請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15257完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳?承(Hsuan-Chen Wu) | |
| dc.contributor.author | Chi-Lun Huang | en |
| dc.contributor.author | 黃麒倫 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:29:01Z | - |
| dc.date.copyright | 2020-02-19 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-17 | |
| dc.identifier.citation | 1. Catalog, W. S. World Spider Catalog. Version 20.5. http://wsc.nmbe.ch.
2. Foelix, R. F., Biology of spiders. Georg Thieme Verlag.: 1979. 3. Wise, D. H., Spiders in ecological webs. Cambridge University Press: 1995. 4. Nyffeler, M., Ecological impact of spider predation: a critical assessment of Bristowe's and Turnbull's estimates. Bulletin of the British arachnological Society 2000, 11 (9), 367-373. 5. Wise, D. H.; Snyder, W. E.; Tuntibunpakul, P.; Halaj, J., Spiders in decomposition food webs of agroecosystems: theory and evidence. Journal of Arachnology 1999, 363-370. 6. Tso, I. M.; Chiang, S. Y.; Blackledge, T. A., Does the giant wood spider Nephila pilipes respond to prey variation by altering web or silk properties? Ethology 2007, 113 (4), 324-333. 7. Edwards, G., Huntsman Spider, Heteropoda venatoria (Linnaeus)(Arachnida: Araneae: Sparassidae). University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences: 2003. 8. Austin, A. D.; Blest, A. D., The biology of two Australian species of dinopid spider. Journal of Zoology 1979, 189 (2), 145-156. 9. Shao, K. T. Catalogue of life in Taiwan. http://taibnet.sinica.edu.tw. 10. 陳世煌, 台灣地區蜘蛛名錄. 台灣省立博物館年刊 1996. 11. 陳世煌, 台灣常見蜘蛛圖鑑. 農委會: 2001. 12. Coddington, J. A.; Levi, H. W., Systematics and evolution of spiders (Araneae). Annual review of ecology and systematics 1991, 22 (1), 565-592. 13. Barrett, R.; Hebert, P., Identifying spiders through DNA barcodes. 2005; Vol. 83, p 481-491. 14. Theron, J.; Cloete, T., Molecular techniques for determining microbial diversity and community structure in natural environments. Critical reviews in microbiology 2000, 26 (1), 37-57. 15. Hebert, P. D. N.; Ratnasingham, S.; deWaard, J. R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 2003, 270 Suppl 1 (Suppl 1), S96-S99. 16. Wheeler, W. C.; Coddington, J. A.; Crowley, L. M.; Dimitrov, D.; Goloboff, P. A.; Griswold, C. E.; Hormiga, G.; Prendini, L.; Ramírez, M. J.; Sierwald, P.; Almeida-Silva, L.; Alvarez-Padilla, F.; Arnedo, M. A.; Benavides Silva, L. R.; Benjamin, S. P.; Bond, J. E.; Grismado, C. J.; Hasan, E.; Hedin, M.; Izquierdo, M. A.; Labarque, F. M.; Ledford, J.; Lopardo, L.; Maddison, W. P.; Miller, J. A.; Piacentini, L. N.; Platnick, N. I.; Polotow, D.; Silva-Dávila, D.; Scharff, N.; Szűts, T.; Ubick, D.; Vink, C. J.; Wood, H. M.; Zhang, J., The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 2017, 33 (6), 574-616. 17. Ratnasingham, S.; Hebert, P. D. N., bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular ecology notes 2007, 7 (3), 355-364. 18. Yang, Z.; Rannala, B., Molecular phylogenetics: principles and practice. Nature Reviews Genetics 2012, 13, 303. 19. 張麗娜; 荣昌鹤; 何远; 关琼; 何彬; 朱兴文; 刘佳妮; 陈红菊, 常用系統發育樹構建算法與軟件鳥瞰. 動物學研究 2013, 34 (6), 640-650. 20. Yang, Z., Computational molecular evolution. Oxford University Press: 2006. 21. Saitou, N.; Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4 (4), 406-25. 22. Sober, E., Reconstructing the past: Parsimony, evolution, and inference. MIT press: 1991. 23. Weiß, M.; Göker, M., Chapter 12 - Molecular Phylogenetic Reconstruction. In The Yeasts (Fifth Edition), Kurtzman, C. P.; Fell, J. W.; Boekhout, T., Eds. Elsevier: London, 2011; pp 159-174. 24. Huelsenbeck, J. P.; Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17 (8), 754-755. 25. Harmer, A. M. T.; Blackledge, T. A.; Madin, J. S.; Herberstein, M. E., High-performance spider webs: integrating biomechanics, ecology and behaviour. Journal of The Royal Society Interface 2011, 8 (57), 457. 26. Summers, S. N. G. a. A. P., Biotechnology of Silk. 2014. 27. Kronqvist, N.; Sarr, M.; Lindqvist, A.; Nordling, K.; Otikovs, M.; Venturi, L.; Pioselli, B.; Purhonen, P.; Landreh, M.; Biverstål, H.; Toleikis, Z.; Sjöberg, L.; Robinson, C. V.; Pelizzi, N.; Jörnvall, H.; Hebert, H.; Jaudzems, K.; Curstedt, T.; Rising, A.; Johansson, J., Efficient protein production inspired by how spiders make silk. Nature Communications 2017, 8, 15504. 28. Stefan Winkler, D. L. K., Molecular biology of spider silk. Molecular Biotechnology 2000, 74 (2000), 9. 29. Bowen, C. H.; Dai, B.; Sargent, C. J.; Bai, W.; Ladiwala, P.; Feng, H.; Huang, W.; Kaplan, D. L.; Galazka, J. M.; Zhang, F., Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk. Biomacromolecules 2018. 30. Blackledge, T. A., Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. The Journal of Arachnology 2012, 40 (1), 1-12, 12. 31. Malay, A. D.; Arakawa, K.; Numata, K., Analysis of repetitive amino acid motifs reveals the essential features of spider dragline silk proteins. PloS one 2017, 12 (8), e0183397-e0183397. 32. Agnarsson, I.; Kuntner, M.; Blackledge, T. A., Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PloS one 2010, 5 (9), e11234-e11234. 33. Elices, M.; Plaza, G. R.; Arnedo, M. A.; Perez-Rigueiro, J.; Torres, F. G.; Guinea, G. V., Mechanical behavior of silk during the evolution of orb-web spinning spiders. Biomacromolecules 2009, 10 (7), 1904-10. 34. Swanson, B. O.; Blackledge, T. A.; Summers, A. P.; Hayashi, C. Y., Spider dragline silk: correlated and mosaic evolution in high-performance biological materials. Evolution 2006, 60 (12), 2539-2551, 13. 35. Jocqué, R.; Dippenaar-Schoeman, A. S.; Zoologin, S., Spider families of the world. 2006. 36. Levi, H. W.; Randolph, D. E., A Key and Checklist of American Spiders of the Family Theridiidae North of Mexico (Araneae). The Journal of Arachnology 1975, 3 (1), 31-51. 37. Levi, H. W.; Levi, L. R., The genera of the spider family Theridiidae. Bulletin of the Museum of Comparative Zoology at Harvard College. 1962, 127, 1-71. 38. T, M., The BLAST Sequence Analysis Tool. In The NCBI Handbook [Internet], McEntyre J, O. J., Ed. National Center for Biotechnology Information (US): 2002. 39. Liu, J.; May-Collado, L. J.; Pekar, S.; Agnarsson, I., A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): A predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). Mol Phylogenet Evol 2016, 94 (Pt B), 658-675. 40. Gadagkar, S. R.; Rosenberg, M. S.; Kumar, S., Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. Journal of experimental zoology. Part B, Molecular and developmental evolution 2005, 304 (1), 64-74. 41. Miller, M. A.; Pfeiffer, W.; Schwartz, T. In Creating the CIPRES Science Gateway for inference of large phylogenetic trees, 2010 gateway computing environments workshop (GCE), Ieee: 2010; pp 1-8. 42. Drummond, A. J.; Suchard, M. A.; Xie, D.; Rambaut, A., Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 2012, 29 (8), 1969-1973. 43. Levi, H. W., Spiders of the genus Euryopis from North and Central America (Araneae, Theridiidae). American Museum novitates; no. 1666. 1954. 44. Chen, S. H., A new species of Phoroncidia (Araneae: Theridiidae) from Taiwan. Journal of Taiwan Museum 1990, (43), 19-21. 45. Chen, X. E. G., J. C., The Sichuan farmland spiders in China. Sichuan Science and Technology Publishing House, Chengdu: 1990; p 226. 46. Chida, T. T., A. , A new species of the spider genus Argyrodes (Araneae: Theridiidae) from Japan previously misidentified with A. fissifrons. Acta Arachnologica 1999, (48), 31-36. 47. Lee, C. L., Spiders of Formosa (Taiwan). Taichung Junior Teachers College Publisher 1966, 84. 48. Okuma, C., Spiders of the genera Episinus and Moneta from Japan and Taiwan, with descriptions of two new species of Episinus (Araneae: Theridiidae). Acta Arachnologica 1994, (43), 5-25. 49. Ono, H., Chang, Y. H. & Tso, I. M., Three new spiders of the families Theridiidae and Anapidae (Araneae) from southern Taiwan. Memoirs of the National Science Museum Tokyo 2007, (44), 71-82. 50. Song, D. X., Farm Spiders. Science Press, Beijing: 1980. 51. Song, D. X., Spiders from agricultural regions of China (Arachnida: Araneae). Agriculture Publishing House, Beijing: 1987. 52. Song, D. X., Zhu, M. S. & Li, S. Q., Arachnida: Araneae. In: Huang, C. M. (ed.) Animals of Longqi Mountai. China Forestry Publishing House Beijing 1993, 852-890. 53. Tanikawa, A., Two newly recorded spiders, Theridion rufipes Lucas, 1846, and Coleosoma floridanum Banks, 1900 (Araneae: Theridiidae) from Japan. Atypus 1991, 98 (99), 1-7. 54. Tso, I. M., Zhu, M. S. & Zhang, J. X., A new species of the genus Dipoena from Taiwan (Araneae: Theridiidae). Acta Arachnologica 2005, (54), 21-22. 55. Wang, Y. M., A preliminary report on Myriapoda and Arachnida of Lan Yu Islets (Botel Tobago), China. Quarterly Journal of the Taiwan Museum 1955, (8), 195-201. 56. Yoshida, H., The occurrence of Theridion spiniventre O.P. Cambridge in Japan and Formosa. Atypus 1977, 70, 9-11. 57. Yoshida, H., On some Formosan spiders (1). Atypus 1978, (71), 21-28. 58. Yoshida, H., Spiders from Taiwan III. Three species of the genera Coleosome [sic] and Molione (Araneae: Theridiidae). Proceedings of the Japanese Society of Systematic Zoology 1982, (24), 37-40. 59. Yoshida, H., Spiders from Taiwan IV. The genus Episinus (Araneae: Theridiidae). Acta Arachnologica 1983, (31), 73-77. 60. Yoshida, H., The spider genus Anelosimus (Araneae: Theridiidae) in Japan and Taiwan. Acta Arachnologica 1986, (34), 31-39. 61. Yoshida, H., A new spider of the genus Pholcomma (Araneae, Theridiidae) from Taiwan and Japan. Bulletin of the Biogeographical Society of Japan 1987, (42), 29-32. 62. Yoshida, H., Two species of the genus Dipoena (Araneae: Theridiidae) from Japan. Acta Arachnologica 1991, (40), 33-35. 63. Yoshida, H., East Asian species of the genus Chrysso (Araneae: Theridiidae). Acta Arachnologica 1993, (42), 27-34. 64. Yoshida, H., Notes on Argyrodes xiphias Thorell, 1887 (Araneae: Theridiidae) from South East Asia. Acta Arachnologica 1993, (42), 83-85. 65. Yoshida, H., A new species of the genus Chrysso (Araneae: Theridiidae) from the Ryukyus, Japan and Taiwan. Acta Arachnologica 1996, (45), 139-141. 66. Yoshida, H., Tso, I. M. & Severinghaus, L. L., Description of a new species of the genus Argyrodes (Araneae: Theridiidae) from Orchid Island, Taiwan, with notes on its ecology and behavior. Acta Arachnologica 1998, (47), 1-5. 67. Yoshida, H., Tso, I. M. & Severinghaus, L. L., The spider family Theridiidae (Arachnida: Araneae) from Orchid Island, Taiwan: Descriptions of six new and one newly recorded species. Zoological Studies 2000, (39), 123-132. 68. Yoshida, H., The spider family Theridiidae (Arachnida: Araneae) from Japan. Arachnological Society of Japan: 2003. 69. Yoshida, H., The genus Ulesanis (Araneae: Theridiidae) from Japan and Taiwan. Acta Arachnologica 2011, (60), 41-45. 70. Yoshida, H., Parasteatoda and a new genus Campanicola (Araneae: Theridiidae) from Taiwan. Bulletin of the Yamagata Prefectural Museum 2015, (33), 25-38. 71. Zhu, M. S., Four species of spider of the genus Dipoena from China (Araneae: Theridiidae). Journal of Hebei Normal University (nat. Sci. Ed.) 1992, 17 (3), 108-113. 72. Zhu, M. S., Fauna Sinica: Arachnida: Araneae: Theridiidae. Science Press, Beijing 1998, 436. 73. Hedin, M.; Bond, J. E., Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): Conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 2006, 41 (2), 454-471. 74. Seo, T.-K., Calculating Bootstrap Probabilities of Phylogeny Using Multilocus Sequence Data. Molecular Biology and Evolution 2008, 25 (5), 960-971. 75. Japyassú, H. F.; Caires, R. A., Hunting tactics in a cobweb spider (Araneae-Theridiidae) and the evolution of behavioral plasticity. Journal of Insect Behavior 2008, 21 (4), 258-284. 76. Eberhard, W. G., Behavioral characters for the higher classification of orb-weaving spiders. Evolution 1982, 1067-1095. 77. McLennan, D.; Brooks, D. R.; McPhail, J., The benefits of communication between comparative ethology and phylogenetic systematics: a case study using gasterosteid fishes. Canadian Journal of Zoology 1988, 66 (10), 2177-2190. 78. Prum, R. O., Phylogenetic analysis of the evolution of display behavior in the Neotropical manakins (Aves: Pipridae). Ethology 1990, 84 (3), 202-231. 79. de Queiroz, A.; Wimberger, P. H., The usefulness of behavior for phylogeny estimation: levels of homoplasy in behavioral and morphological characters. Evolution 1993, 47 (1), 46-60. 80. Paterson, A. M.; Wallis, G. P.; Gray, R. D., Penguins, petrels, and parsimony: Does cladistic analysis of behavior reflect seabird phylogeny? Evolution 1995, 49 (5), 974-989. 81. de Pinna, M., Behavioral characters in phylogeny reconstruction. Anais de etologia 1997, 15, 109-124. 82. Scharff, N.; Coddington, J. A., A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zoological Journal of the Linnean Society 1997, 120 (4), 355-434. 83. Slikas, B., Recognizing and testing homology of courtship displays in storks (Aves: Ciconiiformes: Ciconiidae). Evolution 1998, 52 (3), 884-893. 84. Benjamin, S. P.; Zschokke, S., Homology, behaviour and spider webs: web construction behaviour of Linyphia hortensis and L. triangularis (Araneae: Linyphiidae) and its evolutionary significance. Journal of Evolutionary Biology 2004, 17 (1), 120-130. 85. Kuntner, M.; Coddington, J. A.; Hormiga, G., Phylogeny of extant nephilid orb‐weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics 2008, 24 (2), 147-217. 86. Yoshida, H., A revision of the Japanese genera and species of the subfamily Hadrotarsinae (Araneae: Theridiidae). Acta Arachnologica 2002, 51 (1), 7-18. 87. ClarkI, W. H.; BJorn, P. E., Notes on spider (Theridiidae, Salticidae) predation of the harvester ant, Pogonomyrmex salinus olsen (Hymenoptera: Formicidae: Myrmicinae), and a possible parasitoid fly (Chloropidae). Notes 1992, 12, 30-1992. 88. Porter, S. D.; Eastmond, D. A., Euryopis coki (Theridiidae), a spider that preys on Pogonomyrmex ants. The Journal of Arachnology 1982, 10 (3), 275-277. 89. Carico, J., Predatory behavior in Euryopis funebris (Hentz)(Araneae: Theridiidae) and the evolutionary significance of web reduction. Symp 1978, (42), 51-58. 90. Berland, L., Contribution à l'étude de la biologie des arachnides (3è mémoire). 1933. 91. Swanson, B. O.; Anderson, S. P.; DiGiovine, C.; Ross, R. N.; Dorsey, J. P., The evolution of complex biomaterial performance: The case of spider silk. Integrative and Comparative Biology 2009, 49 (1), 21-31. 92. Swanson, B. O.; Blackledge, T. A.; Summers, A. P.; Hayashi, C. Y., Spider dragline silk: correlated and mosaic evolution in high-performance biological materials. Evolution 2006, 60 (12), 2539-2551. 93. Agnarsson, I.; Boutry, C.; Blackledge, T. A., Spider silk aging: initial improvement in a high performance material followed by slow degradation. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 2008, 309 (8), 494-504. 94. Yoshida, H., A new species of the genus Euryopis (Araneae: Theridiidae) from Japan. Acta Arachnologica 2000, 49 (2), 133-135. 95. YOSHIDA, H., A newly recorded species of the genus Euryopis (Araneae: Theridiidae) from Japan. Acta Arachnologica 1997, 46 (2), 111-113. 96. Ono, H., Spiders (Arachnida, Araneae) of the Ogasawara Islands, Japan. Memoirs of the National Museum of Nature and Science Tokyo 2011, 47, 435-470. 97. Paik, K., Korean spiders of the genus Steatoda (Araneae: Theridiidae). I. Korean Arachnol. 1995, 11 (1), 1-14. 98. Hu, J., Spiders in Qinghai-Tibet Plateau of China. Henan Science and Technology Publishing House: 2001. 99. 陈卓尔; 何秉妍; 银海强; 徐湘, 旋转宽胸蛛 Euryopis cyclosisa 雌蛛的首次描述 (蜘蛛目: 球蛛科). 蛛形学报 2017, (2017 年 01), 30-34. 100. Chen, S., Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas unter Leitung von Dr. Sven Hedin und Prof. Sü Ping-Chang: Insekten gesammelt vom schwedischen Arzt der Expedition Dr. David Hummel 1927-1930. Coleoptera [part] 5, Chrysomelinae & Halticinae. Almqvist & Wiksells boktryckeri: 1933. 101. Song, D.; Zhu, M.; Chen, J., The Spiders of China. Hebei University of Science and Techology Publishing House, Shijiazhuang. 640 pp. 1999. 102. Hu, J.; Wu, W., Spiders from agricultural regions of Xinjiang Uygur Autonomous Region, China. Jinan: Shandong Univ. Publ. House 1989. 103. Yin, C.; Peng, X.; Yan, H.; Bao, Y.; Xu, X.; Tang, G.; Zhou, Q.; Liu, P., Fauna Hunan: Araneae in Hunan, China. Hunan Science and Technology Press, Changsha 2012, 1590. 104. Pickard-Cambridge, O., Araneidea//Scientific results of the second Yarkand mission; based upon the collections and notes of the late Ferdinand Stoliczka. Calcutta: Government of India 1885. 105. Simon, E., Etudes arachnologiques. publisher not identified: 1872. 106. Metchnikoff, E., Etudes sur la nature humaine: essai de philosophie optimiste. Masson: 1903. 107. Lizhu, C., Quaternary palaeontologic characteristics and palaeogeographic evolution on the two coasts of Taiwan strait [J]. Marine geology & quaternary geology 1995, 4. 108. Cushing, P. E., Spider-ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche: A Journal of Entomology 2012, 2012. 109. Huang, J.-N.; Cheng, R.-C.; Li, D.; Tso, I. M., Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proceedings of the Royal Society B: Biological Sciences 2011, 278 (1710), 1356-1364. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15257 | - |
| dc.description.abstract | 蜘蛛絲為具有優異機械性質與生物親和性的材料,因此具有廣泛用途,如醫療材料、紡織材料、藥物載體及疏水蛋白質製程改善等。而不同生活形態的蜘蛛具有不同的蜘蛛絲機械性質。例如圓網蜘蛛曳絲相對於遊獵蜘蛛具有較強剛性、延展性與韌性。2017年芝山文化生態綠園志工葉黎明老師在臺北市士林區芝山岩地區(25o06’15' N, 121o31’49' E)發現外觀與行為與舉尾蟻Crematogaster sp.相似的食蟻蜘蛛,其會將腹部抬起並擺動第四步足。這樣特殊的行為與常見的結網蜘蛛與游獵蜘蛛截然不同,然當前並未有相似行為蜘蛛的曳絲機械性質被研究過。因此本研究希望藉由外部形態特徵與基因條碼檢索及親緣樹分析對該蜘蛛進行物種鑑定,並分析該蜘蛛曳絲機械性質。
外部形態鑑定與分子親緣結果皆顯示目標蜘蛛與姬蛛科(Theridiidae)寬胸蛛屬(Euryopis)蜘蛛最為接近,顯示目標蜘蛛可能屬於寬胸蛛屬。然而目前線上資料庫中寬胸蛛屬外部形態與序列資料並不完整,因此若要再進一步對目標蜘蛛鑑定則需要與世界已發現75種寬胸蛛屬蜘蛛模式標本進行比對並補足缺乏的基因資料(僅有12%寬胸蛛屬蜘蛛具有完整序列資料)。 目標蜘蛛曳絲機械性質如下:平均直徑1.57 ± 0.23 µm,剛性0.62 ± 0.01 GPa,延展性0.38 ± 0.02 ln(L/L0),抗拉強度90.9 ± 24.4 MPa,韌性22.6 ± 5.9 MJ/m3,與平均蜘蛛曳絲性質比較有較佳延展性,但其剛性、抗拉強度與韌性相對較差。未來應可嘗試分析目標蜘蛛曳絲序列與其延展性關係,並應用於強化合成蜘蛛絲延展性。 | zh_TW |
| dc.description.abstract | Spider dragline silk is a biomaterial with strong mechanical properties and bioaffinity. It has various applications, such as medical material, textile material, drug carrier and hydrophobic protein production process improvement. Dragline silk from spiders with different life styles has different properties. For example, orb spider dragline silk has better stiffness, extensibility and toughness than dragline silk from wanderer spiders. In 2017, an unknown myrmecophagous (feeding on ants) spider was recorded at Zhishanyan in Taipei, Taiwan (25o06’15” N, 121o31’49” E). This spider typically poses steadily with its abdomen upward and waves its fourth pair of legs. The spider’s unique behavior and appearance are similar to Crematogaster ants that coexist in the same habitats. The Crematogaster ants, also commonly named as cocktail ants, have a habit of raising their abdomens when alarmed. This coincidence in behavior patterns has intrigued us as an aspect of biomimicry. However, there are no reports of the dragline silk properties of spiders with similar behavior. We seek to identify the spider in a systematic way by characterizing its morphological features, gene barcoding and phylogenetic tree identity, and we also try to analyse the dragline silk mechanical properties of the unknown spider.
Both the morphological characteristics and the molecular phylogenetic analysis indicate that the unknown spider primarily belongs to Euryopis, Theridiidae. Currently, there are 75 reported species of Euryopis spiders worldwide, however, not all taxonomic information (morphological and DNA barcode data) are accessible. The target spider’s dragline silk exhibited diameter 1.57 ± 0.23 µm, stiffness 0.62 ± 0.01 GPa, elasticity 0.38 ± 0.02 ln(L/L0), tensile strength 90.9 ± 24.4 MPa and toughness 22.6 ± 5.9 MJ/m3. Dragline silk from the target spider exhibits high elasticity. Further studies are required to identify the target spider’s dragline silk amino acid sequence and reveal the relationships between silk sequence and elasticity properties. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:29:01Z (GMT). No. of bitstreams: 1 ntu-109-R06B22029-1.pdf: 2531251 bytes, checksum: 15b6a73966aa106f2b8e48f995b1f120 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄
謝誌 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VI 附圖目錄 VI 附表目錄 VII 第一章、 前言 1 1.1 緒論 1 1.2 蜘蛛物種鑑定方法 3 1.3 親緣樹 3 1.4研究動機 5 第二章、 材料與方法 8 2.1 材料採集與生態觀察 8 2.2物種鑑定-形態 8 2.2.1形態觀察與特徵繪製 8 2.2.2 物種形態鑑定 9 2.3 分子生物鑑定 9 2.3.1 基因體DNA萃取與定序 9 2.3.2 基因比對 11 2.3.3 物種親緣樹分析 11 2.4 蜘蛛絲機械性質測試 12 2.4.1 蜘蛛絲抽取與機械性質測量 12 第三章、 結果 14 3.1物種形態測量結果與外觀 14 3.2生態觀察結果 18 3.3 檢索表鑑定 19 3.4 定序結果 26 3.5 基因比對 29 3.6親緣樹分析 30 3.7蜘蛛絲機械性質測量結果 32 第四章、 討論 34 4.1物種鑑定 34 4.2 親緣樹分析 35 4.3生態觀察 36 4.4 目標蜘蛛行為與寬胸蛛屬蜘蛛的關係 38 4.5 目標蜘蛛曳絲機械性質與其他蜘蛛比較 38 第五章、 未來展望 41 第六章、 附錄 42 6.1 名詞中英對照表 42 6.2蜘蛛測量數值 44 6.3 觀測紀錄 46 6.4定序結果 49 6.5 Blast結果 54 6.6 親緣樹資料 57 6.7 親緣樹分析結果 63 6.8 臺灣姬蛛科蜘蛛名錄 (1955-2015) 67 6.9 目標蜘蛛絲性質實驗其他資料 70 第七章、 參考文獻 72 圖目錄 圖 1蜘蛛外部與生殖器官特徵 2 圖 2 目標蜘蛛發現地點、棲地環境與誘捕姿勢 6 圖 3目標蜘蛛獵食行為 7 圖 4 應力-應變曲線 13 圖 5 目標蜘蛛特徵照片 16 圖 6 目標蜘蛛外部與生殖器官特徵素描 17 圖 7 目標蜘蛛觀察區域地圖 18 圖 8 雄雌蛛CoI序列比對結果 26 圖 9 雄雌蛛18S rRNA 序列比對結果 27 圖 10 雄雌蛛 28S rRNA序列比對結果 29 圖 11雄雌蛛Histone 3 A 序列比對結果 29 圖 12 CoI基因親緣樹 30 圖 13 18S rRNA基因親緣樹 31 圖 14 28S rRNA基因親緣樹 31 圖 15 組合基因親緣樹目標蜘蛛部分 32 圖 16 目標蜘蛛曳絲照片與應力-應變曲線圖 33 圖 17 目標蜘蛛分布統計圖 37 表目錄 表 1 PCR使用引子表 10 表 2定序引子表 11 表 3 世界蜘蛛名錄寬胸蛛屬蜘蛛特徵資料統計表 35 表 4 各種蜘蛛曳絲機械性質比較表 39 附圖目錄 附圖 1 CoI親緣樹分析結果 63 附圖 2 18S rRNA親緣樹分析結果 64 附圖 3 28S rRNA親緣樹分析結果 65 附圖 4 組合基因親緣樹分析結果 66 附圖 5 曳絲機械性質測試使用雌性鼬形微姬蛛照片 70 附圖 6 目標蜘蛛、Phycosoma mustelinum 與Nephila pilipes曳絲應力-應變曲線 71 附表目錄 附表 1蜘蛛軀幹測量數值 44 附表 2蜘蛛附肢測量數值 45 附表 3面部測量數值 46 附表 4 目標蜘蛛觀測紀錄表 46 附表 5目標蜘蛛CoI基因序列 Blast結果 54 附表 6目標蜘蛛18S rRNA 基因Blast結果 54 附表 7目標蜘蛛28S rRNA 基因Blast結果 55 附表 8目標蜘蛛Histone 3 A 基因Blast結果 56 附表 9親緣樹分析資料 57 附表 10 1955年至2015年臺灣姬蛛科名錄 67 附表 11 蜘蛛絲直徑測量數值 70 附表 12 蜘蛛曳絲機械性質測量結果 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 寬胸蛛屬 | zh_TW |
| dc.subject | 姬蛛科 | zh_TW |
| dc.subject | 親緣樹分析 | zh_TW |
| dc.subject | 食蟻蜘蛛 | zh_TW |
| dc.subject | 蜘蛛絲 | zh_TW |
| dc.subject | spider silk | en |
| dc.subject | Euryopis | en |
| dc.subject | Theridiidae | en |
| dc.subject | phylogenetic tree | en |
| dc.subject | myrmecophagous spider | en |
| dc.title | 臺灣新發現寬胸蛛屬食蟻蜘蛛之物種分類與蜘蛛絲性質探討(蜘蛛目:姬蛛科) | zh_TW |
| dc.title | Taxonomic Identification and Spider Silk Analysis of a New Myrmecophagous Spider of the genera Euryopis
(Araneae, Theridiidae) in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊啟伸(Chii-Shen Yang),曾惠芸(Hui-Yun Tseng) | |
| dc.subject.keyword | 寬胸蛛屬,姬蛛科,親緣樹分析,食蟻蜘蛛,蜘蛛絲, | zh_TW |
| dc.subject.keyword | Euryopis,Theridiidae,phylogenetic tree,myrmecophagous spider,spider silk, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202000472 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-02-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
