請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15251
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 俞松良 | |
dc.contributor.author | Shin-Yi Yin | en |
dc.contributor.author | 尹心怡 | zh_TW |
dc.date.accessioned | 2021-06-07T17:28:58Z | - |
dc.date.copyright | 2020-03-13 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-23 | |
dc.identifier.citation | 1. Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2. Arnold, M., M.S. Sierra, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017. 66(4): p. 683-691. 3. Van Cutsem, E., A. Cervantes, B. Nordlinger, D. Arnold, and E.G.W. Group, Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2014. 25 Suppl 3: p. iii1-9. 4. Vatandoust, S., T.J. Price, and C.S. Karapetis, Colorectal cancer: Metastases to a single organ. World J Gastroenterol, 2015. 21(41): p. 11767-76. 5. de Gramont, A., J.F. Bosset, C. Milan, P. Rougier, O. Bouche, P.L. Etienne, F. Morvan, C. Louvet, T. Guillot, E. Francois, and L. Bedenne, Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J Clin Oncol, 1997. 15(2): p. 808-15. 6. Van Cutsem, E., P.M. Hoff, P. Harper, R.M. Bukowski, D. Cunningham, P. Dufour, U. Graeven, J. Lokich, S. Madajewicz, J.A. Maroun, J.L. Marshall, E.P. Mitchell, G. Perez-Manga, P. Rougier, W. Schmiegel, J. Schoelmerich, A. Sobrero, and R.L. Schilsky, Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br J Cancer, 2004. 90(6): p. 1190-7. 7. Tournigand, C., T. Andre, E. Achille, G. Lledo, M. Flesh, D. Mery-Mignard, E. Quinaux, C. Couteau, M. Buyse, G. Ganem, B. Landi, P. Colin, C. Louvet, and A. de Gramont, FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol, 2004. 22(2): p. 229-37. 8. Grothey, A., D. Sargent, R.M. Goldberg, and H.J. Schmoll, Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol, 2004. 22(7): p. 1209-14. 9. Hurwitz, H., L. Fehrenbacher, W. Novotny, T. Cartwright, J. Hainsworth, W. Heim, J. Berlin, A. Baron, S. Griffing, E. Holmgren, N. Ferrara, G. Fyfe, B. Rogers, R. Ross, and F. Kabbinavar, Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004. 350(23): p. 2335-42. 10. Van Cutsem, E., C.H. Kohne, I. Lang, G. Folprecht, M.P. Nowacki, S. Cascinu, I. Shchepotin, J. Maurel, D. Cunningham, S. Tejpar, M. Schlichting, A. Zubel, I. Celik, P. Rougier, and F. Ciardiello, Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol, 2011. 29(15): p. 2011-9. 11. Biasco, G., E. Derenzini, G. Grazi, G. Ercolani, M. Ravaioli, M.A. Pantaleo, and G. Brandi, Treatment of hepatic metastases from colorectal cancer: many doubts, some certainties. Cancer Treat Rev, 2006. 32(3): p. 214-28. 12. Riihimaki, M., A. Hemminki, J. Sundquist, and K. Hemminki, Patterns of metastasis in colon and rectal cancer. Sci Rep, 2016. 6: p. 29765. 13. Khattak, M.A., H.L. Martin, C. Beeke, T. Price, S. Carruthers, S. Kim, R. Padbury, and C.S. Karapetis, Survival differences in patients with metastatic colorectal cancer and with single site metastatic disease at initial presentation: results from South Australian clinical registry for advanced colorectal cancer. Clin Colorectal Cancer, 2012. 11(4): p. 247-54. 14. Mitry, E., B. Guiu, S. Cosconea, V. Jooste, J. Faivre, and A.M. Bouvier, Epidemiology, management and prognosis of colorectal cancer with lung metastases: a 30-year population-based study. Gut, 2010. 59(10): p. 1383-8. 15. Van Loon, K. and A.P. Venook, Metastatic colorectal cancer: a curable disease. Oncology (Williston Park), 2012. 26(3): p. 275-6, 282. 16. Ashley, A.C., C. Deschamps, and S.R. Alberts, Impact of prognostic factors on clinical outcome after resection of colorectal pulmonary metastases. Clin Colorectal Cancer, 2006. 6(1): p. 32-7. 17. Voulgari, A. and A. Pintzas, Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta, 2009. 1796(2): p. 75-90. 18. Leber, M.F. and T. Efferth, Molecular principles of cancer invasion and metastasis (review). Int J Oncol, 2009. 34(4): p. 881-95. 19. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 20. Adams, R., M. Steckel, and B. Nicke, Functional Genomics in Pharmaceutical Drug Discovery. Handb Exp Pharmacol, 2016. 232: p. 25-41. 21. Karlas, A., N. Machuy, Y. Shin, K.P. Pleissner, A. Artarini, D. Heuer, D. Becker, H. Khalil, L.A. Ogilvie, S. Hess, A.P. Maurer, E. Muller, T. Wolff, T. Rudel, and T.F. Meyer, Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 2010. 463(7282): p. 818-22. 22. Smolen, G.A., J. Zhang, M.J. Zubrowski, E.J. Edelman, B. Luo, M. Yu, L.W. Ng, C.M. Scherber, B.J. Schott, S. Ramaswamy, D. Irimia, D.E. Root, and D.A. Haber, A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration. Genes Dev, 2010. 24(23): p. 2654-65. 23. Kanoh, H., L.L. Tong, T. Kuraishi, Y. Suda, Y. Momiuchi, F. Shishido, and S. Kurata, Genome-wide RNAi screening implicates the E3 ubiquitin ligase Sherpa in mediating innate immune signaling by Toll in Drosophila adults. Sci Signal, 2015. 8(400): p. ra107. 24. Cronin, S.J., N.T. Nehme, S. Limmer, S. Liegeois, J.A. Pospisilik, D. Schramek, A. Leibbrandt, M. Simoes Rde, S. Gruber, U. Puc, I. Ebersberger, T. Zoranovic, G.G. Neely, A. von Haeseler, D. Ferrandon, and J.M. Penninger, Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science, 2009. 325(5938): p. 340-3. 25. Fondell, J.D., H. Ge, and R.G. Roeder, Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci U S A, 1996. 93(16): p. 8329-33. 26. Diefenbacher, M.E., D. Reich, O. Dahley, D. Kemler, M. Litfin, P. Herrlich, and O. Kassel, The LIM domain protein nTRIP6 recruits the mediator complex to AP-1-regulated promoters. PLoS One, 2014. 9(5): p. e97549. 27. Lande-Diner, L., C. Boyault, J.Y. Kim, and C.J. Weitz, A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc Natl Acad Sci U S A, 2013. 110(40): p. 16021-6. 28. Katano-Toki, A., T. Satoh, T. Tomaru, S. Yoshino, T. Ishizuka, S. Ishii, A. Ozawa, N. Shibusawa, T. Tsuchiya, T. Saito, H. Shimizu, K. Hashimoto, S. Okada, M. Yamada, and M. Mori, THRAP3 interacts with HELZ2 and plays a novel role in adipocyte differentiation. Mol Endocrinol, 2013. 27(5): p. 769-80. 29. Sono, T., H. Akiyama, S. Miura, J.M. Deng, C. Shukunami, Y. Hiraki, Y. Tsushima, Y. Azuma, R.R. Behringer, and S. Matsuda, THRAP3 interacts with and inhibits the transcriptional activity of SOX9 during chondrogenesis. J Bone Miner Metab, 2018. 36(4): p. 410-419. 30. Lee, K.M., W. Hsu Ia, and W.Y. Tarn, TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation. Nucleic Acids Res, 2010. 38(10): p. 3340-50. 31. Lee, K.M. and W.Y. Tarn, TRAP150 activates splicing in composite terminal exons. Nucleic Acids Res, 2014. 42(20): p. 12822-32. 32. Heyd, F. and K.W. Lynch, Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell, 2010. 40(1): p. 126-37. 33. Yarosh, C.A., I. Tapescu, M.G. Thompson, J. Qiu, M.J. Mallory, X.D. Fu, and K.W. Lynch, TRAP150 interacts with the RNA-binding domain of PSF and antagonizes splicing of numerous PSF-target genes in T cells. Nucleic Acids Res, 2015. 43(18): p. 9006-16. 34. Bracken, C.P., S.J. Wall, B. Barre, K.I. Panov, P.M. Ajuh, and N.D. Perkins, Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res, 2008. 68(18): p. 7621-8. 35. Varia, S., D. Potabathula, Z. Deng, A. Bubulya, and P.A. Bubulya, Btf and TRAP150 have distinct roles in regulating subcellular mRNA distribution. Nucleus, 2013. 4(3): p. 229-40. 36. Vohhodina, J., E.M. Barros, A.L. Savage, F.G. Liberante, L. Manti, P. Bankhead, N. Cosgrove, A.F. Madden, D.P. Harkin, and K.I. Savage, The RNA processing factors THRAP3 and BCLAF1 promote the DNA damage response through selective mRNA splicing and nuclear export. Nucleic Acids Res, 2017. 45(22): p. 12816-12833. 37. Kasaian, K., S.M. Wiseman, N. Thiessen, K.L. Mungall, R.D. Corbett, J.Q. Qian, K.M. Nip, A. He, K. Tse, E. Chuah, R.J. Varhol, P. Pandoh, H. McDonald, T. Zeng, A. Tam, J. Schein, I. Birol, A.J. Mungall, R.A. Moore, Y. Zhao, M. Hirst, M.A. Marra, B.A. Walker, and S.J. Jones, Complete genomic landscape of a recurring sporadic parathyroid carcinoma. J Pathol, 2013. 230(3): p. 249-60. 38. Paterlini-Brechot, P., K. Saigo, Y. Murakami, M. Chami, D. Gozuacik, C. Mugnier, D. Lagorce, and C. Brechot, Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene, 2003. 22(25): p. 3911-6. 39. Cha, J.D., H.J. Kim, and I.H. Cha, Genetic alterations in oral squamous cell carcinoma progression detected by combining array-based comparative genomic hybridization and multiplex ligation-dependent probe amplification. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011. 111(5): p. 594-607. 40. Ino, Y., N. Arakawa, H. Ishiguro, H. Uemura, Y. Kubota, H. Hirano, and T. Toda, Phosphoproteome analysis demonstrates the potential role of THRAP3 phosphorylation in androgen-independent prostate cancer cell growth. Proteomics, 2016. 16(7): p. 1069-78. 41. Mace, P.D., Y. Wallez, M.K. Dobaczewska, J.J. Lee, H. Robinson, E.B. Pasquale, and S.J. Riedl, NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Nat Struct Mol Biol, 2011. 18(12): p. 1381-7. 42. van Agthoven, T., T.L. van Agthoven, A. Dekker, P.J. van der Spek, L. Vreede, and L.C. Dorssers, Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J, 1998. 17(10): p. 2799-808. 43. Wallez, Y., S.J. Riedl, and E.B. Pasquale, Association of the breast cancer antiestrogen resistance protein 1 (BCAR1) and BCAR3 scaffolding proteins in cell signaling and antiestrogen resistance. J Biol Chem, 2014. 289(15): p. 10431-44. 44. Riggins, R.B., L.A. Quilliam, and A.H. Bouton, Synergistic promotion of c-Src activation and cell migration by Cas and AND-34/BCAR3. J Biol Chem, 2003. 278(30): p. 28264-73. 45. Vervoort, V.S., S. Roselli, R.G. Oshima, and E.B. Pasquale, Splice variants and expression patterns of SHEP1, BCAR3 and NSP1, a gene family involved in integrin and receptor tyrosine kinase signaling. Gene, 2007. 391(1-2): p. 161-70. 46. Schuh, N.R., M.S. Guerrero, R.S. Schrecengost, and A.H. Bouton, BCAR3 regulates Src/p130 Cas association, Src kinase activity, and breast cancer adhesion signaling. J Biol Chem, 2010. 285(4): p. 2309-17. 47. Felekkis, K.N., R.P. Narsimhan, R. Near, A.F. Castro, Y. Zheng, L.A. Quilliam, and A. Lerner, AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain-dependent manner. Mol Cancer Res, 2005. 3(1): p. 32-41. 48. Gotoh, T., D. Cai, X. Tian, L.A. Feig, and A. Lerner, p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J Biol Chem, 2000. 275(39): p. 30118-23. 49. Cai, D., A. Iyer, K.N. Felekkis, R.I. Near, Z. Luo, J. Chernoff, C. Albanese, R.G. Pestell, and A. Lerner, AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res, 2003. 63(20): p. 6802-8. 50. Schrecengost, R.S., R.B. Riggins, K.S. Thomas, M.S. Guerrero, and A.H. Bouton, Breast cancer antiestrogen resistance-3 expression regulates breast cancer cell migration through promotion of p130Cas membrane localization and membrane ruffling. Cancer Res, 2007. 67(13): p. 6174-82. 51. Oh, M.J., T. van Agthoven, J.E. Choi, Y.J. Jeong, Y.H. Chung, C.M. Kim, and B.H. Jhun, BCAR3 regulates EGF-induced DNA synthesis in normal human breast MCF-12A cells. Biochem Biophys Res Commun, 2008. 375(3): p. 430-4. 52. Wilson, A.L., R.S. Schrecengost, M.S. Guerrero, K.S. Thomas, and A.H. Bouton, Breast cancer antiestrogen resistance 3 (BCAR3) promotes cell motility by regulating actin cytoskeletal and adhesion remodeling in invasive breast cancer cells. PLoS One, 2013. 8(6): p. e65678. 53. Cross, A.M., A.L. Wilson, M.S. Guerrero, K.S. Thomas, A.I. Bachir, K.E. Kubow, A.R. Horwitz, and A.H. Bouton, Breast cancer antiestrogen resistance 3-p130(Cas) interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene, 2016. 35(45): p. 5850-5859. 54. Sun, G., S.Y. Cheng, M. Chen, C.J. Lim, and C.J. Pallen, Protein tyrosine phosphatase alpha phosphotyrosyl-789 binds BCAR3 to position Cas for activation at integrin-mediated focal adhesions. Mol Cell Biol, 2012. 32(18): p. 3776-89. 55. Rufanova, V.A., A. Alexanian, T. Wakatsuki, A. Lerner, and A. Sorokin, Pyk2 mediates endothelin-1 signaling via p130Cas/BCAR3 cascade and regulates human glomerular mesangial cell adhesion and spreading. J Cell Physiol, 2009. 219(1): p. 45-56. 56. Wallez, Y., P.D. Mace, E.B. Pasquale, and S.J. Riedl, NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer. Genes Cancer, 2012. 3(5-6): p. 382-93. 57. Oh, M.J., S.J. Yi, H.S. Kim, J.H. Kim, Y.H. Jeong, T. van Agthoven, and B.H. Jhun, Functional roles of BCAR3 in the signaling pathways of insulin leading to DNA synthesis, membrane ruffling and GLUT4 translocation. Biochemical and Biophysical Research Communications, 2013. 441(4): p. 911-916. 58. Five decades of eukaryotic transcription. Nature Structural & Molecular Biology, 2019. 26(9): p. 757-757. 59. Pretzsch, E., F. Bosch, J. Neumann, P. Ganschow, A. Bazhin, M. Guba, J. Werner, and M. Angele, Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread. Journal of Oncology, 2019. 2019. 60. Bellofatto, V. and J. Wilusz, Transcription and mRNA Stability: Parental Guidance Suggested. Cell, 2011. 147(7): p. 1438-1439. 61. Stass, S.A. and A.J. Mixson, Oncogenes and tumor suppressor genes: Therapeutic implications. Clinical Cancer Research, 1997. 3(12): p. 2687-2695. 62. Pagliarini, R., W.L. Shao, and W.R. Sellers, Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. Embo Reports, 2015. 16(3): p. 280-296. 63. Guo, X.E., B. Ngo, A.S. Modrek, and W.H. Lee, Targeting Tumor Suppressor Networks for Cancer Therapeutics. Current Drug Targets, 2014. 15(1): p. 2-16. 64. Morris, L.G.T. and T.A. Chan, Therapeutic Targeting of Tumor Suppressor Genes. Cancer, 2015. 121(9): p. 1357-1368. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15251 | - |
dc.description.abstract | 大腸直腸癌是全世界常見的惡性腫瘤之一,而癌細胞的侵襲及轉移是造成患者死亡的主要原因,因此,對於大腸直腸癌轉移探究其機制是重要的研究方向。為了全面性的探討轉移機制,我們使用全基因體shRNA靜默(knockdown)技術試圖篩選出與大腸直腸癌轉移相關的基因。在實驗室先前的研究中,藉由細胞侵入實驗篩選出高侵襲性的HCT-116細胞,並利用次世代定序確認shRNA序列所對應的基因。經由實驗發現利用特異shRNA抑制THRAP3表現可提高細胞侵襲能力。此外,初步利用大腸直腸癌病患檢體進行驗證發現,病患具THRAP3表現量低者,其整體存活率顯著劣於表現量高之病患,亦發現THRAP3低表現量與淋巴或遠端轉移及癌症分期有高度相關性。迄今為止,THRAP3在腫瘤轉移過程中所扮演的角色仍然未知。為了進一步證實THRAP3在大腸直腸癌轉移中的作用,我們發現THRAP3靜默後,除了明顯促進HCT-116細胞的侵襲能力外,透過傷口癒合試驗發現細胞的移動能力也會顯著增加。另外,藉由外送THRAP3的表現質體於THRAP3被靜默的細胞中,可以顯著恢復對細胞侵襲能力的抑制作用。同時,我們在不同大腸直腸癌細胞株HCT-15和DLD-1中亦得到驗證,靜默THRAP3會提高其細胞侵襲能力。綜合上述,結果顯示THRAP3會抑制大腸直腸癌細胞的轉移。為了針對THRAP3做更深入地探討,透過次世代定序進行全轉錄組定序比較細胞在THRAP3靜默後所造成的基因表現量變化,從中挑選出表現量上升差異較大的基因,並進一步經由實驗驗證後,發現靜默BCAR3表現對細胞侵襲及移動能力有明顯抑制作用,可能作為受THRAP3調控進而影響大腸直腸癌轉移的候選基因,故我們將著重探討其之間的關係。根據全轉錄組定序的數據顯示THRAP3靜默會增加BCAR3 mRNA表現量,同時利用西方墨點法確認BCAR3蛋白表現量也有顯著上升。此外,由實驗結果發現在靜默THRAP3的細胞中抑制BCAR3表達後,可以減緩原由THRAP3靜默時導致細胞侵襲能力增加的現象,暗示THRAP3可能藉由調控BCAR3影響細胞侵襲能力。為了進一步釐清THRAP3調控BCAR3的機轉,我們探討了BCAR3 mRNA穩定度、pre-mRNA剪切效率或啟動子活性是否受到THRAP3調控,然而目前為止在這些實驗中並未沒有足夠的數據證明THRAP3是如何調控BCAR3。綜合我們實驗結果顯示,靜默THRAP3會增加BCAR3表現量而促進細胞侵襲能力,但是還需要更多研究才能明瞭其調控機轉。 | zh_TW |
dc.description.abstract | Colorectal cancer (CRC) is one of the most common malignancies in the world, and metastasis is one main cause of cancer-related death. Therefore, it is an important issue to explore the mechanism of CRC metastasis. For a comprehensive perspective of metastatic CRC, we used a genome-wide shRNA library to discover metastasis-associated genes in CRC. In our previous study, the shRNA lentivirus-infected HCT-116 cells were subjected to invasiveness selection by a transwell invasion assay. The fragments corresponding to the shRNA of invaded HCT-116 cells were sequenced by Next Generation Sequencing (NGS). It was found that knockdown of THRAP3 increases invasion ability of HCT-116 cells. Additionally, the validation of the CRC patient cohort demonstrated that the low expression of THRAP3 is significantly associated with shorter overall survival, lymph node invasion, distant organ metastasis and tumor staging. However, the role of THRAP3 in cancer metastasis is still unknown. To further confirm the role of THRAP3 in CRC metastasis, the results showed that THRAP3 knockdown not only significantly promotes HCT-116 cell invasion, but also increases migration by wound healing assay. In addition, restoration of THRAP3 could recover the inhibition of cell invasion ability. Knockdown of THRAP3 increases the cell invasion ability was verified in two additional colorectal cancer cell lines, HCT-15 and DLD-1. Taken together, the results reveal that THRAP3 can inhibit CRC metastasis. To have insights into the molecular mechanism of THRAP3-involved in CRC metastasis, we performed RNA sequencing analysis. The top ranking fold-change genes whose expression up-regulated by loss of THRAP3 were selected and further verification revealed that BCAR3 knockdown dramatically decreases cell invasion and migration. BCAR3 may be a candidate gene that is regulated by THRAP3 to affect CRC metastasis, therefore, we next focused on the relationship between these two genes. According to RNA sequencing analysis data, both mRNA and protein expressions of BCAR3 were increased while THRAP3 knockdown. On the other hand, knockdown of BCAR3 abrogates the increase of invasion which is caused by THRAP3 knockdown, suggesting that THRAP3 modulates metastatic ability of cells through BCAR3. To further clarify the mechanism, we explored whether BCAR3 mRNA stability, pre-mRNA splicing efficiency, or promoter activity is regulated by THRAP3. However, there has not been enough data to prove how THRAP3 upregulates BCAR3. In summary, our results show that THRAP3 knockdown can increase BCAR3 expression and promote cell invasion, but further studies are necessary to understand its regulatory mechanism. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:28:58Z (GMT). No. of bitstreams: 1 ntu-109-R06424011-1.pdf: 6384217 bytes, checksum: 30b36a95e7bb4c3fc57eb0a5388b4c02 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III 英文摘要 V 1. Introduction 1 1.1 Colorectal Cancer 2 1.2 Genome-wide RNAi screening system 4 1.3 A whole-genome shRNA screen for colorectal cancer metastasis. 6 1.4 The effect of candidate genes on cell invasion and clinical significance. 7 1.5 THRAP3 8 1.6 BCAR3 10 1.7 Specific Aims 12 2. Materials and Methods 13 2.1 Cell lines and cell culture 14 2.2 Lentiviral transduction 14 2.3 Cell viability assay 15 2.4 Transwell invasion assay 15 2.5 Wound-healing assay 16 2.6 Transient transfection assay 16 2.7 Western blot analysis 16 2.8 mRNA stability assay and mRNA splicing assay 17 2.9 Plasmid construction 18 2.10 Luciferase reporter assay 18 3. Results 19 3.1 THRAP3 suppresses colon cancer metastasis in HCT-116 cells. 20 3.2 Validation of the function of THRAP3 in other colorectal cancer cell lines. 21 3.3 The downstream of THRAP3 involved in colorectal cancer metastasis by RNA-sequencing. 22 3.4 BCAR3 as the downstream of target gene promotes the metastasis. 23 3.5 THRAP3 knockdown enhances BCAR3 expression in HCT-116 cells 24 3.6 Knockdown of BCAR3 abrogates the THRAP3-mediated inhibition of cell invasion. 24 3.7 Investigation of the mechanism of THRAP3 regulating BCAR3. 25 4. Conclusions 27 5. Discussion 29 6. Figures 34 Figure 1. Genome-wide shRNA library reveals metastasis-associated molecular in colorectal cancer. 35 Figure 2. The effect of candidate genes on invasive ability in HCT-116 cells. 36 Figure 3. The association of candidate genes expression with overall survival in CRC patients. 37 Figure 4. Knockdown of THRAP3 promotes cell invasion in HCT-116 cells. 38 Figure 5. Knockdown of THRAP3 promotes migration in HCT-116 cells. 40 Figure 6. Restoration of THRAP3 expression in THRAP3 stable knockdown cells rescues cell invasion. 41 Figure 7. Knockdown of THRAP3 promotes cell invasion in HCT-15 cells. 43 Figure 8. Knockdown of THRAP3 promotes cell invasion in DLD-1 cells. 45 Figure 9. Knockdown of BCAR3 suppresses invasion in HCT-116 cells. 47 Figure 10. Knockdown of BCAR3 suppresses migration in HCT-116 cells. 49 Figure 11. Overexpression of BCAR3 promotes invasion in HCT-116 cells. 50 Figure 12. BCAR3 protein expression is upregulated in THRAP3 knockdown cells. 52 Figure 13. BCAR3 mRNA expression is increased by knockdown THRAP3 in a dose-dependent manner. 53 Figure 14. Knockdown BCAR3 in THRAP3 manipulated cells. 54 Figure 15. Investigation of the mechanism of THRAP3 knockdown up-regulating BCAR3. 56 Figure 16. The mRNA expression of candidate genes knockdown in THRAP3 manipulated cells. 58 Figure 17. The invasion ability of candidate genes knockdown in THRAP3 manipulated cells. 59 Table 1.1 The validation of genes from the pathway analysis by transwell invasion assay. 60 Table 1.2 The validation of the top ranking fold change genes from NGS analysis by transwell invasion assay. 60 Table 2. Correlation of THRAP3 expression with clinical pathological parameters in CRC patients. 61 Table 3. Cox regression analysis for overall survival in CRC patients. 61 Table 4. The validation of the top ranking fold change genes from RNA sequencing analysis by transwell invasion assay. 62 Table 5. Primer list for plasmid construction and qRT-PCR. 63 7. References 65 | |
dc.language.iso | en | |
dc.title | THRAP3藉由減少BCAR3表現量來抑制大腸直腸癌轉移 | zh_TW |
dc.title | THRAP3 suppresses colorectal cancer metastasis by reducing BCAR3 | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱瀚模,李明學,華國泰,蘇剛毅 | |
dc.subject.keyword | shRNA 靜默,存活率,侵襲性,抑癌基因,HCT-116細胞, | zh_TW |
dc.subject.keyword | shRNA silencing,survival,invasion,tumor suppressor genes,HCT-116 cells, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU202000161 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-02-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。