Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐年盛(Nien-Sheng Hsu)
dc.contributor.authorChun-Hao Yaoen
dc.contributor.author姚俊豪zh_TW
dc.date.accessioned2021-06-07T17:28:20Z-
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-05
dc.identifier.citation1. Adamowski, J. and H. F. Chan (2011). 「A wavelet neural network conjunction model for groundwater level forecasting.」 Journal of Hydrology, 407(1-4): 28-40.
2. Aguado, E., N. Sitar and I. Remson (1977). 「Sensitivity Analysis in Aquifer Studies.」 Water Resources Research, 13(4): 733-737.
3. Biot, M. A. (1941). 「General theory of three-dimensional consolidation.」 Journal of Applied Physics, 12(2): 155-164.
4. Cannas, B., A. Fanni, L. See and G. Sias (2006). 「Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning.」 Physics and Chemistry of the Earth, 31(18): 1164-1171.
5. Chia, Y. P., Y. S. Wang, J. J. Chiu and C. W. Liu (2001). 「Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan.」 Bulletin of the Seismological Society of America, 91(5): 1062-1068.
6. Cooper, H. H., J. D. Bredehoeft, I. S. Papadopulous and R. R. Bennett (1965). 「Response of Well-Aquifer Systems to Seismic Waves.」 Journal of Geophysical Research, 70(16): 3915-3926.
7. Cooper, H. H. and C. E. Jacob (1946). 「A generalized graphical method for evaluating formation constants and summarizing well-field history.」 Eos, Transactions American Geophysical Union, 27(4): 526-534.
8. Daubechies, I. (1988). 「Orthonormal Bases of Compactly Supported Wavelets.」 Communications on Pure and Applied Mathematics, 41(7): 909-996.
9. Donoho, D. L. (1995). 「De-Noising by Soft-Thresholding.」 Ieee Transactions on Information Theory, 41(3): 613-627.
10. Elkhoury, J. E., E. E. Brodsky and D. C. Agnew (2006). 「Seismic waves increase permeability.」 Nature, 441(7097): 1135-1138.
11. Fenicia, F., H. H. G. Savenije, P. Matgen and L. Pfister (2006). 「Is the groundwater reservoir linear? Learning from data in hydrological modelling.」 Hydrology and Earth System Sciences, 10(1): 139-150.
12. Fleury, P., V. Plagnes and M. Bakalowicz (2007). 「Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France).」 Journal of Hydrology, 345(1-2): 38-49.
13. Freeze, R. A. and J. A. Cherry (1979). 「Groundwater」. Englewood Cliffs, New Jersey, Prentice-Hall.
14. Grossmann, A. and J. Morlet (1984). 「Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape.」 Siam Journal on Mathematical Analysis, 15(4): 723-736.
15. Haar, A. (1910). 「On the theory of orthogonal function systems (First announcement).」 Mathematische Annalen, 69: 331-371.
16. Hartmann, J. and J. K. Levy (2006). 「The influence of seismotectonics on precursory changes in groundwater composition for the 1995 Kobe earthquake, Japan.」 Hydrogeology Journal, 14(7): 1307-1318.
17. Hasegawa, R., A. Yamaguchi, R. Fukuchi, Y. Hamada, N. Ogawa, Y. Kitamura, G. Kimura, J. Ashi and T. Ishikawa (2019). 「Postseismic fluid discharge chemically recorded in altered pseudotachylyte discovered from an ancient megasplay fault: an example from the Nobeoka Thrust in the Shimanto accretionary complex, SW Japan.」 Progress in Earth and Planetary Science, 6: 1-16.
18. Huang, C. L., N. S. Hsu, F. J. Hsu, G. J. Y. You and C. H. Yao (2020). 「Symmetrical Rank-Three Vectorized Loading Scores Quasi -Newton for Identification of Hydrogeological Parameters and Spatiotemporal Recharges.」 Water, 12(4): 1-26.
19. Huang, C. L., N. S. Hsu, C. H. Yao and G. J. Y. You (2020). 「Identification of hydrogeological evolution using hydrogeology-seismology analysis of groundwater head fluctuation related to the 1999 MW=7.5 Chi-Chi earthquake.」 Progress in Earth and Planetary Science, 7(1): 1-28.
20. Igarashi, G. and H. Wakita (1990). 「Groundwater Radon Anomalies Associated with Earthquakes.」 Tectonophysics, 180(2-4): 237-254.
21. Jang, C. S., C. W. Liu, Y. Chia, L. H. Cheng and Y. C. Chen (2008). 「Changes in hydrogeological properties of the River Choushui alluvial fan aquifer due to the 1999 Chi-Chi earthquake, Taiwan.」 Hydrogeology Journal, 16(2): 389-397.
22. Kaiser, H. F. (1960). 「The Application of Electronic-Computers to Factor-Analysis.」 Educational and Psychological Measurement, 20(1): 141-151.
23. Katayama, I., T. Kubo, H. Sakuma and K. Kawai (2015). 「Can clay minerals account for the behavior of non-asperity on the subducting plate interface?」 Progress in Earth and Planetary Science, 2(1): 1-8.
24. King, C. Y., S. Azuma, G. Igarashi, M. Ohno, H. Saito and H. Wakita (1999). 「Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan.」 Journal of Geophysical Research-Solid Earth, 104(B6): 13073-13082.
25. Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi (1983). 「Optimization by Simulated Annealing.」 Science, 220(4598): 671-680.
26. Kitagawa, Y., K. Fujimori and N. Koizumi (2002). 「Temporal change in permeability of the rock estimated from repeated water injection experiments near the Nojima fault in Awaji Island, Japan.」 Geophysical Research Letters, 29(10): 121-1~121-4.
27. Koizumi, N., Y. Kitagawa, N. Matsumoto, M. Takahashi, T. Sato, O. Kamigaichi and K. Nakamura (2004). 「Preseismic groundwater level changes induced by crustal deformations related to earthquake swarms off the east coast of Izu Peninsula, Japan.」 Geophysical Research Letters, 31(10): 1-5.
28. Lee, M., T. K. Liu, K. F. Ma and Y. M. Chang (2002). 「Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan.」 Geophysical Research Letters, 29(17): 5-1~5-4.
29. Liu, L. B., E. Roeloffs and X. Y. Zheng (1989). 「Seismically Induced Water Level Fluctuations in the Wali Well, Beijing, China.」 Journal of Geophysical Research-Solid Earth and Planets, 94(B7): 9453-9462.
30. Longuevergne, L., N. Florsch and P. Elsass (2007). 「Extracting coherent regional information from local measurements with Karhunen-Loeve transform: Case study of an alluvial aquifer (Rhine valley, France and Germany).」 Water Resources Research, 43(4): 1-13.
31. Mallat, S. G. (1989). 「Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R).」 Transactions of the American Mathematical Society, 315(1): 69-87.
32. Mallat, S. G. (1989). 「A Theory for Multiresolution Signal Decomposition - the Wavelet Representation.」 Ieee Transactions on Pattern Analysis and Machine Intelligence, 11(7): 674-693.
33. McDonald, M. G. and A. W. Harbaugh (1984). 「A modular three-dimensional finite-difference ground-water flow model」, U.S. Geological Survey.
34. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller (1953). 「Equation of State Calculations by Fast Computing Machines.」 Journal of Chemical Physics, 21(6): 1087-1092.
35. Meyer, Y. (1990). 「Wavelets, Quadrature Mirror Filters and Numerical Image-Processing.」 Lecture Notes in Mathematics, 1438: 14-25.
36. Montgomery, D. R. and M. Manga (2003). 「Streamflow and water well responses to earthquakes.」 Science, 300(5628): 2047-2049.
37. Neuman, S. P. (1973). 「Calibration of Distributed Parameter Groundwater Flow Models Viewed as a Multiple-Objective Decision Process under Uncertainty.」 Water Resources Research, 9(4): 1006-1021.
38. Pearson, K. (1901). 「On lines and planes of closest fit to systems of points in space.」 Philosophical Magazine, 2(11): 559-572.
39. Peters, E., P. J. J. F. Torfs, H. A. J. van Lanen and G. Bier (2003). 「Propagation of drought through groundwater - a new approach using linear reservoir theory.」 Hydrological Processes, 17(15): 3023-3040.
40. Pinder, G. F. and Bredehoe.Jd (1968). 「Application of Digital Computer for Aquifer Evaluation.」 Water Resources Research, 4(5): 1069-1093.
41. Prickett, T. A. and C. G. Lonnquist (1971). 「Selected digital computer techniques for groundwater resource evaluation」. Urbana, Illinois State Water Survey.
42. Remson, I., S. M. Gorelick and J. F. Fliegner (1980). 「Computer-Models in Groundwater Exploration.」 Ground Water, 18(5): 447-451.
43. Rice, J. R. and M. P. Cleary (1976). 「Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous-Media with Compressible Constituents.」 Reviews of Geophysics, 14(2): 227-241.
44. Roeloffs, E. (1996). 「Poroelastic techniques in the study of earthquake-related hydrologic phenomena.」 Advances in Geophysics, 37: 135-195.
45. Roeloffs, E. and E. Quilty (1997). 「Case 21: Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake.」 Pure and Applied Geophysics, 149(1): 21-60.
46. Rojstaczer, S. and S. Wolf (1992). 「Permeability Changes Associated with Large Earthquakes - an Example from Loma-Prieta, California.」 Geology, 20(3): 211-214.
47. Smith, L. C., D. L. Turcotte and B. L. Isacks (1998). 「Stream flow characterization and feature detection using a discrete wavelet transform.」 Hydrological Processes, 12(2): 233-249.
48. Theis, C. V. (1935). 「The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage.」 Transactions-American Geophysical Union, 16(2): 519-524.
49. Wakita, H. (1975). 「Water Wells as Possible Indicators of Tectonic Strain.」 Science, 189(4202): 553-555.
50. Wang, C. Y., L. H. Cheng, C. V. Chin and S. B. Yu (2001). 「Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan.」 Geology, 29(9): 831-834.
51. Wang, C. Y., C. H. Wang and C. H. Kuo (2004). 「Temporal change in groundwater level following the 1999 (M-W=7.5) Chi-Chi earthquake, Taiwan.」 Geofluids, 4(3): 210-220.
52. Wang, S. J., K. C. Hsu, C. L. Wang, W. C. Lai and L. T. Hsu (2017). 「Evaluation of Hydraulic Properties of Aquitards Using Earthquake-Triggered Groundwater Variation.」 Ground Water, 55(5): 747-756.
53. Yeh, W. W. G. (1986). 「Review of Parameter-Identification Procedures in Groundwater Hydrology - the Inverse Problem.」 Water Resources Research, 22(2): 95-108.
54. 王士榮、徐國錦、王建力、賴文基、李友平 (2006)。「使用地震引致之地下水位異常變化推估應力異常區」,氣象學報,第四十六卷第三期:第1-17頁。
55. 王佑鈞 (2017)。「結合時頻分析於地下水集塊系統模式之建立與應用」,國立臺灣大學土木工程學系碩士論文。
56. 王韋勳 (2012)。「名竹盆地地下水流數值模式之建立與應用」,國立臺灣大學土木工程學系碩士論文。
57. 交通部中央氣象局 (2020)。「交通部中央氣象局有感地震報告發布作業要點」,中華民國108年12月2日中象地字第1080016036號函修正。
58. 呂志宗 (1991)。「多孔介質彈性力學之基本解與壓密沈陷解析」,國立成功大學土木工程學系博士論文。
59. 林允斌、譚義績、陳主惠 (2000)。「集集地震前後水井水位之急劇變化」,第十一屆水利工程研討會,臺灣大學水工試驗所:第199-203頁。
60. 林聖婷 (2012)。「濁水溪沖積扇補注量與抽水量空間分佈模式建立」,國立臺灣大學土木工程學系碩士論文。
61. 張乃蓉 (2018)。「地下水觀測水位線性集塊系統模式建立與應用」,國立臺灣大學土木工程學系碩士論文。
62. 許富建 (2016)。「區域性地下水系統水流模式率定方法建立與應用-以濁水溪沖積扇為例」,國立臺灣大學土木工程學系碩士論文。
63. 陳宇文、王逸民 (2017)。「無複井觀測井水文地質參數推估方法之研發與驗證」,水利署106年度委辦計畫成果發表會論文集:第12-11~12-14頁。
64. 陳有慶 (2005)。「集集地震對濁水溪沖積扇水文地質特性之影響」,國立臺灣大學生物環境系統工程學系碩士論文。
65. 陳佳杏 (2001)。「集集地震前後濁水溪沖積扇地下水水位變化之探討」,國立臺灣大學地質科學系碩士論文。
66. 經濟部水利署 (2002)。「地震發生前後地下水水位異常變化之研究(2/5)」,國立成功大學防災研究中心執行。
67. 經濟部水利署 (2010)。「台中盆地地下水資源利用調查評估(2/3)」,中興工程顧問股份有限公司執行。
68. 經濟部水利署(2020)。「水文資訊網整合服務系統」,2020年1月1日,取自: https://gweb.wra.gov.tw/Hydroinfo/?id=Index。
69. 經濟部水資源局 (1999)。「濁水溪沖積扇水文地質調查研究總報告」,經濟部中央地質調查所執行。
70. 董志秋 (2003)。「由同震水文反應估算含水層特性與地質材料性質之研究」, 國立成功大學資源工程學系碩士論文。
71. 廖玲琬、洪銘堅、王逸民、徐年盛、游雅淳、劉宏仁 (2012)。「以頻譜分析法評量地下水位時空變動」,工程環境會刊,第二十八期:第1-14頁。
72. 維基百科(2020)。「芮氏地震規模」,2020年1月1日,取自:https://zh.wikipedia.org/wiki/%E9%87%8C%E6%B0%8F%E5%9C%B0%E9%9C%87%E8%A6%8F%E6%A8%A1。
73. 維基百科(2020)。「電腦」,2020年1月1日,取自: https://zh.wikipedia.org/wiki/%E7%94%B5%E5%AD%90%E8%AE%A1%E7%AE%97%E6%9C%BA。
74. 臺中市政府水利局 (2014)。「台中盆地地下水抽補滯洪功能可行性探討計畫」,國立臺灣大學水工試驗所執行。
75. 趙克常 (2013)。「地震概論」,五南圖書出版股份有限公司。
76. 謝壎煌、陳忠偉、葉信富、李振誥 (2007)。「應用河道水位變化評估新虎尾溪地下水補注量之研究」,農業工程學報,第五十三卷第二期:第50-60頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15183-
dc.description.abstract目前求得地下水參數之方法,主要仍以進行現地抽水試驗及採用數值模式推估等兩種方式,如何在前述方式之外,以新的概念來推估水文地質參數也是工程界不斷尋求的目標。本論文之研究目的即是分別採用地震事件及長期性兩種不同特性地下水位觀測資料,利用相關理論擬合Theis方程式以及建立分布式系統模式,然後建立優選模式以推估相關水文地質參數。
本論文第一個主題為「以地震事件引致地下水位變化推求水文地質參數」,由於921地震時,部分同震水位上升後接續退水地下水井,其退水曲線類似抽水試驗洩降般的情況,因此本主題最重要的假設即為地震會導致部分含水層(阻水層)破裂,在震後特定期間,上層含水層的水垂直向下轉移至下層相鄰含水層,可採用Theis方程式來模擬同震水位上升後,孔隙水壓消散的退水過程。此部分研究將分別應用多種時空頻率分析方法,包含主成分分析、小波轉換及小波去噪等訊號分析方法分析同震水位壅高後之退水曲線,以得到震後地層釋放超額孔隙水壓之退水歷線,並以雷曼積分及機率密度等理論,建立序率試驗優選模式,推估震後儲水係數S與導水係數T。
推估結果顯示,研究對象溪州(2)(SC2)儲水係數S的演化過程,從921地震前的0.00107,減低到民國88年921震後27小時推估的0.000826,再減到前人於民國93年進行現地抽水試驗的0.000578;導水係數T的演化過程,從921地震前的92.4(m2/hr),增加到民國88年921震後27小時推估的98.6(m2/hr),再增到前人於民國93年進行現地抽水試驗的147.6(m2/hr)。港後(3)(GH3)儲水係數S的演化過程,從921地震前的0.000149,減低到民國88年921震後27小時推估的0.000112;導水係數T的演化過程,從921地震前的28.8(m2/hr),增加到民國88年921震後27小時推估的120.7(m2/hr)。由於溪州(2)(SC2)及港後(3)(GH3)觀測井在921地震時,均出現同震水位上升,震後儲水係數S推估值下降之現象,可以證實地震導致該區地層受到壓縮。而震後導水係數T推估值均出現大幅增加之現象,可以證實地震會導致部分含水層(阻水層)破裂,甚至使含水層結構可能受到永久的破壞。
本論文第二個主題為「以長期地下水位變化推求水文地質參數」,此部分研究將各地下水觀測井之影響範圍視為一地下水庫,採用地下水位、河川水位、雨量、人為抽水量等長期性觀測資料,以水流連續方程式建立地下水分布式系統優選模式來推估相關水文地質參數,包含水力傳導係數K、比出水量Sy、河川流量轉換係數λ,降雨入滲轉換係數γ、人為抽水轉換係數σ,及其他影響地下水位之因素C。由於人為抽水量之推估缺乏確切調查資料,然而根據Theis方程式,抽水量與洩降或是水位呈現線性關係,因此似可以水位來推估抽水量。依前人以頻譜分析方法針對台灣中部地區地下水位變動的研究顯示,人為抽用地下水之主要影響頻率為1天1次,因此採用時頻分析方法,分析地下水位觀測資料,進而以抽補強度(PRS)推估人為抽水量。
水位擬合結果顯示,研究區域整體RMSE值約為0.96(m),研究區域北邊豐洲與潭子之RMSE較其他站為高,北邊RMSE介於0.63~1.63(m)之間,主要是研究區域內觀測水位變動範圍呈現北往南遞減,因此北邊地下水觀測站水位擬合結果一旦稍有偏差,RMSE值即會顯著呈現,然而研究區域北邊測站之模擬水位仍能反映峰值變化趨勢。研究區域南邊RMSE介於0.65~0.92(m)之間,然而模擬結果較無法反映部分峰值變化趨勢,初步推測研究區域南邊在烏日及霧峰地區,地質分層現象較複雜,有明顯的阻水層分隔。整體而言,研究區域內除南邊烏日(1)與霧峰(1)外,其餘模擬結果尚符合水位變化趨勢。研究區域內水力傳導係數K值約介於3~16(m/hr)之間,比出水量Sy值約介於0.11~0.27之間,與歷史試驗資料及前人研究相去不遠,推估範圍也符合礫石的物理特性。
zh_TW
dc.description.abstractAt present, there are mainly two methods for obtaining groundwater parameters, i.e., on-site pumping test and numerical model simulation. How to estimate hydrogeological parameters based on novel concepts has been a constant goal in the engineering field. This thesis contains two purposes. One uses the groundwater level observation data caused by earthquake events to fit Theis equation and then develops an optimal model to evaluate the relevant hydrogeological parameters. The other uses long-term groundwater level observation data to develop a distributed system model and then establishes an optimal model to evaluate relevant hydrogeological parameters.
The first topic of this paper is evaluating the relevant hydrogeological parameters by using seismic events. During the 1999 Chi-Chi earthquake, part of wells revealed co-seismic uplift and post-seismic drawdown in groundwater heads, whose drawdown curves are similar to the drawdown curve of a pumping test. Therefore, the most important assumption in this topic is that the earthquake will cause part of the aquifer (aquitard) to rupture. During a certain period after the earthquake, the water in the upper aquifer vertically transfers down to the adjacent aquifer. Theis equation could be used to simulate the post-seismic groundwater head drawdown during pore-water pressure release process. To find out the post-seismic drawdowns that are associated with the crustal strain followed by the relaxation process of excess pore-water pressure, this study applies multi-rank principal component analysis, multi-frequency wavelet transform, and multi-level wavelet de-noising to decompose the groundwater head fluctuation into a series of intrinsic mode functions. In addition, based on the Riemann integral and the probability density theory, a stochastic optimization model is established to estimate storage coefficient S and transmissivity T after the earthquake.
According to the estimation results for SC2, the evolving storage coefficient S reduced from pre-seismic on-site pumping test value 0.00107, and post-seismic 27th-hour value 0.000826 to post-seismic pumping test value 0.000578 in 2004; and the evolving transmissivity T increased from pre-seismic on-site pumping test value 92.4(m2/hr), and post-seismic 27th-hour value 98.6(m2/hr) to post-seismic value 147.6(m2/hr) in 2004. For GH3, the evolving storage coefficient S reduced from pre-seismic on-site pumping test value 0.000149 to post-seismic 27th-hour value 0.000112; and the evolving transmissivity T increased from pre-seismic on-site pumping test value 28.8(m2/hr) to post-seismic 27th-hour value 120.7(m2/hr). Since the observation wells of SC2 and GH3 both experienced rising co-seismic water levels during the earthquake and decreasing in the estimated value of storage coefficient S after the earthquake, these events could prove that the earthquake caused compression of the crust in these areas. In addition, the sharp increase in the estimated value of the transmissivity T after the earthquake could prove that the earthquake caused part of the aquifer(aquitard) to rupture, and the structure of the aquifer may even be permanently damaged.
The second topic of this paper is evaluating the relevant hydrogeological parameters by using long-term groundwater level variations. In this part of the study, the area controlled by a well is regarded as an underground reservoir, long-term observation data such as groundwater level, river water level, rainfall, and artificial pumping volume are used to establish an optimization model of distributed groundwater system based on the continuity equation to estimate relevant hydrogeological parameters. These parameters include hydraulic conductivity K, specific storage Sy, river discharge conversion coefficient λ, rainfall infiltration conversion coefficient γ, artificial pumping conversion coefficient σ, and other factors C that affect the groundwater level. Although there is a lack of accurate survey data for the estimation of artificial pumping volume, the pumping volume has a linear relationship with the discharge or water level, according to Theis equation. Thus, it seems that the water level could be used to estimate the pumping volume. In addition, according to previous studies, the frequency of artificial pumping is mainly once a day. Therefore, the time-frequency analysis method is used to analyze the groundwater level observation data, and then the artificial pumping volume is estimated based on the pumping recovery strength (PRS).
The water level fitting results show that the overall RMSE value of the study area is about 0.96(m). The RMSE of the water level at FJ and TZ in the north of the study area is higher than at other stations, which between 0.63~1.63(m). This is mainly because the observed water level in the study area is decreasing from north to south. Therefore, once the water level fitting results at the groundwater observation stations in the north slightly deviate, the RMSE value will change significantly. Nevertheless, the simulated water level of the stations in the north of the study area can still reflect the trend of peak change. The RMSE of the water level in the south of the study area is between 0.65~0.92(m). However, the simulation results are not able to reflect the trend how some peaks change. It is speculated preliminarily that the south of the study area is the WR and WF areas, where the geological stratification is more complicated, and there exist obvious aquitards. In general, except for WR(1) and WF(1) in the south of the study area, the other simulation results are still in line with the trend of water level changes. The hydraulic conductivity K in the study area is between 3 ~16 (m/hr), and the specific storage Sy is between 0.11~ 0.27, which is not far from historical experimental data and data from previous studies, which is also in line with the physical properties of gravel.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:28:20Z (GMT). No. of bitstreams: 1
U0001-0202202114484900.pdf: 9836470 bytes, checksum: fffaf329960957b014f4e810a5fe7840 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目錄 viii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 4
1.3.1 以地震事件引致地下水位變化推求水文地質參數 5
1.3.2 以長期地下水位變化推求水文地質參數 6
第二章 文獻回顧 8
2.1 以地震事件引致地下水位變化推求水文地質參數 8
2.1.1 地震引致地下水位異常變化 8
2.1.2 以地震事件推估水文地質參數之方法 11
2.2 以長期地下水位變化推求水文地質參數 12
2.2.1 以數值模式推求水文地質參數 12
2.2.2 以線性水庫及地下水庫概念模式推求水文地質參數 14
第三章 研究方法 17
3.1 以地震事件引致地下水位變化推求水文地質參數 17
3.1.1 主成分分析 20
3.1.2 小波轉換 23
3.1.3 小波去噪 27
3.1.4 地下水位同震壅高後之水位回復方程式 27
3.1.5 序率試驗優選模式建立 31
3.1.6 序率試驗優選模式求解 33
3.2 以長期地下水位變化推求水文地質參數 36
3.2.1 抽補強度推估 37
3.2.2 地下水分布式系統模式建立 40
3.2.3 地下水分布式系統優選模式建立與求解 47
第四章 實例應用 49
4.1 以地震事件引致地下水位變化推求水文地質參數 49
4.1.1 研究對象及研究區域概述 49
4.1.2 濁水溪沖積扇同震後水位變化之型態與分佈分析 56
4.1.3 利用訊號分析分解濁水溪沖積扇震後水位歷線 63
4.1.4 序率試驗優選模式之求解 70
4.1.5 綜合分析 75
4.2 以長期地下水位變化推求水文地質參數 77
4.2.1 研究對象及研究區域概述 77
4.2.2 地下水分布式系統優選模式之求解 80
4.2.3 綜合分析 95
第五章 結論與建議 99
5.1 以地震事件引致地下水位變化推求水文地質參數 99
5.1.1 結論 99
5.1.2 建議 100
5.2 以長期地下水位變化推求水文地質參數 101
5.2.1 結論 102
5.2.2 建議 103
參考文獻 104
dc.language.isozh-TW
dc.title利用地震事件及長期地下水位變化推求水文地質參數zh_TW
dc.titleEvaluating hydrogeological parameters by using seismic events and long-term groundwater level variations
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.oralexamcommittee李振誥(Cheng-Haw Lee),劉振宇(Chen-Wuing Liu),張良正(Liang-Cheng Chang),游景雲(Jiing-Yun You)
dc.subject.keyword主成分分析,小波轉換,小波去噪,Theis方程式,序率試驗優選模式,抽補強度,分布式系統模式,zh_TW
dc.subject.keywordprincipal components analysis,wavelet transform,wavelet de-noising,Theis equation,stochastic experimental optimization model,pumping recovery strength,distributed system model,en
dc.relation.page111
dc.identifier.doi10.6342/NTU202100380
dc.rights.note未授權
dc.date.accepted2021-02-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0202202114484900.pdf
  目前未授權公開取用
9.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved