Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15211
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorTsung-Chin Chengen
dc.contributor.author程琮欽zh_TW
dc.date.accessioned2021-06-07T17:28:34Z-
dc.date.copyright2020-06-09
dc.date.issued2020
dc.date.submitted2020-05-18
dc.identifier.citationChapter 1
[1] T. Tsujimura, OLED Display: Fundamentals and Applications. NJ, USA: John Wiley & Sons, 2017.
[2] D. Barnes, “LCD or OLED: Who Wins,” Society for Information Display, vol 44, no 1, pp. 26-27, Jun, 2013.
[3] B. Geffroy, P. L. roy, C. Prat. “Organic light?emitting diode (OLED) technology: materials, devices and display technologies,” Polymer International, vol 55, no 6, pp. 572–582, Feb, 2006.
[4] M. Pope, H. P. Kallmann, and P. Magnante. “Electroluminescence in Organic Crystals,” Journal of Chemical Physics, vol 38, no 8, pp. 2042-2043, 1963.
[5] W. Helfrich and W. G. Schneider. “Recombination Radiation in Anthracene Crystals,” Physical Review Letters, vol 14, no 7, pp. 229-231, Feb, 1965.
[6] C. W. Tang and S. A. VanSlyke, “ Organic electroluminescent diodes,” Appl. Phys. Lett. vol 51, no 913, pp. 913-915, Jul, 1987.
[7] T. Tsujimura, OLED Display Fundamentals and Applications ,John Wiley & Sons, 2017.
[8] D. Ammermann, A. Bohler, W. Kowalsky, “Multilayer organic light emitting diodes for flat panel displays,” Ammermann, pp. 48-58, 1997.
[9] S. Hofmann, M. Thomschke, B. Lussem et al., “Top-emitting organic light-emitting diodes,” Optics Express, vol 19, no 6, pp. 1250-1264, Nov, 2011.
[10] T. C. Cheng and C. I. Wu. “Recent Development of Transparent Electrodes and Photoemission Spectroscopy,” Journal of the Vacuum Society , vol 27, pp. 31 – 36, 2014.
[11] T. Minami ,” Transparent conducting oxide semiconductors for transparent electrodes” Semiconductor Science and Technology, vol 20, pp. 35–44, Mar, 2005.
[12] K. S. Novoselov, A. K. Geim, S. V. Morozov et al., 'Electric field effect in atomically thin carbon films,' Science, vol 306, no 5696, pp. 666-669. Oct, 2004
[13] S. K. Bae, H. K. Kim, Y. B. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol, vol 5, pp. 574 – 578, Aug, 2010.
[14] J. H. Ahn and B. H. Hong, “Graphene for displays that bend,” Nature Nanotechnology, vol 9, pp. 737–738, Oct, 2014.
[15] H. Park, D. S. Oh, K. J. Lee et al., “Flexible and Transparent Thin-Film Transistors Based on Two-Dimensional Materials for Active-Matrix Display,” ACS Appl. Mater. Interfaces, vol 12, no 4, pp. 4749-4754, Jan, 2020.
[16] K. S. Novoselov, V. I. Falko, L. Colombo et al., “A roadmap for graphene,” Nature, vol 490, no 11, pp. 192–200, Oct, 2012.
[17] J. C. Ryu, Y. S. Kim D. K. Won et al., “Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition,” ACS Nano, vol 8, no 1, pp. 950–956, Jan ,2014.
[18] X. S. Li, W. W. Cai, J. H. An et al, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol 324, no 5932, pp. 1312-1314, Jun, 2009.
[19] J. D. Wood, S. W. Schmucker, A. S. Lyons et al., 'Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition,' Nano Letters, vol 11, no 11, pp. 4547-4554, Nov, 2011.
[20] D. Cahen and A. Kahn, “Electron Energetics at Surfaces and Interfaces: Concepts and Experiments,” Advanced Materials, vol 15, no 4, pp. 271-277, Feb, 2003.
[21] C. Kittel, Introduction to Solid State Physics, Wiley, 2004.
[22] A. Pross, Theoretical and Physical Principles of Organic Reactivity, 1995.
[23] P. F. Lang and B. C. Smith, 'Ionization Energies of Atoms and Atomic Ions,' Journal of Chemical Education. vol 80, no 8, pp. 938-946, Aug, 2003.
[24] V. E. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, 2006.
[25] M. Losurdo, M. M. Giangregorio, P. Capezzuto et al., “Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure,” Physical chemistry chemical, vol 13, pp. 20836-20843, Oct, 2011.
[26] F. A. Lindemann, 'The calculation of molecular vibration frequencies,' Phys. Z, vol 11, pp. 609–612, 1910.
[27] G. Guisbiers and L. Buchaillot, “Universal size/shape-dependent law for characteristic temperatures,” vol 374, no 2, pp. 305-308, Dec, 2009.
[28] D. C. Wallace, “Melting of elements”, vol 433, pp. 631-661,1991.
[29] K. Zahn and G. Maret, “Dynamic Criteria for Melting in Two Dimensions,” Physical Review Letters, vol 85, no 17, pp. 3656-3569, Oct, 2000.
[30] A. K. Rasheed, M. Khalid, W. Rashmi et al., “Graphene based nanofluids and nanolubricants – Review of recent developments,” vol 63, pp. 346-362, Sep, 2016.
[31] Y. J. Ma and L. J. Zhi, “Graphene?Based Transparent Conductive Films: Material Systems, Preparation and Applications,” Small Methods, vol 3, no 1, pp. 1800199, 2019.
[32] F. Bonaccorso, Z. Sun, T. Hasan et al., “Graphene photonics and optoelectronics,” Nature Photonics, vol 4, pp. 611–622, Sep, 2010.
[33] K. S. Novoselov, D. Jiang, F. Schedin et al., “Two-dimensional atomic crystals”, PNAS, vol 102, no 30, pp. 10451–10453, Jul 2005.
[34] S. Stankovich, D. A. Dikin, G. H. B. Dommett et al., “Graphene-based composite materials,” Nature, vol 442, pp. 282–286, Jul, 2006.
[35] Y. Hernandez, V. Nicolosi, M. Lotya et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech, vol 3, 563–568, Sep, 2008.
Chapter 2
[1] H. Hertz, “Ueber sehr schnelle electrische Schwingungen,” Annalen der physic, vol 267, no 8, pp. 983-1000, 1887
[2] E. Albert, 'Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,' Annalen der Physik, vol 17, no 6, pp. 132–148, 1905.
[3] D. Briggs and M. P. Seah, Practical surface analysis by Auger and X?ray photoelectron spectroscopy, John Wiley and Sons Ltd, 1983.
[4] RBD Instruments, Inc. https://rbdinstruments.com/
[5] A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nature Nanotechnology, vol 8, pp. 235–246, Apr, 2013.
[6] W. H. Lin, T. H. Chen, J. K. Chang et al., “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate” ACS Nano, vol 8, no 2, pp. 1784-1791, Jan, 2014.
Chapter 3
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no 5696, pp. 666– 669, Oct, 2004.
[2] C. Lee, X. Wei, J. W. Kysar et al., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, vol 321, no 5887, pp. 385– 388, Jul, 2008.
[3] A. Pirkle, J. Chan, A. Venugopal et al., “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,” Appl. Phys. Lett, vol 99, pp. 122108. Sep, 2011.
[4] X. S. Li, Y. W. Zhu, W. W. Cai et al., “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Letters, vol 9, no 12, pp. 4359-4363, Sep, 2009.
[5] G. B. Barin, Y. Song, L. F. Gimenze et al., “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon, vol 84, pp. 82-90, Apr, 2015.
[6] Y. K. Ahn, H. Kim, Y. H. Kim et al., “Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene,” Appy. Phys. Lett, vol 102, pp. 091602, Mar, 2013.
[7] Y. C. Lin, C. C. Lu, C. H. Yeh et al., “Graphene Annealing: How Clean Can It Be,” Nano Lett, vol 12, no 1, pp. 414-419, Dec, 2011.
[8] G. Deokar, J. Avila, I. R. Colambo et al., “Towards high quality CVD graphene growth and transfer,” Carbon, vol 89, pp. 82-92, Mar, 2015.
[9] C. Y. Cai, F. X. Jia, A. Li et al., “Crackless transfer of large-area graphene films for superior-performance transparent electrodes” Carbon, vol 98, pp. 457-462, Mar, 2016.
[10] Y. H. Jia, X. Gong, P. Peng et al., “Toward High Carrier Mobility and Low Contact Resistance: Laser Cleaning of PMMA Residues on Graphene Surfaces,” Nano-Micro Letters, vol 8, no 4, pp. 336–346. May, 2016.
[11] W. H. Lin, T. H. Chen, J. K. Chang et al., “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate” ACS Nano, vol 8, no 2, pp. 1784-1791, Jan, 2014.
[12] W. S. Choi, Y. S. Seo, J. Y. Park et al., “Effect of Annealing in Ar/H2 Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate),” IEEE Transactions on nanotechnology, vol 14, no 1, pp. 70 – 74, Jan, 2015.
[13] X. D. Chen, Z. B. Liu, C. Y. Zheng et al., “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon, vol 56, pp. 271-278, May, 2013.
[14] M. P. Lavin-Lopez, J. L. Valverde, A. Garrido et al., “Novel etchings to transfer CVD-grown graphene from copper to arbitrary substrates,” Chemical Physics Letters, vol 614, pp. 89-94, Oct, 2014.
[15] G. P. Martins, Y. Song, T. Y. Zeng et al., “Direct transfer of graphene onto flexible substrates,“ PNAS, vol 110, no 44, pp. 17762–17767, Oct, 2013.
[16] D. Y. Wang, I. S. Huang, P. H. Ho et al., “Clean-lifting transfer of large-area residual-free graphene films,” Adv Mater, vol 25, no 32, pp. 4521-4526, Jun, 2013.
[17] S. M. Shinde, G. Kalita, S. Sharma et al., “Polymer-free graphene transfer on moldable cellulose acetate based paper by hot press technique,“ Surface and Coatings Technology, vol 275, pp. 369-373, Aug, 2015.
[18] Y. J. Ren, C. F. Zhu, W. W. Cai et al., “An Improved Method for Transferring Graphene Grown by Chemical Vapor Deposition,“ Nano, vol 07, no 1, pp. 1150001, 2012.
[19] I. Pasternak, A. Krajewska, K. Grodecki et al., “Graphene films transfer using marker-frame method,“ AIP Advances, vol 4, no 9, pp. 097133, Sep, 2014.
[20] J. K. Chang, W.H. Lin, J. I. Taur et al., “Graphene Anodes and Cathodes: Tuning the Work Function of Graphene by Nearly 2 eV with an Aqueous Intercalation Process,” ACS Appl. Mater. Interfaces, vol 7, no 31, pp. 17155-17161, Jul, 2015.
[21] J. H. Chang, W. H. Lin, P. C. Wang et al., “Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode,” Scientific Reports, vol 5, 9693, Apr, 2015.
[22] H. C. Lee, W. W. Liu, S. P. Chai et al., “Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene,” RSC Adv, vol 7, pp. 15644-15693, Mar, 2017.
[23] C. C. Jia, J. L. Jiang, L. Gan et al., “Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates,” Scientific Reports, vol 2, pp. 707, Oct, 2012.
[24] D. L. Duong, G. H. Han, S. M. Lee et al., “Probing Graphene Grain Boundaries with Optical Microscopy,” Nature, vol 490, pp. 235239, Oct, 2012.
[25] F. Zhou, Z. Li, G. J. Shenoy et al., “Enhanced Room- Temperature Corrosion of Copper in the Presence of Graphene,” ACS Nano, vol 7, no 8, pp. 6939?6947, Jul, 2014.
[26] B. Luo, P. R. Whelan, A. Shivayogimath et al., “Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene,” Chem. Mater, vol 28, pp. 3789 ? 3795, May, 2016.
[27] C. C. Jia, J. L. Jiang, L. Gan et al., “Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates,” Scientific Reports, vol 2, pp. 707, Oct, 2012.
[28] K. P. Hong, D. Lee, J. B. Choi et al., “Real-Time Optical Visualization of Graphene Defects and Grain Boundaries by the Thermal Oxidation of a Graphene-Coated Copper Foil,” ACS Appl. Nano Mater, vol 1, no 6, pp. 2515 – 2520, Jun, 2018.
[29] D. A. Dahl and L. J. Sham, “Electrodynamics of quasi-two-dimensional electrons”, Phys. Rev. B , vol 16, no 2, pp. 651 – 661, Jul, 1977.
[30] Y. Hwangbo, C. K. Lee, S. M. Kim et al., “Fracture Characteristics of Monolayer CVD-Graphene,” Nature Scientific Reports, vol 4, pp. 4439, Mar, 2014.
Chapter 4
[1] G. W. Yuan, D. J. Lin, Y. Wang et al., “Proton-assisted growth of ultra-flat graphene films,” Nature, vol 577, pp. 204 – 208, Jan, 2020.
[2] S. K. Bae, H. K. Kim, Y. B. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol, vol 5, pp. 574 – 578, Aug, 2010.
[3] J. H. Lee, E. K. Lee, W. J. Joo et al., “Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium,” Science, vol 344, no 6181, pp. 286 – 289, Apr, 2014.
[4] L. B. Gao, W. C. Ren, H. L. Xu et al., “Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum,” Nat. Commun, vol 3, no 699, Feb, 2012.
[5] S. J. Chae, F. L. Gunes, K. K. Kim et al., “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation,” Adv. Mater, vol 21, no 22, pp. 2328–2333, Jun, 2009.
[6] P. Y. Huang, C. S. Ruiz-Vargas, A. M. Zande et al., “Grains and grain boundaries in single-layer graphene atomic patchwork quilts,” Nature, vol 469, pp. 389–392, Jan, 2011.
[7] L. B. Gao, G. X. Ni, Y. P. Liu et al., “Face-to-face transfer of wafer-scale graphene films,” Nature, vol 505, pp. 190–194, Jan, 2014.
[8] B. Deng, Z. Q. Pang, S. L. Chen et al., “Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates,” ACS Nano, vol 11, no 12, pp. 12337–12345, Nov, 2017.
[9] Z. K. Zhang, J. H. Du, D. D. Zhang et al., “Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes,” Nat. Commun, vol 8, no 14560, pp. 1-9, Feb, 2017.
[10] W. J. Zhu, T. Low, V. Perebeions et al., “Structure and electronic transport in graphene wrinkles,” Nano Lett, vol 12, no 7, pp. 3431–3436, May, 2012.
[11] M. S. Bronsgeest, N. J. Bendiab, S. S. Mathur et al., “Strain relaxation in CVD graphene: wrinkling with shear lag,” Nano Lett, vol 15, no 8, pp. 5098–5104, Jul, 2015.
[12] K. S. Novoselov, V. I. Falko, L. Colombo et al., “A roadmap for graphene,” Nature, vol 490, no 11, pp. 192–200, Oct, 2012.
[13] R. Ishikawa, S. D. Findlay, T. Seki et al., “Direct electric field imaging of graphene defects,” Nat. Commun, vol 9, no 3878, pp 1-6, Sep, 2018.
[14] H. C. Lee, H. J. Bong, M. S. Yoo et al., “Copper?Vapor?Assisted Growth and Defect?Healing of Graphene on Copper Surfaces,” Small, vol 14, no 30, pp. 1801181, July, 2018.
[15] A. Alnuaimi, I. Almansouri, I. Saadat et al., “Toward fast growth of large area high quality graphene using a cold-wall CVD reactor,” RSC Advances, vol 7, pp. 51951-51957, Oct, 2017.
[16] H. C. Lin, Y.Z. Chen, Y. C. Wang et al., “The Essential Role of Cu Vapor for the Self-Limit Graphene via the Cu Catalytic CVD Method,” J. Phys. Chem. C, vol 119, no 12, pp. 6835-6842, Feb, 2015.
[17] Y. Z. Chen, H. Medina, H. C. Lin et al., “Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices,” Nanoscale, vol 7, pp. 1678–1687, Oct, 2014.
[18] Y. Z. Chen, H. Medina, H. W. Tsai et al., “Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode,” ACS Chem. Mater, vol 27, no 5, pp.1646-1655, Feb, 2015.
[19] B. Hu, Y. Jin, D J. Guan et al., “H2-Dependent Carbon Dissolution and Diffusion-Out in Graphene Chemical Vapor Deposition Growth,” J. Phys. Chem. C, vol 119, no 42, pp. 24124-24131, Sep, 2015.
[20] A. L. Lee, L. Tao and D. Akinwande ,“Suppression of Copper Thin Film Loss during Graphene Synthesis,” ACS Appl. Mater. Interfaces, vol 7, no 3, pp. 1527-1532, Dec 2014.
[21] P. Zhao, A. Kumamoto, S. Kim et al., “Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol,” ACS J. Phys. Chem. C, vol 117, no 20, pp 10755-10763, Apr 2013.
[22] J. W. Suk, A. Kitt, C. W. Magnuson et al., “Transfer of CVD grown monolayer graphene onto arbitrary substrates,” ACS Nano, vol 5, no 9, pp. 6916–6924, Sep, 2011.
[23] M. H. Rummeli, S. Gorantla, A. Bachmatiuk et al., “On the Role of Vapor Trapping for Chemical Vapor Deposition (CVD) Grown Graphene over Copper,” Chem. Mater. vol 25, no 24, pp. 4861-4866, Dec, 2013.
[24] W. H. Lin, T. H. Chen, J. K. Chang et al., “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate” ACS Nano, vol 8, no 2, pp. 1784-1791, Jan, 2014.
Chapter 5
[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres et al., “The electronic properties of graphene,” Reviews of Modern Physics, vol 81, no 1, pp. 109-162, Jan, 2009.
[2] S. K. Bae, H. K. Kim, Y. B. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol, vol 5, pp. 574 – 578, Aug, 2010.
[3] K. I. Bolotin, K. J. Sikes, Z. Jiang et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol 146, no 9, pp. 351-355, Mar, 2008.
[4] J. Ryu, Y. Kim, D. Won et al., “Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition,” ACS Nano, vol 8, no 1, pp. 950-956, Jan, 2014.
[5] X. Li, W. Cai, J. An et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol, 324, pp. 1312-1314, Jun, 2009.
[6] T. Sun, Z. L. Wang, Z et al., “Multilayered graphene used as anode of organic light emitting devices,” Applied Physics Letters, vol 96, no 133301, pp. 1-6, Mar, 2010.
[7] J. H. Hwang, H. K. Choi, J. H. Moon et al., “Blue fluorescent organic light emitting diodes with multilayered graphene anode,” Materials Research Bulletin, vol 47, no 10, pp. 2796-2799, Oct, 2012.
[8] D. Y. Wang, I. S. Huang, P. H. Ho et al., “Clean-lifting transfer of large-area residual-free graphene films,” Advanced Materials, vol 25, pp. 4521-4526, Jun, 2013.
[9] J. H. Hwang, H. K. Choi, J. H. Moon et al., “Multilayered graphene anode for blue phosphorescent organic light emitting diodes,” Appl. Phys. Lett, vol 100, pp. 133304, Mar, 2012.
[10] S. A. You, O. S. Kwona, and J. Jang. “A facile synthesis of uniform Ag nanoparticle decorated CVD-grown graphenevia surface engineering,” Journal of Materials Chemistry, vol 22, pp. 17805-17812, Jun, 2012.
[11] Y. Kim, H. K. Kim, T. Y. Kim et al., “Influence of the transfer and chemical treatment of monolayer graphene grown for flexible transparent electrodes,” Carbon, vol 81, pp. 458-464, Jan, 2015.
[12] W. H. Lin, T. H. Chen, J. K. Chang et al., “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate” ACS Nano, vol 8, no 2, pp. 1784-1791, Jan, 2014.
[13] H. S. Park, S. H. Chang, M. Smith et al., “Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics,” Scientific reports, vol 3, no 1581, Apr, 2013.
[14] J. B. Lee, K. D. Rana, B. H. Seo et al., “Influence of nonionic surfactant-modified PEDOT:PSS on graphene,” Carbon, vol 85, pp. 261-268, Apr, 2015.
[15] A. Bianconi, S. B. M. Hagstrom, and R. Z. Bachrach. “Photoemission studies of graphite high-energy conduction-band and valence-band states using soft-x-ray synchrotron radiation excitation,” Phys. Rev. B, vol 16, no 12, pp. 5543-5548, Dec, 1977.
[16] J. H. Chang, W. H. Lin, P. C. Wang et al., “Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode,” Scientific reports, vol 5, no 9693, pp. 1-6, Apr, 2015.
[17] P. H. Wang, “New Hexa-peri-hexabenzocoronene (HBC) for the Applications of the Graphene Exfoliation and Modification, and surface self-Assembly,” Ph.D. thesis, National Taiwan University, Taiwan, 2015.
[18] S. Chattopadhyay, A. Uysal, B. Stripe et al., 'How Water Meets a Very Hydrophobic Surface,' Physical Review Letters, vol. 105, pp. 037803, Jul, 2010.
[19] Y. L. Wang and M. Lieberman, 'Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2,' Langmuir, vol. 19, no4, pp. 1159-1167, Jan, 2003.
[20] M. Lafkioti, B. Krauss, T. Lohmann et al., 'Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,' Nano Lett, vol. 10, no 4, pp. 1149-53, Mar 2010.
[21] S. Y. Liu, “Investigation of Device Characteristics in Alternating Current-Driven Organic Light-emitting Diodes and Graphene Field Effect Transistors Modified with Self-Assembled Monolayer on Silicon Dioxide Substrates,” Master. thesis, National Taiwan University, Taiwan, 2014.
[22] X. D. Huang, P. T. Lai and Johnny K. O. Sin, “Charge-Trapping Characteristics of Ga2O3 Nanocrystals for Nonvolatile Memory Applications,” ECS Solid State Letters, vol 1, no 5, pp. 45-47, Sep, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15211-
dc.description.abstract本論文中展示石墨烯轉印可視化系統,其採用聚對苯二甲酸乙二酯結合靜電吸附層所形成之無須高分子聚合物輔助之石墨烯轉印結構。藉由聚對苯二甲酸乙二酯結合靜電吸附層之固定物與石墨烯接觸之邊界吸附所形成的固定邊界條件,可以有效地抑制單層石墨烯在轉印工序中於銅濕蝕刻製程裡所形成之石墨烯裂縫。同時,此可視化系統可同步觀察到無須高分子聚合物輔助之石墨烯轉印過程中石墨烯裂縫形成的行為。
接著,研究以高溫化學氣相沉積法製備高品質石墨烯之最佳條件。在本實驗室直徑一吋石英管的條件下,單層石墨烯最佳生長條件為溫度 1000 °C,壓力 1.0 torr以及氣體流量分別為甲烷: 氫氣: 氬氣 =60:90:30。以拉曼光譜系統分析,高品質石墨烯之2D/G強度比可達3倍並且無缺陷。此高品質石墨烯大小可達面積長為8 cm寬為2.5 cm。此外,高品質單層石墨烯經由聚對苯二甲酸乙二酯結合靜電吸附層所形成之無須高分子聚合物輔助之石墨烯轉印後所得之面電阻值與材料穿透率分別為120.4 ohm/sq,97.35 %。
最後,將此技術應用於光電元件1.有機發光二極體與2.閘極場效電晶體。首先,以HBC分子材料去克服濕式製程之有機發光二極體以石墨烯做為陽極下電極所產生之輸水性質。藉由X射線光電子能譜學分析與紫外光電子能譜學分析HBC塗覆後能帶特性,可量測到導電高分子完全覆蓋之特徵頻譜。高溫化學氣相沉積法所製備之石墨烯經由聚對苯二甲酸乙二酯結合靜電吸附層所形成之無須高分子聚合物輔助之石墨烯轉印後的有機發光二極體元件特性在18V驅動電壓下可產生高達亮度6,500 cd/m2,此亮度值為石墨環轉印方式的2.9倍。此外,經由自組裝單層膜材料塗覆於二氧化矽基板上,可增加基板表面之疏水性以達到乾淨無雜質之石墨烯轉印。最後,將轉印後石墨烯製作閘極場效電晶體,室溫條件下,可量測到電洞之載子遷移率高達11,000 m2/(V·s)。
zh_TW
dc.description.abstractThe optical visualization system for graphene transferring process using polyethylene terephthalate (PET) electrostatic holder to achieve polymer-free transferring are demonstrated in this dissertation. By fixing boundary of PET electrostatic holder, cracks of monolayer graphene film can be effectively suppressed during the copper wet-etching process. The in-situ observation of graphene transferring can be achieved via polymer-free transferring method incorporated with the optical visualization system.
In addition, the Thermal Chemical Vapor Deposition (CVD) synthesis conditions are investigated. The optimized conditions for the growth of monolayer graphene are using rear side graphene to confine copper vapor at temperature 1000 °C, pressure 1.0 torr and gas flow CH4/ H2/ Ar = 60 sccm/ 90 sccm/ 30 sccm. This results in forming a high-quality monolayer graphene at 1 inch SiO2 tube. The performance of a high quality CVD graphene film with a large size of 8 cm X 2.5 cm has been demonstrated by the Raman ratio I(2D/G) ratio up to 3 and defect-less. Furthermore, sheet resistance and transmittance of the high quality graphene transparent electrode are obtained respectively to be 120.4 Ω/□ and 97.35 % through polymer-free transferring with PET electrostatic using fixed boundary holder.
Two optoelectronic applications of the PET electrostatic holder transferring technique are OLEDs and GFET. For the application of OLEDs, the HBC material is coated on the anode graphene to overcome the hydrophobic property in solution-processed OLEDs. UPS and XPS spectra reveal the band features and of PEDOT:PSS fully covering HBC coated anode graphene. Using PET electrostatic holder transferring method increases the OLED brightness to 6,500 cd/m2 at 18 V driving voltage, achieving 2.9 times enhancement in brightness relative to the graphite holder method. For the application of GFET, introducing Self-assembled monolayer (SAM) on SiO2 to further enhance the hydrophobicity of the substrate surface results in a clean surface for graphene transferring. Such GFET has been demonstrated to achieve a high hole carrier mobility of 11,000 m2/(V·s) at room temperature.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:28:34Z (GMT). No. of bitstreams: 1
ntu-109-D99941012-1.pdf: 8307050 bytes, checksum: cf8b2cd888726d47a4d67d6bfc1e40cd (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsChapter 1
Introduction 1
1.1 Introduction of Organic Light-Emitting Diodes (OLEDs) 1
1.1.1 Development of OLEDs 1
1.1.2 Basic Structures and Operation Principles of OLEDs 1
1.2 Introduction of Graphene 2
1.3 Electron Energetics at Surfaces and Interfaces 5
1.4 Organization of this Thesis 7
Reference 17
Chapter 2
Experiment 19
2.1 X-Ray Photoemission Spectroscopy (XPS) 20
2.2 Ultra-Violet Photoemission Spectroscopy (UPS) 20
2.3 Raman Spectroscopy 20
2.4 Optical Micro-Scope and Optical Properties 21
Reference 28
Chapter 3
Polymer-Free Transfer Method and Optical Visualization System 29
3.1 Introduction 29
3.2 Background of Polymer-Free Transferring Method 30
3.3 Experimental 34
3.3.1 Advanced Polymer-Free Transferring Method 34
3.3.2 Optical Visualization System 35
3.4 Result and Discussion 36
3.4.1 Back-Side Graphene Effect 36
3.4.2 Copper Etching Process 36
3.4.3 Optical Visualization System 37
3.4.4 Optical Visualization on Copper Etching 38
3.4.5 Graphene Defect Effect 39
3.4.6 Comparison of Graphite Holder and PET Electrostatic Holder 40
3.5 Conclusion 43
Reference 62
Chapter 4
CVD Graphene Synthesis 65
4.1 Introduction 65
4.2 Experimental 68
4.2.1 Thermal CVD Graphene Film Synthesis 68
4.2.2 Polymer-Free Transferring 69
4.3 Results and Discussion 69
4.3.1 Effect of Front/Rear Side of Cu Foil 69
4.3.2 Effect of Chamber Pressure 70
4.3.3 Effect of Growth Temperature 70
4.3.4 Effect of Deposition Time 71
4.3.5 Effect of Methane Flow 71
4.4 Optical and Electrical Characterization:Transmittance and Sheet Resistance 72
4.5 Conclusion 73
Reference 83
Chapter 5
Optoelectronic Applications 85
5.1 Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs 85
5.2 High mobility GFET 96
5.3 Conclusion 98
Reference 109
Chapter 6
Summary and Future Works 111
6.1 Summary 111
6.2 Future Works 112
T. C. Cheng Publication List 114
dc.language.isoen
dc.title以化學氣相沉積法製備石墨烯與光電元件應用之研究zh_TW
dc.titleCVD Graphene Synthesis, Transfer and Optoelectronic Applicationsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳育任(Yuh-Renn Wu),陳奕君(I-Chun Chen),吳肇欣(Chao-Hsin Wu),陳美杏(Mei-Hsin Chen)
dc.subject.keyword單層石墨烯,無聚合物殘留轉印方法,化學氣相沉積法,有機發光二極體,場效電晶體,X射線光電子能譜學,紫外光電子能譜學,zh_TW
dc.subject.keywordMonolayer Graphene,Polymer-free transferring method,CVD,OLED,GFET,XPS,UPS,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202000826
dc.rights.note未授權
dc.date.accepted2020-05-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
8.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved