Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15298
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡素宜(Su-Yi Tsai)
dc.contributor.authorHOU-JUN WANGen
dc.contributor.author王厚潤zh_TW
dc.date.accessioned2021-06-07T17:32:38Z-
dc.date.copyright2020-07-16
dc.date.issued2020
dc.date.submitted2020-07-09
dc.identifier.citationAgay-Shay, K., Friger, M., Linn, S., Peled, A., Amitai, Y., Peretz, C. (2013). Air pollution and congenital heart defects. Environ Res, 124, 28-34. doi:10.1016/j.envres.2013.03.005
Al-Humadi, N. H., Siegel, P. D., Lewis, D. M., Barger, M. W., Ma, J. Y., Weissman, D. N., Ma, J. K. (2002). Alteration of intracellular cysteine and glutathione levels in alveolar macrophages and lymphocytes by diesel exhaust particle exposure. Environ Health Perspect, 110(4), 349-353. doi:10.1289/ehp.02110349
Anderson, J. O., Thundiyil, J. G., Stolbach, A. (2012). Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol, 8(2), 166-175. doi:10.1007/s13181-011-0203-1
Anselme, F., Loriot, S., Henry, J. P., Dionnet, F., Napoleoni, J. G., Thuillez, C., Morin, J. P. (2007). Inhalation of diluted diesel engine emission impacts heart rate variability and arrhythmia occurrence in a rat model of chronic ischemic heart failure. Arch Toxicol, 81(4), 299-307. doi:10.1007/s00204-006-0147-4
Bagate, K., Meiring, J. J., Cassee, F. R., Borm, P. J. (2004). The effect of particulate matter on resistance and conductance vessels in the rat. Inhal Toxicol, 16(6-7), 431-436. doi:10.1080/08958370490439588
Becher, R., Bucht, A., Ovrevik, J., Hongslo, J. K., Dahlman, H. J., Samuelsen, J. T., Schwarze, P. E. (2007). Involvement of NADPH oxidase and iNOS in rodent pulmonary cytokine responses to urban air and mineral particles. Inhal Toxicol, 19(8), 645-655. doi:10.1080/08958370701353528
Becker, S., Dailey, L., Soukup, J. M., Silbajoris, R., Devlin, R. B. (2005). TLR-2 is involved in airway epithelial cell response to air pollution particles. Toxicol Appl Pharmacol, 203(1), 45-52. doi:10.1016/j.taap.2004.07.007
Bobak, M. (2000). Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect, 108(2), 173-176. doi:10.1289/ehp.00108173
Brook, R. D., Brook, J. R., Rajagopalan, S. (2003). Air pollution: the 'Heart' of the problem. Curr Hypertens Rep, 5(1), 32-39. doi:10.1007/s11906-003-0008-y
Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., . . . Metabolism. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378. doi:10.1161/CIR.0b013e3181dbece1
Burridge, P. W., Li, Y. F., Matsa, E., Wu, H., Ong, S. G., Sharma, A., . . . Wu, J. C. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med, 22(5), 547-556. doi:10.1038/nm.4087
Carr, M. J., Undem, B. J. (2001). Inflammation-induced plasticity of the afferent innervation of the airways. Environ Health Perspect, 109 Suppl 4, 567-571. doi:10.1289/ehp.01109s4567
Chambers, S. M., Qi, Y., Mica, Y., Lee, G., Zhang, X. J., Niu, L., . . . Studer, L. (2012). Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol, 30(7), 715-720. doi:10.1038/nbt.2249
Chao, M. W., Kozlosky, J., Po, I. P., Strickland, P. O., Svoboda, K. K., Cooper, K., . . . Gordon, M. K. (2011). Diesel exhaust particle exposure causes redistribution of endothelial tube VE-cadherin. Toxicology, 279(1-3), 73-84. doi:10.1016/j.tox.2010.09.011
Chao, M. W., Po, I. P., Laumbach, R. J., Koslosky, J., Cooper, K., Gordon, M. K. (2012). DEP induction of ROS in capillary-like endothelial tubes leads to VEGF-A expression. Toxicology, 297(1-3), 34-46. doi:10.1016/j.tox.2012.03.009
Chazaud, C., Yamanaka, Y., Pawson, T., Rossant, J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell, 10(5), 615-624. doi:10.1016/j.devcel.2006.02.020
Donaldson, K., MacNee, W. (2001). Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). Int J Hyg Environ Health, 203(5-6), 411-415. doi:10.1078/1438-4639-00059
Fu, D. G. (2015). Cardiac Arrhythmias: Diagnosis, Symptoms, and Treatments. Cell Biochem Biophys, 73(2), 291-296. doi:10.1007/s12013-015-0626-4
Ghio, A. J., Cohen, M. D. (2005). Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles. Inhal Toxicol, 17(13), 709-716. doi:10.1080/08958370500224482
Gilboa, S. M., Mendola, P., Olshan, A. F., Langlois, P. H., Savitz, D. A., Loomis, D., . . . Fixler, D. E. (2005). Relation between ambient air quality and selected birth defects, seven county study, Texas, 1997-2000. Am J Epidemiol, 162(3), 238-252. doi:10.1093/aje/kwi189
Godleski, J. J., Verrier, R. L., Koutrakis, P., Catalano, P., Coull, B., Reinisch, U., . . . Killingsworth, C. (2000). Mechanisms of morbidity and mortality from exposure to ambient air particles. Res Rep Health Eff Inst(91), 5-88; discussion 89-103.
Gordon, T., Nadziejko, C., Schlesinger, R., Chen, L. C. (1998). Pulmonary and cardiovascular effects of acute exposure to concentrated ambient particulate matter in rats. Toxicol Lett, 96-97, 285-288. doi:10.1016/s0378-4274(98)00084-8
Gorini, F., Chiappa, E., Gargani, L., Picano, E. (2014). Potential effects of environmental chemical contamination in congenital heart disease. Pediatr Cardiol, 35(4), 559-568. doi:10.1007/s00246-014-0870-1
Guatimosim, S., Guatimosim, C., Song, L.-S. (2011). Imaging calcium sparks in cardiac myocytes. Methods in molecular biology (Clifton, N.J.), 689, 205-214. doi:10.1007/978-1-60761-950-5_12
Harder, S. D., Soukup, J. M., Ghio, A. J., Devlin, R. B., Becker, S. (2001). Inhalation of PM2.5 does not modulate host defense or immune parameters in blood or lung of normal human subjects. Environ Health Perspect, 109 Suppl 4, 599-604. doi:10.1289/ehp.01109s4599
Huang, C. C., Chen, B. Y., Pan, S. C., Ho, Y. L., Guo, Y. L. (2019). Prenatal exposure to PM(2.5) and Congenital Heart Diseases in Taiwan. Sci Total Environ, 655, 880-886. doi:10.1016/j.scitotenv.2018.11.284
Hyslop, L., Stojkovic, M., Armstrong, L., Walter, T., Stojkovic, P., Przyborski, S., . . . Lako, M. (2005). Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells, 23(8), 1035-1043. doi:10.1634/stemcells.2005-0080
Jing, D., Parikh, A., Canty, J. M., Jr., Tzanakakis, E. S. (2008). Stem cells for heart cell therapies. Tissue Eng Part B Rev, 14(4), 393-406. doi:10.1089/ten.teb.2008.0262
Kannan, S., Misra, D. P., Dvonch, J. T., Krishnakumar, A. (2006). Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect, 114(11), 1636-1642. doi:10.1289/ehp.9081
Kim, H., Kim, J., Kim, S., Kang, S. H., Kim, H. J., Kim, H., . . . Chae, I. H. (2017). Cardiovascular Effects of Long-Term Exposure to Air Pollution: A Population-Based Study With 900 845 Person-Years of Follow-up. J Am Heart Assoc, 6(11). doi:10.1161/JAHA.117.007170
Knottnerus, J. A., Delgado, L. R., Knipschild, P. G., Essed, G. G., Smits, F. (1990). Haematologic parameters and pregnancy outcome. A prospective cohort study in the third trimester. J Clin Epidemiol, 43(5), 461-466. doi:10.1016/0895-4356(90)90134-b
Li, Z., Carter, J. D., Dailey, L. A., Huang, Y. C. (2005). Pollutant particles produce vasoconstriction and enhance MAPK signaling via angiotensin type I receptor. Environ Health Perspect, 113(8), 1009-1014. doi:10.1289/ehp.7736
Li, Z., Hyseni, X., Carter, J. D., Soukup, J. M., Dailey, L. A., Huang, Y. C. (2006). Pollutant particles enhanced H2O2 production from NAD(P)H oxidase and mitochondria in human pulmonary artery endothelial cells. Am J Physiol Cell Physiol, 291(2), C357-365. doi:10.1152/ajpcell.00365.2005
Lian, X., Zhang, J., Azarin, S. M., Zhu, K., Hazeltine, L. B., Bao, X., . . . Palecek, S. P. (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc, 8(1), 162-175. doi:10.1038/nprot.2012.150
Mathapati, S., Siller, R., Impellizzeri, A. A., Lycke, M., Vegheim, K., Almaas, R., Sullivan, G. J. (2016). Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells. Curr Protoc Stem Cell Biol, 38, 1G 6 1-1G 6 18. doi:10.1002/cpsc.13
McFadden, D. G., Charité, J., Richardson, J. A., Srivastava, D., Firulli, A. B., Olson, E. N. (2000). A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development, 127(24), 5331-5341.
Moller, P., Jacobsen, N. R., Folkmann, J. K., Danielsen, P. H., Mikkelsen, L., Hemmingsen, J. G., . . . Loft, S. (2010). Role of oxidative damage in toxicity of particulates. Free Radic Res, 44(1), 1-46. doi:10.3109/10715760903300691
Muhlfeld, C., Rothen-Rutishauser, B., Blank, F., Vanhecke, D., Ochs, M., Gehr, P. (2008). Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol, 294(5), L817-829. doi:10.1152/ajplung.00442.2007
Nagy, J. A., Vasile, E., Feng, D., Sundberg, C., Brown, L. F., Manseau, E. J., . . . Dvorak, H. F. (2002). VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol, 67, 227-237. doi:10.1101/sqb.2002.67.227
Nel, A., Xia, T., Madler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622-627. doi:10.1126/science.1114397
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., . . . Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379-391. doi:10.1016/s0092-8674(00)81769-9
Padula, A. M., Tager, I. B., Carmichael, S. L., Hammond, S. K., Lurmann, F., Shaw, G. M. (2013). The association of ambient air pollution and traffic exposures with selected congenital anomalies in the San Joaquin Valley of California. Am J Epidemiol, 177(10), 1074-1085. doi:10.1093/aje/kws367
Panagiotakos, D. B., Pitsavos, C., Chrysohoou, C., Skoumas, J., Masoura, C., Toutouzas, P., Stefanadis, C. (2004). Effect of exposure to secondhand smoke on markers of inflammation: the ATTICA study. Am J Med, 116(3), 145-150. doi:10.1016/j.amjmed.2003.07.019
Parikh, A., Wu, J., Blanton, R. M., Tzanakakis, E. S. (2015). Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. Tissue Eng Part B Rev, 21(4), 377-392. doi:10.1089/ten.TEB.2014.0662
Pekkanen, J., Peters, A., Hoek, G., Tiittanen, P., Brunekreef, B., de Hartog, J., . . . Vanninen, E. (2002). Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation, 106(8), 933-938. doi:10.1161/01.cir.0000027561.41736.3c
Peters, A., Dockery, D. W., Muller, J. E., Mittleman, M. A. (2001). Increased particulate air pollution and the triggering of myocardial infarction. Circulation, 103(23), 2810-2815. doi:10.1161/01.cir.103.23.2810
Peters, A., Liu, E., Verrier, R. L., Schwartz, J., Gold, D. R., Mittleman, M., . . . Dockery, D. W. (2000). Air pollution and incidence of cardiac arrhythmia. Epidemiology, 11(1), 11-17. doi:10.1097/00001648-200001000-00005
Peters, A., Perz, S., Doring, A., Stieber, J., Koenig, W., Wichmann, H. E. (1999). Increases in heart rate during an air pollution episode. Am J Epidemiol, 150(10), 1094-1098. doi:10.1093/oxfordjournals.aje.a009934
Pope, C. A., 3rd, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141. doi:10.1001/jama.287.9.1132
Pope, C. A. r., Dockery, D. W., Kanner, R. E., Villegas, G. M., Schwartz, J. (1999). Oxygen saturation, pulse rate, and particulate air pollution: A daily time-series panel study. Am J Respir Crit Care Med, 159(2), 365-372. doi:10.1164/ajrccm.159.2.9702103
Quay, J. L., Reed, W., Samet, J., Devlin, R. B. (1998). Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappaB activation. Am J Respir Cell Mol Biol, 19(1), 98-106. doi:10.1165/ajrcmb.19.1.3132
Risom, L., Moller, P., Loft, S. (2005). Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res, 592(1-2), 119-137. doi:10.1016/j.mrfmmm.2005.06.012
Ritz, B. (2010). Air pollution and congenital anomalies. Occup Environ Med, 67(4), 221-222. doi:10.1136/oem.2009.051201
Ritz, B., Wilhelm, M. (2008). Ambient air pollution and adverse birth outcomes: methodologic issues in an emerging field. Basic Clin Pharmacol Toxicol, 102(2), 182-190. doi:10.1111/j.1742-7843.2007.00161.x
Rodriguez, R. T., Velkey, J. M., Lutzko, C., Seerke, R., Kohn, D. B., O'Shea, K. S., Firpo, M. T. (2007). Manipulation of OCT4 levels in human embryonic stem cells results in induction of differential cell types. Exp Biol Med (Maywood), 232(10), 1368-1380. doi:10.3181/0703-rm-63
Sørensen, M., Daneshvar, B., Hansen, M., Dragsted, L. O., Hertel, O., Knudsen, L., Loft, S. (2002). Personal PM2.5 Exposure and Markers of Oxidative Stress in Blood. Environmental Health Perspectives, 111(2), 161-165. doi:10.1289/ehp.5646
Satin, J., Itzhaki, I., Rapoport, S., Schroder, E. A., Izu, L., Arbel, G., . . . Gepstein, L. (2008). Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells, 26(8), 1961-1972. doi:10.1634/stemcells.2007-0591
Schwartz, R. J., Olson, E. N. (1999). Building the heart piece by piece: modularity of cis-elements regulating Nkx2-5 transcription. Development, 126(19), 4187-4192.
Sepulveda, J. L., Vlahopoulos, S., Iyer, D., Belaguli, N., Schwartz, R. J. (2002). Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem, 277(28), 25775-25782. doi:10.1074/jbc.M203122200
Simkhovich, B. Z., Kleinman, M. T., Kloner, R. A. (2008). Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. J Am Coll Cardiol, 52(9), 719-726. doi:10.1016/j.jacc.2008.05.029
Singh, J., Aggison, L., Jr., Moore-Cheatum, L. (1993). Teratogenicity and developmental toxicity of carbon monoxide in protein-deficient mice. Teratology, 48(2), 149-159. doi:10.1002/tera.1420480209
Sugimoto, R., Kumagai, Y., Nakai, Y., Ishii, T. (2005). 9,10-Phenanthraquinone in diesel exhaust particles downregulates Cu,Zn-SOD and HO-1 in human pulmonary epithelial cells: intracellular iron scavenger 1,10-phenanthroline affords protection against apoptosis. Free Radic Biol Med, 38(3), 388-395. doi:10.1016/j.freeradbiomed.2004.11.003
Sun, Q., Yue, P., Kirk, R. I., Wang, A., Moatti, D., Jin, X., . . . Rajagopalan, S. (2008). Ambient air particulate matter exposure and tissue factor expression in atherosclerosis. Inhal Toxicol, 20(2), 127-137. doi:10.1080/08958370701821482
Takizawa, H., Ohtoshi, T., Kawasaki, S., Abe, S., Sugawara, I., Nakahara, K., . . . Kudoh, S. (2000). Diesel exhaust particles activate human bronchial epithelial cells to express inflammatory mediators in the airways: a review. Respirology, 5(2), 197-203. doi:10.1046/j.1440-1843.2000.00245.x
Tamagawa, E., Bai, N., Morimoto, K., Gray, C., Mui, T., Yatera, K., . . . van Eeden, S. F. (2008). Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol, 295(1), L79-85. doi:10.1152/ajplung.00048.2007
Topinka, J., Binkova, B., Mrackova, G., Stavkova, Z., Benes, I., Dejmek, J., . . . Sram, R. J. (1997). DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutat Res, 390(1-2), 59-68. doi:10.1016/s0165-1218(96)00166-8
Tsai, S. Y., Ghazizadeh, Z., Wang, H. J., Amin, S., Ortega, F. A., Badieyan, Z. S., . . . Chen, S. (2020). A human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity. Cardiovasc Res, 116(3), 658-670. doi:10.1093/cvr/cvz148
Tseng, C. Y., Wang, J. S., Chang, Y. J., Chang, J. F., Chao, M. W. (2015). Exposure to High-Dose Diesel Exhaust Particles Induces Intracellular Oxidative Stress and Causes Endothelial Apoptosis in Cultured In Vitro Capillary Tube Cells. Cardiovasc Toxicol, 15(4), 345-354. doi:10.1007/s12012-014-9302-y
Tseng, C. Y., Wang, J. S., Chao, M. W. (2017). Causation by Diesel Exhaust Particles of Endothelial Dysfunctions in Cytotoxicity, Pro-inflammation, Permeability, and Apoptosis Induced by ROS Generation. Cardiovasc Toxicol, 17(4), 384-392. doi:10.1007/s12012-016-9364-0
Vandenbroucke, E., Mehta, D., Minshall, R., Malik, A. B. (2008). Regulation of endothelial junctional permeability. Ann N Y Acad Sci, 1123, 134-145. doi:10.1196/annals.1420.016
Veronesi, B., Oortgiesen, M., Carter, J. D., Devlin, R. B. (1999). Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Toxicol Appl Pharmacol, 154(1), 106-115. doi:10.1006/taap.1998.8567
Vrijheid, M., Martinez, D., Manzanares, S., Dadvand, P., Schembari, A., Rankin, J., Nieuwenhuijsen, M. (2011). Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect, 119(5), 598-606. doi:10.1289/ehp.1002946
Weis, S. M., Cheresh, D. A. (2005). Pathophysiological consequences of VEGF-induced vascular permeability. Nature, 437(7058), 497-504. doi:10.1038/nature03987
Wellenius, G. A., Saldiva, P. H., Batalha, J. R., Krishna Murthy, G. G., Coull, B. A., Verrier, R. L., Godleski, J. J. (2002). Electrocardiographic changes during exposure to residual oil fly ash (ROFA) particles in a rat model of myocardial infarction. Toxicol Sci, 66(2), 327-335. doi:10.1093/toxsci/66.2.327
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15298-
dc.description.abstract空氣中懸浮微粒2.5(PM2.5)是一種心血管疾病的致病因子,同時也是先天性心臟病的致病因子之一。動物研究證實PM2.5可以引發心血管疾病以及先天性心臟病。然而PM2.5造成心臟疾病的致病機轉仍未知。本研究利用人類胚胎幹細胞以及人類胚胎幹細胞衍化之心肌細胞探討PM2.5對其影響。我發現PM2.5會降低人類胚胎幹細胞的多能基因表現(NANOG, OCT4),進而造成中胚層基因(MESP1)表現量下降和降低心肌前驅細胞相關基因(NKX2.5, HAND, HAND2, GATA4 and GATA6 )的表現,最後導致心肌細胞的分化效率下降。同時在人類胚胎幹細胞曝曬PM2.5後其衍生之心肌細胞呈現肌節構造排列不規則以及細胞變大的現象。此外我也發現不論長期或是短期的PM2.5曝曬皆會造成心肌細胞跳動頻率下降,以及無法自行恢復的肌節構造排列不規則。整體而言,本研究首次證明PM2.5造成人類胚胎幹細胞分化成心肌細胞的效率下降,同時這些心肌細胞有肌節構排列不整齊以及細胞變大的狀況,其原因可能為幹細胞多功能基因表現量下降,導致中胚層基因以及心臟前驅細胞基因表現量降低,我更進一步發現PM2.5會直接造成心肌細胞的肌節構排列不整齊以及跳動頻率下降zh_TW
dc.description.abstractParticulate matter 2.5 (PM2.5) is a risk factor for cardiovascular disease (CVD) and congenital heart disease (CHD). Animal studies show that PM2.5 induces CVD and CHD. However, the underlying mechanisms of PM2.5-induced CVD and CHD remain unknown. In this thesis study, I used human embryonic stem cells (hESCs) and human embryonic stem cell-derived cardiomyocytes (hESC-derived CMs) to investigate the effects of PM2.5 on hESC pluripotent stemness and hESC-derived CMs. PM2.5 treatment decreased the expression of pluripotency markers NANOG and OCT4 and lowered the efficiency of cardiomyocyte differentiation in hESCs. Moreover, PM2.5 treatment down-regulated the mesoderm marker MESP1 and cardiac progenitor genes (NKX2.5, HAND1, HAND2, GATA4, and GATA6) during directed cardiac differentiation. Interestingly, these PM2.5-pretreated hESC-derived CMs exhibited disorganized sarcomeric structures and larger cell size. In addition, PM2.5-treated hESC-derived CMs showed a slower beating rate and disorganized sarcomeric structures. Taken together, PM2.5 may affect directed cardiomyocyte differentiation by down-regulating the expression of the mesoderm marker MESP1 and cardiac progenitors NKX2.5, HAND, HAND2, GATA4, and GATA6 and disorganizing sarcomeric structures.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:32:38Z (GMT). No. of bitstreams: 1
U0001-0907202011422500.pdf: 4171699 bytes, checksum: 4bdfe35dd59d5f1f14c2df42480448bc (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 i
Abstract ii
Introduction 1
1. Overview of particulate matter and cardiovascular disease 1
2. Potential mechanisms of PM2.5-mediated cardiovascular effects 2
3. Overview of congenital heart disease 4
4. Overview of human pluripotent stem cells 6
Materials and Methods
Human embryonic stem cell (hESC) culture 8
Cardiac differentiation 8
PM2.5 preparation and PM2.5 treatment conditions 9
Immunofluorescent staining 9
Calcium imaging 10
Protein extraction and western blotting 11
RNA extraction and quantitative real-time PCR 11
In vitro spontaneous differentiation 12
Cell cycle analysis and cardiac differentiation efficiency 12
Statistical analysis 13
Results
Effects of PM2.5 on human embryonic stem cells 14
hESCs exposed to PM2.5 have lower efficiency of cardiomyocyte differentiation and disorganized sarcomeric structures 15
Impact of short-term PM2.5 treatment on hESC-derived cardiomyocytes 17
Effects of long-term PM2.5 treatment on hESC-derived cardiomyocytes 20
Discussion 22
Supplemental Tables and Figures 28
Figures 30
References 63
dc.language.isoen
dc.subject心臟分化zh_TW
dc.subject人類胚胎幹細胞zh_TW
dc.subject懸浮微粒zh_TW
dc.subject心血管疾病zh_TW
dc.subject先天性心臟病zh_TW
dc.subjectcongenital heart diseaseen
dc.subjectcardiovascular diseaseen
dc.subjecthuman pluripotent stem cellen
dc.subjectdirected cardiac differentiationen
dc.subjectparticulate matter 2.5en
dc.title利用人類胚胎幹細胞探討PM2.5在心臟發育時期和心
臟細胞引起之毒性
zh_TW
dc.titleInvestigation of PM2.5-induced Toxicity in Cardiac Cell
Development and Cardiomyocytes using Human
Embryonic Stem Cells
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李士傑(Shyh-Jye Lee),蔡沛學(Pei-Shiue Tsai)
dc.subject.keyword人類胚胎幹細胞,心臟分化,懸浮微粒,心血管疾病,先天性心臟病,zh_TW
dc.subject.keywordhuman pluripotent stem cell,directed cardiac differentiation,particulate matter 2.5,cardiovascular disease,congenital heart disease,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202001407
dc.rights.note未授權
dc.date.accepted2020-07-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
Appears in Collections:生命科學系

Files in This Item:
File SizeFormat 
U0001-0907202011422500.pdf
  Restricted Access
4.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved