Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15274
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 劉?睿(Je-Ruei Liu) | |
dc.contributor.author | Wan-Ping Chang-Liao | en |
dc.contributor.author | 張廖婉萍 | zh_TW |
dc.date.accessioned | 2021-06-07T17:29:13Z | - |
dc.date.copyright | 2020-02-18 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-11 | |
dc.identifier.citation | 衛生福利部食品藥物管理署(2017)。可供食品使用原料彙整一覽表。
許琇涵(2017)。具抗病毒能力之乳酸菌株篩選及其特性研究。國立臺灣大學動物科學技術學研究所碩士論文,台北市。 Ahmed S. T., Hoon J., Mun H. S., and Yang C. J. 2014. Evaluation of Lactobacillus and Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr J Microbiol Res 8(1):96-104. Ahmed Z., Wang Y., Ahmad A., Khan S. T., Nisa M., Ahmad H., and Afreen A. 2013. Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 53(5):422-34. Al Kassaa I. 2017. New insights on antiviral probiotics. Berlin: Springer. Al Kassaa I., Hober D., Hamze M., Chihib N. E., and Drider D. 2014. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins 6(3-4):177-85. Aoki-Utsubo C., Chen M., and Hotta H. 2018. Time-of-addition and temperature-shift assays to determine particular step(s) in the viral life cycle that is blocked by antiviral substance(s). Bio Protoc 8(9): e2830. Bae J. Y., Kim J. I., Park S., Yoo K., Kim I. H., Joo W., Ryu B. H., Park M. S., Lee I., and Park M. S. 2018. Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Probiotics on Human Seasonal and Avian Influenza Viruses. J Microbiol Biotechnol 28(6):893-901. Baekbo P., Kristensen C. S., and Larsen L. E. 2012. Porcine circovirus diseases: a review of PMWS. Transbound Emerg Dis 59 Suppl 1:60-7. Bengoa A. A., Iraporda C., Garrote G. L., and Abraham A. G. 2019. Kefir micro-organisms: their role in grain assembly and health properties of fermented milk. J Appl Microbiol 126(3):686-700. Benmechernene Z., Chentouf H. F., Yahia B., Fatima G., Quintela-Baluja M., Calo-Mata P., and Barros-Velazquez J. 2013. Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. Biomed Res Int 2013:418132. Blais M., Pouliot Y., Gauthier S., Boutin Y., and Lessard M. 2014. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells. J Nutr Sci 3:e57. Blome S., Gabriel C., and Beer M. 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 32(31):3879-82. Brown V. R., and Bevins S. N. 2018. A review of classical swine fever virus and routes of introduction into the United States and the potential for virus establishment. Front Vet Sci 5:31. Callegari M. A., Novais A. K., Oliveira E. R., Dias C. P., Schmoller D. L., Pereira M., Nagi J. G., Alves J. B., and Silva C. A. 2016. Microencapsulated acids associated with essential oils and acid salts for piglets in the nursery phase. Semina: Ciênc Agrár 37(4): 2193-2208. Chang Y. C., Kao C. F., Chang C. Y., Jeng C. R., Tsai P. S., Pang V. F., Chiou H. Y., Peng J. Y., Cheng I. C., and Chang H. W. 2017. Evaluation and comparison of the pathogenicity and host immune responses induced by a G2b Taiwan porcine epidemic diarrhea virus (strain Pintung 52) and its highly cell-culture passaged strain in conventional 5-week-old pigs. Viruses 9(5): 121. Charteris W. P., Kelly P. M., Morelli L., and Collins J. K. 1998. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61(12):1636-43. Choi H. J., Song J. H., Park K. S., Baek S. H., Lee E. S., and Kwon D. H. 2010. Antiviral activity of yogurt against enterovirus 71 in vero cells. Food Sci Biotechnol 19(2):289-95. Coppola R., Succi M., Tremonte P., Reale A., Salzano G., and Sorrentino E. 2005. Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. Le Lait 85(3):193-204. Dowarah R., Verma A. K., Agarwal N., Patel B. H. M., and Singh P. 2017. Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livest Sci 195:74-9. Ehrmann M. A., Kurzak P., Bauer J., and Vogel R. F. 2002. Characterization of Lactobacilli towards their use as probiotic adjuncts in poultry. J Appl Microbiol 92(5):966-75. Florez A. B., Campedelli I., Delgado S., Alegria A., Salvetti E., Felis G. E., Mayo B., and Torriani S. 2016. Antibiotic susceptibility profiles of dairy Leuconostoc, analysis of the genetic basis of atypical resistances and transfer of genes in vitro and in a food matrix. PLoS One 11(1):e0145203. Fouladgar S., Shahraki A. D. F., Ghalamkari G. R., Khani M., Ahmadi F., and Erickson P. S. 2016. Performance of Holstein calves fed whole milk with or without kefir. J Dairy Sci 99(10):8081-9. Golowczyc M. A., Mobili P., Garrote G. L., Abraham A. G., and De Antoni G. L. 2007. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int J Food Microbiol 118(3):264-73. Harrigan W. F., and McCance M. E. 1966. Laboratory methods in microbiology. New York: Academic Press. Hill C., Guarner F., Reid G., Gibson G. R., Merenstein D. J., Pot B., Morelli L., Canani R. B., Flint H. J., Salminen S., Calder P. C., and Sanders M. E. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506-14. Hosseindoust A., Park J. W., and Kim I. H. 2016. Effects of Bacillus subtilis, kefir and β-glucan supplementation on growth performance, blood characteristics, meat quality and intestine microbiota in broilers. Korean J Poult Sci 43(3):159-67. Huang Y., Wu F., Wang X., Sui Y., Yang L., and Wang J. 2013. Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: a potential probiotic bacterium with cholesterol-lowering effects. J Dairy Sci 96(5):2816-25. Iraporda C., Abatemarco Junior M., Neumann E., Nunes A. C., Nicoli J. R., Abraham A. G., and Garrote G. L. 2017. Biological activity of the non-microbial fraction of kefir: antagonism against intestinal pathogens. J Dairy Res 84(3):339-45. Iraporda C., Errea A., Romanin D. E., Cayet D., Pereyra E., Pignataro O., Sirard J. C., Garrote G. L., Abraham A. G., and Rumbo M. 2015. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220(10):1161-9. Iraporda C., Romanin D. E., Rumbo M., Garrote G. L., and Abraham A. G. 2014. The role of lactate on the immunomodulatory properties of the nonbacterial fraction of kefir. Food Res Int 62:247-53. Kanmani P., Albarracin L., Kobayashi H., Iida H., Komatsu R., Humayun Kober A. K. M., Ikeda-Ohtsubo W., Suda Y., Aso H., Makino S., Kano H., Saito T., Villena J., and Kitazawa H. 2018. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Mol Immunol 93:253-65. Kil J. H., Jung K. O., Lee H. S., Hwang I. K., Kim Y. J., and Park K. Y. 2004. Effects of kimchi on stomach and colon health of Helicobacter pylori-infected volunteers. J Food Sci Nutr 9:161-6. Kim K. W., Kang S. S., Woo S. J., Park O. J., Ahn K. B., Song K. D., Lee H. K., Yun C. H., and Han S. H. 2017. Lipoteichoic acid of probiotic Lactobacillus plantarum attenuates poly I:C-induced IL-8 production in porcine intestinal epithelial cells. Front Microbiol 8:1827. Le B., and Yang S. H. 2019. Effect of potential probiotic Leuconostoc mesenteroides FB111 in prevention of cholesterol absorption by modulating NPC1L1/PPARalpha/SREBP-2 pathways in epithelial Caco-2 cells. Int Microbiol 22(2):279-87. Lee C. 2015. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J 12:193. Linares D. M., Gomez C., Renes E., Fresno J. M., Tornadijo M. E., Ross R. P., and Stanton C. 2017. Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 8:846. Mahmud R. S., Müller C., Romanova Y., Mostafa A., Ulyanova V., Pleschka S., and Ilinskaya O. 2017. Ribonuclease from Bacillus acts as an antiviral agent against negative- and positive-sense single stranded human respiratory RNA viruses. Biomed Res Int 2017:5279065. Makino S., Sato A., Goto A., Nakamura M., Ogawa M., Chiba Y., Hemmi J., Kano H., Takeda K., Okumura K., and Asami Y. 2016. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J Dairy Sci 99(2):915-23. Meszaros I., Olasz F., Csagola A., Tijssen P., and Zadori Z. 2017. Biology of porcine parvovirus (Ungulate parvovirus 1). Viruses 9(12): 393. Nácher-Vázquez M., Ballesteros N., Canales Á., Saint-Jean S. R., Pérez-Prieto S. I., Prieto A., Aznar R., and López P. 2015. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohyd Polym 124:292-301. Nyanzi R., Jooste P. J., Cameron M., and Witthuhn C. 2013. Comparison of rpoA and pheS gene sequencing to 16S rRNA gene sequencing in identification and phylogenetic analysis of LAB from probiotic food products and supplements. Food Biotechnol 27(4):303-27. Olanratmanee E. O., Kunavongkrit A., and Tummaruk P. 2010. Impact of porcine epidemic diarrhea virus infection at different periods of pregnancy on subsequent reproductive performance in gilts and sows. Anim Reprod Sci 122(1-2):42-51. Oleksy M., and Klewicka E. 2018. Exopolysaccharides produced by Lactobacillus sp.: biosynthesis and applications. Crit Rev Food Sci Nutr 58(3):450-62. Ouoba L. I., Thorsen L., and Varnam A. H. 2008. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int J Food Microbiol 124(3):224-30. Paton D. J., Sumption K. J., and Charleston B. 2009. Options for control of foot-and-mouth disease: knowledge, capability and policy. Phil Trans R Soc B 364(1530):2657-2667. Peng J. Y., Horng Y. B., Wu C. H., Chang C. Y., Chang Y. C., Tsai P. S., Jeng C. R., Cheng Y. H., and Chang H. W. 2019. Evaluation of antiviral activity of Bacillus licheniformis-fermented products against porcine epidemic diarrhea virus. AMB Express 9:191. Rahkila R., De Bruyne K., Johansson P., Vandamme P., and Bjorkroth J. 2014. Reclassification of Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum comb. nov., description of Leuconostoc gelidum subsp. aenigmaticum subsp. nov., designation of Leuconostoc gelidum subsp. gelidum subsp. nov. and emended description of Leuconostoc gelidum. Int J Syst Evol Microbiol 64(Pt 4):1290-5. Raymond P., Bellehumeur C., Nagarajan M., Longtin D., Ferland A., Müller P., Bissonnette R., and Simard C. 2017. Porcine reproductive and respiratory syndrome virus (PRRSV) in pig meat. Can J Vet Res 81(3):162-170. Saeed S., Ahmad S., and Rasool S. A. 2004. Antimicrobial spectrum, production and mode of action of staphylococcin 188 produced by Staphylococcus aureus 188. Pak J Pharm Sci 17(1):1-8. Sharma M., Dangi P., and Choudhary M. 2014. Actinomycetes: source, identification, and their applications. Int J Curr Microbiol App Sci 3(2): 801-832. Shen H. Y., Zhang C. H., Guo P. J., Liu Z. C., Minhua Sun M. H., Sun J. Y., Li L. L., Dong J. W., and Zhang J. F. 2016. Short communication: antiviral activity of porcine IFN-λ3 against porcine epidemic diarrhea virus in vitro. Virus Genes 52, 877-82. Sonia T. A., Ji H., Hong-Seok M., and Chul-Ju Y. 2014. Evaluation of Lactobacillus and Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr J Microbiol Res 8(1):96-104. Toghyani M., Mosavi S. K., Modaresi M., and Landy N. 2015. Evaluation of kefir as a potential probiotic on growth performance, serum biochemistry and immune responses in broiler chicks. Anim Nutr 1(4):305-9. VanderWaal K., and Deen J. 2018. Global trends in infectious diseases of swine. Proc Natl Acad Sci U.S.A. 115(45):11495-500. Villena J., Vizoso-Pinto M. G., and Kitazawa H. 2016. Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Front Immunol 7:563. Yen C. H., Lin Y. S., and Tu C. F. 2015. A novel method for separation of caseins from milk by phosphates precipitation. Prep Biochem Biotechnol 45(1):18-32. Yilmaz M., Soran H., and Beyatli Y. 2006. Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiol Res 161(2):127-31. Yu B., Liu J. R., Chiou M. Y., Hsu Y. R., and Chiou P. W. S. 2007. The Effects of Probiotic Lactobacillus reuteri Pg4 Strain on Intestinal Characteristics and Performance in Broilers. Asian-Aust J Anim Sci 20(8): 1243-51. Zakaryan H. 2019. Porcine viruses: from pathogenesis to strategies for control. United Kingdom: Caister Academic Press. Zhao G., Liu L., Su B., Zhang T., Chen P., Li W., and Wu H. 2017. The dynamic changes of interferon lambdas related genes and proteins in JAK/STAT pathway in both acute and chronic HIV-1 infected patients. AIDS Res Ther 14(1):31. Zumla A., Chan J., Azhar E., Hui D., and Yuen K. Y. 2016. Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 15:327-47. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15274 | - |
dc.description.abstract | 近年來,密集型的畜牧產業導致病毒性疾病快速傳播,造成嚴重的經濟損失。部分研究證實益生菌除了有利於宿主健康,亦可用於預防及控制病毒感染。由於在不同動物實驗當中已評估過傳統發酵乳製品克弗爾有作為飼料添加物的潛力,因此本論文的主旨為探討克弗爾是否具有抗病毒之潛力,分析克弗爾發酵乳上清液及克弗爾粒分離菌株在綠猴腎細胞(Cercopithecus aethiops kidney cells, Vero cells)上抗豬流行性下痢病毒(porcine epidemic diarrhea virus, PEDV)之活性,並進一步探討可能的機制。本研究先進行菌種鑑定,並根據預防模式中抗豬流行性下痢病毒活性的結果篩選出胞內萃取物具有最佳抗病毒潛力之菌株。為探討其抗豬流行性下痢病毒活性之機制,以即時定量聚合酶鏈鎖反應進行抗病毒相關基因表現量之測定,並利用時間效應分析在不同時間添加樣品對抗病毒活性之影響。根據16S rRNA及rpoA基因序列進行菌種鑑定之結果發現,由克弗爾粒中分離出的乳酸菌株包含四個乳酸菌菌種,其中Leuconostoc mesenteroides之胞內萃取物不但沒有細胞毒性,還具有較佳的抗豬流行性下痢病毒活性,因此選擇該菌種中生長速度最快的L. mesenteroides YPK30作為最有抗病毒潛力之菌株。另一方面,作為發酵乳控制組之還原乳可抑制細胞受到豬流行性下痢病毒之感染,且效果與發酵乳相當,因此後續分別進行還原乳與L. mesenteroides YPK30之抗病毒機制探討。由即時定量聚合酶鏈鎖反應之實驗結果發現還原乳及L. mesenteroides YPK30胞內萃取物的預處理皆無法顯著提升Vero細胞之抗病毒基因表現量。而時間效應分析結果發現還原乳及L. mesenteroides YPK30於治療模式中也具有抗病毒活性,且還原乳可能透過抑制病毒的附著及進入達到預防性抗病毒效果,而L. mesenteroides YPK30之抗病毒機制則尚待釐清。綜合以上結果,克弗爾與其分離菌株具有抗豬流行性下痢病毒之潛力,而菌株L. mesenteroides YPK30之活性成分及其體內試驗之功效,仍需未來進一步確認。 | zh_TW |
dc.description.abstract | Nowadays, significant economic loss has been caused by the rapid spread of viral disease due to intensive animal industries. It was shown in several reports that probiotics can exert their beneficial effect on the host to provide control and prevention of viral infections. The potential of kefir, a traditional fermented dairy product, as feed additive has been studied in different animal models. Therefore, the aim of this study is to evaluate the potential of kefir and the bacterial strains isolated from kefir grains as antiviral agents against the infection of porcine epidemic diarrhea virus (PEDV) in Cercopithecus aethiops kidney cells (Vero cells), and further investigate the possible mechanisms. Firstly, several bacterial isolated strains were identified, and the strain with the highest antiviral potential was determined according to its preventive anti-PEDV activity. To elucidate the anti-PEDV mechanisms, the expression levels of antiviral-related genes of Vero cells were determined using quantitative PCR (qPCR). Time-of-addition assay was also performed to evaluate the effects of different addition time points. The identification results based on 16S rRNA and rpoA sequence analysis indicated that the isolated strains belonged to four species. Among them, Leuconostoc mesenteroides presented higher anti-PEDV activity without cytotoxicity. Therefore, Leuconostoc mesenteroides YPK30 was selected as the strain with the highest antiviral potential due to its higher growth rate. However, the supernatant of milk inhibited the infection of PEDV in Vero cells to the same extent as kefir. Therefore, the mechanisms of the anti-PEDV effects of milk and L. mesenteroides YPK30 were further investigated. The results indicated that treatment of Vero cells with milk or L. mesenteroides YPK30 did not significantly up-regulate the expression of antiviral genes of Vero cells. In addition, the results of time-of-addition assay showed that both milk and L. mesenteroides YPK30 exerted therapeutic anti-PEDV activity. The preventive anti-PEDV activity of milk was attributed to its effect on viral attachment and entry, while the antiviral mechanism of L. mesenteroides YPK30 remains unknown. In conclusion, kefir and the isolated strain showed anti-PEDV potential. The bioactive component of L. mesenteroides YPK30 and its in vivo antiviral effects need to be further investigated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:29:13Z (GMT). No. of bitstreams: 1 ntu-109-R05641019-1.pdf: 4739203 bytes, checksum: c256a1a370a886da809c20ad07c0020a (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝………………………………………………………………………i
摘要………………………………………………………………………ii Abstract………………………………………………………………iii 目錄………………………………………………………………………iv 表目錄…………………………………………………………………vii 圖目錄…………………………………………………………………viii 第一章 文獻探討……………………………………………………1 一、 病毒……………………………………………………………1 (一) 常見豬隻病毒…………………………………………………1 (二) 病毒防治………………………………………………………4 (三) 豬流行性下痢病毒之防治……………………………………4 二、 益生菌(probiotic)…………………………………………9 (一) 益生菌之定義與歷史…………………………………………9 (二) 益生菌於經濟動物之應用……………………………………10 (三) 益生菌抗病毒之可能機制……………………………………11 三、 乳酸菌…………………………………………………………12 (一) 乳酸菌簡介……………………………………………………12 (二) 乳酸菌產品之健康益處………………………………………12 (三) 乳酸菌之免疫調節能力………………………………………14 四、 克弗爾…………………………………………………………15 (一) 克弗爾簡介……………………………………………………15 (二) 克弗爾之免疫調節能力………………………………………15 (三) 克弗爾於經濟動物之應用……………………………………16 五、 研究動機與目的………………………………………………19 第二章 材料與方法……………………………………………………20 一、 克弗爾粒活化及保存…………………………………………22 二、 發酵乳上清液製備……………………………………………22 三、 乳酸菌分離、活化與保存……………………………………23 四、 乳酸菌鑑定……………………………………………………25 五、 乳酸菌樣品製備………………………………………………26 六、 細胞株活化、繼代及保存……………………………………27 七、 豬流行性下痢病毒……………………………………………28 八、 預防模式抗病毒………………………………………………29 九、 抗病毒相關基因表現量………………………………………30 十、 抗病毒活性之時間效應分析…………………………………31 十一、 菌株特性探討…………………………………………………32 十二、 統計分析………………………………………………………35 第三章 實驗結果………………………………………………………42 一、 乳酸菌鑑定……………………………………………………42 二、 預防模式抗病毒………………………………………………43 三、 抗病毒相關基因表現量………………………………………45 四、 抗病毒活性之時間效應分析…………………………………46 五、 菌株特性探討…………………………………………………47 第四章 討論……………………………………………………………79 一、 乳酸菌鑑定……………………………………………………79 二、 預防模式抗病毒………………………………………………79 三、 抗病毒相關基因表現量………………………………………81 四、 抗病毒活性之時間效應分析…………………………………83 五、 菌株特性探討…………………………………………………85 第五章 結論……………………………………………………………88 參考文獻…………………………………………………………………89 | |
dc.language.iso | zh-TW | |
dc.title | 克弗爾與其分離菌株抗病毒活性之研究 | zh_TW |
dc.title | Antiviral Potential of Kefir and the Bacterial Strains Isolated from Kefir Grains | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉啟德(Chi-Te Liu),鄭光成(Kuan-Chen Cheng),張惠雯(Hui?Wen Chang) | |
dc.subject.keyword | 益生菌,克弗爾,抗病毒,豬流行性下痢病毒,Leuconostoc mesenteroides, | zh_TW |
dc.subject.keyword | Probiotics,Kefir,Antiviral agents,Porcine epidemic diarrhea virus,Leuconostoc mesenteroides, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU202000410 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-02-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
Appears in Collections: | 生物科技研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-109-1.pdf Restricted Access | 4.63 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.