shingo Maeda, Dario Floreano, and Herbert %J Nature Shea. 2019. 'Stretchable pumps for soft machines', 572: 516-19. 5. Carrozza, Maria Chiara, C Suppo, Fabrizio Sebastiani, Bruno Massa, Fabrizio Vecchi, Roberto Lazzarini, Mark R Cutkosky, and Paolo %J Autonomous Robots Dario. 2004. 'The SPRING hand: development of a self-adaptive prosthesis for restoring natural grasping', 16: 125-41. 6. Cham, Jorge G, Sean A Bailey, Jonathan E Clark, Robert J Full, and Mark R %J The International Journal of Robotics Research Cutkosky. 2002. 'Fast and robust: Hexapedal robots via shape deposition manufacturing', 21: 869-82. 7. Chen, Yufeng, Huichan Zhao, Jie Mao, Pakpong Chirarattananon, E Farrell Helbling, Nak-seung Patrick Hyun, David R Clarke, and Robert J %J Nature Wood. 2019. 'Controlled flight of a microrobot powered by soft artificial muscles', 575: 324-29. 8. Cheng, Yu‐Chieh, Hao‐Chuan Lu, Xuan Lee, Hao Zeng, and Arri %J Advanced Materials Priimagi. 2020. 'Kirigami‐Based Light‐Induced Shape‐Morphing and Locomotion', 32: 1906233. 9. Damean, Nicolae, Babak A Parviz, Jessamine Ng Lee, Teri Odom, George M %J Journal of Micromechanics Whitesides, and Microengineering. 2004. 'Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems', 15: 29. 10. Deng, Heng, Cheng Zhang, Jheng-Wun Su, Yunchao Xie, Chi Zhang, and Jian %J Journal of Materials Chemistry B Lin. 2018. 'Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures', 6: 5415-23. 11. Garstecki, Piotr, Pietro Tierno, Douglas B Weibel, Francesc Sagund Jian %J Journal of Materials Chemistry B Lin. 2018. 'Bioinspired multi-responsive soft actuatorspolymer structures in a rotating magnetic field', 21: 204110. 12. Gu, Guoying, Jiang Zou, Ruike Zhao, Xuanhe Zhao, and Xiangyang %J Science Robotics Zhu. 2018. 'Soft wall-climbing robots', 3. 13. Guo, Huayang, Changyong Lan, Zhifei Zhou, Peihua Sun, Dapeng Wei, and Chun %J Nanoscale Li. 2017. 'Transparent, flexible, and stretchable WS 2 based humidity sensors for electronic skin', 9: 6246-53. 14. Hu, Wenqi, Guo Zhan Lum, Massimo Mastrangeli, and Metin %J Nature Sitti. 2018. 'Small-scale soft-bodied robot with multimodal locomotion', 554: 81-85. 15. Hua, Dechuan, Xiaoqin Zhang, Zhongying Ji, Changyou Yan, Bo Yu, Yuandong Li, Xiaolong Wang, and Feng %J Journal of Materials Chemistry C Zhou. 2018. '3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators', 6: 2123-31. 16. Huang, Hen-Wei, Mahmut Selman Sakar, Andrew J Petruska, Salvador Pané, and Bradley J %J Nature communications Nelson. 2016. 'Soft micromachines with programmable motility and morphology', 7: 1-10. 17. Jeon, SM, GH Jang, JH Choi, SH Park, and JO %J Journal of applied physics Park. 2011. 'Precise manipulation of a microrobot in the pulsatile flow of human blood vessels using magnetic navigation system', 109: 07B316. 18. Kim, Jiyun, Su Eun Chung, Sung-Eun Choi, Howon Lee, Junhoi Kim, and Sunghoon %J Nature materials Kwon. 2011. 'Programming magnetic anisotropy in polymeric microactuators', 10: 747-52. 19. Kotikian, Arda, Connor McMahan, Emily C Davidson, Jalilah M Muhammad, Robert D Weeks, Chiara Daraio, and Jennifer A %J Sci. Robot Lewis. 2019. 'Untethered soft robotic matter with passive control of shape morphing and propulsion', 4: 7044. 20. Kummer, Michael P, Jake J Abbott, Bradley E Kratochvil, Ruedi Borer, Ali Sengul, and Bradley J %J IEEE Transactions on Robotics Nelson. 2010. 'OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation', 26: 1006-17. 21. Lu, Yen-Wen, and Chang-Jin %J Applied Physics Letters Kim. 2006. 'Microhand for biological applications', 89: 164101. 22. Mahoney, Arthur W, and Jake J Abbott. 2014. '5-DOF Manipulation of an Untethered Magnetic Device in Fluid using a Single Permanent Magnet.' In Robotics: Science and Systems. Citeseer. 23. Miriyev, Aslan, Kenneth Stack, and Hod %J Nature communications Lipson. 2017. 'Soft material for soft actuators', 8: 1-8. 24. Miskin, Marc Z, Kyle J Dorsey, Baris Bircan, Yimo Han, David A Muller, Paul L McEuen, and Itai %J Proceedings of the National Academy of Sciences Cohen. 2018. 'Graphene-based bimorphs for micron-sized, autonomous origami machines', 115: 466-70. 25. Paek, Jungwook, Inho Cho, and Jaeyoun %J Scientific reports Kim. 2015. 'Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes', 5: 10768. 26. Park, Sung-Jin, Mattia Gazzola, Kyung Soo Park, Shirley Park, Valentina Di Santo, Erin L Blevins, Johan U Lind, Patrick H Campbell, Stephanie Dauth, and Andrew K %J Science Capulli. 2016. 'Phototactic guidance of a tissue-engineered soft-robotic ray', 353: 158-62. 27. Rauch, Jean-Yves, Olivier Lehmann, Patrick Rougeot, Joel Abadie, Joel Agnus, Miguel Angel %J Journal of Vacuum Science Suarez, Surfaces Technology A: Vacuum, and Films. 2018. 'Smallest microhouse in the world, assembled on the facet of an optical fiber by origami and welded in the μRobotex nanofactory', 36: 041601. 28. Rogóż, Mikołaj, Hao Zeng, Chen Xuan, Diederik Sybolt Wiersma, and Piotr %J Advanced Optical Materials Wasylczyk. 2016. 'Light‐driven soft robot mimics caterpillar locomotion in natural scale', 4: 1689-94. 29. Ryan, Patrick, and Eric Diller. 2016. 'Five-degree-of-freedom magnetic control of micro-robots using rotating permanent magnets.' In 2016 IEEE international conference on robotics and automation (ICRA), 1731-36. IEEE. 30. Schuerle, Simone, Sandro Erni, Maarten Flink, Bradley E Kratochvil, and Bradley J %J IEEE transactions on magnetics Nelson. 2012. 'Three-dimensional magnetic manipulation of micro-and nanostructures for applications in life sciences', 49: 321-30. 31. Schwarz, Lukas, Mariana Medina-Sánchez, and Oliver G %J Applied Physics Reviews Schmidt. 2017. 'Hybrid biomicromotors', 4: 031301. 32. Shepherd, Robert F, Filip Ilievski, Wonjae Choi, Stephen A Morin, Adam A Stokes, Aaron D Mazzeo, Xin Chen, Michael Wang, and George M %J Proceedings of the national academy of sciences Whitesides. 2011a. 'Multigait soft robot', 108: 20400-03. 33. Shepherd, Robert F., Filip Ilievski, Wonjae Choi, Stephen A. Morin, Adam A. Stokes, Aaron D. Mazzeo, Xin Chen, Michael Wang, and George M. Whitesides. 2011b. 'Multigait soft robot', 108: 20400-03. 34. Shinoda, Hayato, Seiji Azukizawa, Kazuki Maeda, and Fujio %J Journal of The Electrochemical Society Tsumori. 2019. 'Bio-mimic motion of 3D-printed gel structures dispersed with magnetic particles', 166: B3235. 35. Shintake, Jun, Vito Cacucciolo, Dario Floreano, and Herbert %J Advanced Materials Shea. 2018. 'Soft robotic grippers', 30: 1707035. 36. Song, Li, Xiuping Yang, Hang Hu, Guanya Peng, Wenxuan Wei, Yuguo Dai, and Lin Feng. 2019. 'The Design of 3-D Space Electromagnetic Control System for High-Precision and Fast-Response Control of Capsule Robot with 5-DOF.' In International Conference on Intelligent Robotics and Applications, 202-12. Springer. 37. Suzumori, Koichi, Satoshi Endo, Takefumi Kanda, Naomi Kato, and Hiroyoshi Suzuki. 2007. 'A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot.' In Proceedings 2007 IEEE International Conference on Robotics and Automation, 4975-80. IEEE. 38. Valentin, Thomas M, Eric M DuBois, Catherine E Machnicki, Dhananjay Bhaskar, Francis R Cui, and Ian Y %J Polymer Chemistry Wong. 2019. '3D printed self-adhesive PEGDA–PAA hydrogels as modular components for soft actuators and microfluidics', 10: 2015-28. 39. Xu, Tianqi, Jiachen Zhang, Mohammad Salehizadeh, Onaizah Onaizah, and Eric %J Science Robotics Diller. 2019. 'Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions', 4. 40. Zhang, Shuailong, Erica Y Scott, Jastaranpreet Singh, Yujie Chen, Yanfeng Zhang, Mohamed Elsayed, M Dean Chamberlain, Nika Shakiba, Kelsey Adams, and Siyuan %J Proceedings of the National Academy of Sciences Yu. 2019. 'The optoelectronic microrobot: A versatile toolbox for micromanipulation', 116: 14823-28. 41. Zhao, Zeang, Jiangtao Wu, Xiaoming Mu, Haosen Chen, H Jerry Qi, and Daining %J Macromolecular rapid communications Fang. 2017. 'Desolvation induced origami of photocurable polymers by digit light processing', 38: 1600625. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15306 | - |
dc.description.abstract | 軟性驅動器,一種以軟性材料組成並以柔性結構來做為關節用以克服一般驅動器因剛性材料以及須與動力源相連接,使其在應用於生物組織或是軟性物體上受到限制,且容易造成損傷。這些軟性驅動器能輕易在軟組織上實現非常流暢的運動性,或者執行折疊,滾動和彎曲等運動。但軟性驅動器多以氣動為動力源,因此在需要高精度、快速響應、遠程控制和多自由度(DOF)的操控時受到局限。為了解決這些限制,我們開發了一種使用磁性微粒複合材料的軟性驅動器,以四個手指作為驅動的和一個支撐用的軟性材料組成,每個手指具有兩截指骨和彈性關節。指骨內嵌有釹鐵硼顆粒,而彈性關節則由柔韌性高的矽膠薄膜製成。而且,指骨內的釹鐵硼顆粒可以透過施以外在磁場的方式將這些能夠產生磁矩的磁性微粒重新排列,使嵌有磁性微粒的指骨在施以36mT的垂直磁場時得以產生85度彎曲的變形,進而抓取比其自身更大的目標物體。此外,微驅動器由三軸電磁系統磁驅動,可完成抓取的運動,該運動能夠以3.6倍的體重抓握和包裹物體,並能以操縱磁場的方式實現如偏航和搖擺之類等機器人運動。簡而言之,我們的論文提出了一種具有可編程磁性微粒的磁能軟性驅動器,該驅動器顯示出高精度的驅動和敏捷的操縱能力,並且具有能抓取、移動比自身更重、更大的物體。這些結果也顯示驅動器不受環境的限制,仍舊能精準地運行,也證明了我們開發的軟性驅動器深具外科手術的潛力。 | zh_TW |
dc.description.abstract | Soft microactuators, which can achieve high motility onto soft tissue, or implement simple motions of folding, rolling and bending to deliver object with no joints, are usually designed to overcome the tasks that rigid microactuators can barely perform. However, because mostly pneumatically actuated, they are limited when high accuracy, rapid response, remote control and multiple degree-of-freedom (DOF) manipulation is required. To address these limitations, we develop a magnetic soft microactuator, which are made of soft materials, with four actuating fingers and a support. Each finger are composed of two phalanges and a compliant joint, while the phalanges are made of composite material embedded with NdFeB particles and the joint is made of silicone film with high compliance. Moreover, the NdFeB particles in the phalanges that generate magnetic moment can be rearranged by applying an external magnetic field, so that the finger can be deformed by 85 degrees when a 36mT perpendicular magnetic field is applied. And thus make it able to hold soft object bigger than itself. Further, the microactuators are magnetically driven by a three-axis electromagnetic manipulation system allows motility like bending motion that is capable to grasp and enclose an object with 3.6 times body weight, and conduct robotic locomotion such as yaw and roll by manipulate the magnetic field. For short, our thesis proposed a magnetically driven soft actuator with programmable magnetic particle. The actuator show high accuracy actuation and agile manipulation, which make it capable to grasp and manipulate objects that is several times heavier and bigger. These results also show that the device is untethered to the environment but with high precision, and it also reveals that the soft actuator has the potential for surgery. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:32:42Z (GMT). No. of bitstreams: 1 U0001-0302202104043700.pdf: 3242124 bytes, checksum: 9e07578884f872342442913cf5033149 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii Chapter1 Introduction 1 1.1 Microactuator 1 1.2 Magnet 2 1.3 Thesis structure 4 Chapter 2 Literature Review 5 2.1 Soft Microactuator 6 2.2 Magnetic actuators 10 2.2.1 Magnetic actuators with permanent magnet 10 2.2.2 Magnetic actuators with soft magnetic material 11 2.2.3 Actuating techniques for the magnetic 13 Chapter 3 Material and Methods 17 3.1 Theory 17 3.2 Design and mechanism 20 3.3 Fabrication 31 3.4 Magnetic Manipulation 37 Chapter 4 Results and Discussion 45 4.1 Characterization of components 46 4.2 Microactuator 49 4.2.1 Alignment angle and Bending angle 49 4.2.2 One joint flower actuator 51 4.2.3 Two joint finger-liked microactuator 54 4.2.4 Optimization of the bending motion 58 4.3 Electromagnetic manipulation system 59 4.4 Applications of the actuator 62 Chapter 5 Conclusions 69 5.1 Conclusions 69 5.2 Future prospective 69 Reference 71 Appendix I 79 Appendix II 81 Appendix III 83 Appendix IV 85 Appendix V 93 Appendix VI 95 Appendix VII 98 | |
dc.language.iso | en | |
dc.title | 磁性可程序化之軟性手指驅動器設計與製造 | zh_TW |
dc.title | Design and Fabrication of Finger-liked Soft Actuator with Programmable Magnetic Particles | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),鍾添淦(Tien-Kan Chung),鄭鈺潔(Yu-Chieh Cheng) | |
dc.subject.keyword | 微型驅動器,軟性材料,可編碼的磁性微粒,三軸電磁系統, | zh_TW |
dc.subject.keyword | microactuator,soft material,programmable magnetic particles,3-axis electromagnetic manipulation system, | en |
dc.relation.page | 99 | |
dc.identifier.doi | 10.6342/NTU202100428 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2021-02-05 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0302202104043700.pdf 目前未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。