請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯詠德(Yung-Te Hou) | |
| dc.contributor.author | Chia-Chun Wu | en |
| dc.contributor.author | 吳嘉浚 | zh_TW |
| dc.date.accessioned | 2021-05-12T09:36:59Z | - |
| dc.date.available | 2019-08-18 | |
| dc.date.available | 2021-05-12T09:36:59Z | - |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | 1. Adan, A., Alizada, G., Kiraz, Y., Baran, Y., & Nalbant, A. (2017). Flow cytometry: basic principles and applications. Critical reviews in biotechnology, 37 (2), 163-176.
2. Almazroo, O. A., Miah, M. K., & Venkataramanan, R. (2017). Drug metabolism in the liver. Clinics in liver disease, 21 (1), 1-20. 3. Au, S. H., Chamberlain, M. D., Mahesh, S., Sefton, M. V., & Wheeler, A. R. (2014). Hepatic organoids for microfluidic drug screening. Lab on a Chip, 14 (17), 3290-3299. 4. Avril, A., Pichard, V., Bralet, M. P., & Ferry, N. (2004). Mature hepatocytes are the source of small hepatocyte-like progenitor cells in the retrorsine model of liver injury. Journal of hepatology, 41 (5), 737-743. 5. Becker, H., & Heim, U. (2000). Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 83 (1-3), 130-135. 6. Becker, H., & Locascio, L. E. (2002). Polymer microfluidic devices. Talanta, 56 (2), 267-287. 7. Brister, P. C., & Weston, K. D. (2005). Patterned solvent delivery and etching for the fabrication of plastic microfluidic devices. Analytical chemistry, 77(22), 7478-7482. 8. Carrel, A. (1912). Pure cultures of cells. Journal of Experimental Medicine, 16 (2), 165-168. 9. Chen, Q., Kon, J., Ooe, H., Sasaki, K., & Mitaka, T. (2007). Selective proliferation of rat hepatocyte progenitor cells in serum-free culture. Nature protocols, 2 (5), 1197. 10. Chen, Y. H., Chang, M. H., Chien, C. S., Wu, S. H., Yu, C. H., & Chen, H. L. (2013). Contribution of mature hepatocytes to small hepatocyte‐like progenitor cells in retrorsine‐exposed rats with chimeric livers. Hepatology, 57 (3), 1215-1224. 11. Cheng, J. Y., Wei, C. W., Hsu, K. H., & Young, T. H. (2004). Direct-write laser micromachining and universal surface modification of PMMA for device development. Sensors and Actuators B: Chemical, 99 (1), 186-196. 12. Choi, S. S., & Diehl, A. M. (2009). Epithelial‐to‐mesenchymal transitions in the liver. Hepatology, 50 (6), 2007-2013. 13. Dupont‐Gillain, C. C., Nysten, B., & Rouxhet, P. G. (1999). Collagen adsorption on poly (methyl methacrylate): net‐like structure formation upon drying. Polymer international, 48 (4), 271-276. 14. Eddings, M. A., & Gale, B. K. (2006). A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. Journal of Micromechanics and Microengineering, 16 (11), 2396. 15. Esch, E. W., Bahinski, A., & Huh, D. (2015). Organs-on-chips at the frontiers of drug discovery. Nature reviews. Drug discovery, 14 (4), 248. 16. Evaluate Pharma (2016) World Preview 2016, Outlook to 2022. 17. Fausto, N., & Campbell, J. S. (2003). The role of hepatocytes and oval cells in liver regeneration and repopulation. Mechanisms of development, 120 (1), 117-130. 18. Fenwick, N., Griffin, G., & Gauthier, C. (2009). The welfare of animals used in science: How the “Three Rs” ethic guides improvements. The Canadian Veterinary Journal, 50 (5), 523. 19. Fu, C. Y., Tseng, S. Y., Yang, S. M., Hsu, L., Liu, C. H., & Chang, H. Y. (2014). A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis. Biofabrication, 6 (1), 015009. 20. Gerets, H. H. J., Tilmant, K., Gerin, B., Chanteux, H., Depelchin, B. O., Dhalluin, S., & Atienzar, F. A. (2012). Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell biology and toxicology, 28 (2), 69-87. 21. Glicklis, R., Merchuk, J. C., & Cohen, S. (2004). Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnology and bioengineering, 86 (6), 672-680. 22. Gordon, G. J., Coleman, W. B., Hixson, D. C., & Grisham, J. W. (2000). Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. The American journal of pathology, 156 (2), 607-619. 23. Haimes, J., & Kelley, M. (2010). Demonstration of a ΔΔ C q Calculation Method to Compute Relative Gene Expression from qPCR Data. Thermo Scientific Tech Note, 1-4. 24. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., & Fleming, R. M. (2015). Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics, 63, 218-231. 25. Harrison, R. G. (1910). The outgrowth of the nerve fiber as a mode of protoplasmic movement. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 9 (4), 787-846. 26. Ho, C. T., Lin, R. Z., Chang, W. Y., Chang, H. Y., & Liu, C. H. (2006). Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 6 (6), 724-734. 27. Hou, Y. T., Ijima, H., Matsumoto, S., Kubo, T., Takei, T., Sakai, S., & Kawakami, K. (2010). Effect of a hepatocyte growth factor/heparin-immobilized collagen system on albumin synthesis and spheroid formation by hepatocytes. Journal of bioscience and bioengineering, 110 (2), 208-216. 28. Hou, Y. T., Ijima, H., Shirakigawa, N., Takei, T., & Kawakami, K. (2012). Development of growth factor-immobilizable material for hepatocyte transplantation. Biochemical engineering journal, 69, 172-181. 29. Huh, D., Hamilton, G. A., & Ingber, D. E. (2011). From 3D cell culture to organs-on-chips. Trends in cell biology, 21 (12), 745-754. 30. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., & Ingber, D. E. (2012). Microengineered physiological biomimicry: organs-on-chips. Lab on a Chip, 12 (12), 2156-2164. 31. Ishii, M., Kino, J., Ichinohe, N., Tanimizu, N., Ninomiya, T., Suzuki, H., Mizuguchi T., Hirata, K.... & Mitaka, T. (2017). Hepatocytic parental progenitor cells of rat small hepatocytes maintain self-renewal capability after long-term culture. Scientific Reports, 7. 32. Ishii, M., Kino, J., Ichinohe, N., Tanimizu, N., Ninomiya, T., Suzuki, H., Mizuguchi, T., Hirata, K., & Mitaka, T. (2017). Hepatocytic parental progenitor cells of rat small hepatocytes maintain self-renewal capability after long-term culture. Scientific Reports, 7, 46177. 33. Khetani, S. R., & Bhatia, S. N. (2008). Microscale culture of human liver cells for drug development. Nature biotechnology, 26 (1), 120. 34. Kim, L., Toh, Y. C., Voldman, J., & Yu, H. (2007). A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 7 (6), 681-694. 35. Kimura, H., Sakai, Y., & Fujii, T. (2017). Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug metabolism and pharmacokinetics. 36. Kopec, A. M., Rivera, P. D., Lacagnina, M. J., Hanamsagar, R., & Bilbo, S. D. (2017). Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. Journal of neuroscience methods, 280, 64-76. 37. Lee, K. H., Lee, J., & Lee, S. H. (2015). 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab on a Chip, 15 (19), 3822-3837. 38. Lee, P. J., Hung, P. J., & Lee, L. P. (2007). An artificial liver sinusoid with a microfluidic endothelial‐like barrier for primary hepatocyte culture. Biotechnology and bioengineering, 97 (5), 1340-1346. 39. Lei, K. F., Ahsan, S., Budraa, N., Li, W. J., & Mai, J. D. (2004). Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication. Sensors and Actuators A: Physical, 114 (2-3), 340-346. 40. Lin, C. H., Chao, C. H., & Lan, C. W. (2007). Low azeotropic solvent for bonding of PMMA microfluidic devices. Sensors and Actuators B: chemical, 121 (2), 698-705. 41. McGonigle, P., & Ruggeri, B. (2014). Animal models of human disease: challenges in enabling translation. Biochemical pharmacology, 87 (1), 162-171. 42. Mehling, M., & Tay, S. (2014). Microfluidic cell culture. Current opinion in Biotechnology, 25, 95-102. 43. Mitaka, T., Kojima, T., Mizuguchi, T., & Mochizuki, Y. (1995). Growth and maturation of small hepatocytes isolated from adult rat liver. Biochemical and biophysical research communications, 214 (2), 310-317. 44. Mizuguchi, T., Mitaka, T., Hirata, K., Oda, H., & Mochizuki, Y. (1998). Alteration of expression of liver‐enriched transcription factors in the transition between growth and differentiation of primary cultured rat hepatocytes. Journal of cellular physiology, 174 (3), 273-284. 45. Nema, R., & Khare, S. (2012). An animal cell culture: Advance technology for modern research. Advances in Bioscience and Biotechnology, 3 (3), 219. 46. Pang, K. S. (2003). Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug metabolism and disposition, 31 (12), 1507-1519. 47. Park, J. K., & Lee, D. H. (2005). Bioartificial liver systems: current status and future perspective. Journal of bioscience and bioengineering, 99 (4), 311-319. 48. Petri, R. J. (1887). Eine kleine Modification des Koch'schen Plattenverfahrens (A small modification of Koch's plate method). Centralblatt für Bakteriologie und Parasitenkunde, 1 : 279–280. 49. PhRMA (2017) The Pharmaceutical Indusrty and Global Health. Facts and Figures 2017. 50. Prodanov, L., Jindal, R., Bale, S. S., Hegde, M., McCarty, W. J., Golberg, I., Bhushan, A., Yarmush, M.L., & Usta, O. B. (2016). Long‐term maintenance of a microfluidic 3D human liver sinusoid. Biotechnology and bioengineering, 113 (1), 241-246. 51. Rahbar, M., Chhina, S., Sameoto, D., & Parameswaran, M. (2009). Microwave-induced, thermally assisted solvent bonding for low-cost PMMA microfluidic devices. Journal of Micromechanics and Microengineering, 20 (1), 015026. 52. Rajendran, D., Hussain, A., Yip, D., Parekh, A., Shrirao, A., & Cho, C. H. (2017). Long‐term liver‐specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin. Journal of Biomedical Materials Research Part A. 53. Roberts, E. F. (2014). Petri Dish. Commonplaces, Somatosphere, March, 31. 54. Ronken, S. (2009). Influence of material choice and surface structure on cell behaviour. 55. Russell, W. M. S., Burch, R. L., & Hume, C. W. (1959). The principles of humane experimental technique. 56. Seglen, P. O. (1976). Preparation of isolated rat liver cells. Methods in cell biology, 13, 29-83. 57. Seok, J., Warren, H. S., Cuenca, A. G., Mindrinos, M. N., Baker, H. V., Xu, W., Richards, D., McDonald-Smith, G, Gao, H., Hennessy, L., Honari, S., ... & Finnerty, C. C. Finnerty C.C., López, C.M., Honari, S., Moore, E.E., Minei, J.P., Cuschieri, J., Bankey, P.E., Johnson, J.L., Sperry, J., Nathens, A.B., Billia,r T.R., West, M.A., Jeschke, M.G., Klein, M.B., Gamelli, R.L., Gibran, N.S., Brownstein, B.H., Miller-Graziano, C., Calvano, S.E., Mason, P.H., Cobb, J.P., Rahme, L.G., Lowry, S.F., Maier, R.V., Moldawer, L.L., Herndon, D.N., Davis, R.W., Xiao, W., Tompkins, R.G.; Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences, 110 (9), 3507-3512. 58. Shibata, C., Mizuguchi, T., Kikkawa, Y., Nobuoka, T., Oshima, H., Kawasaki, H. & Hirata, K. (2006). Liver repopulation and long‐term function of rat small hepatocyte transplantation as an alternative cell source for hepatocyte transplantation. Liver transplantation, 12 (1), 78-87. 59. Stella, V. J. (2004). Prodrugs as therapeutics. 60. van der Meer, A. D., & van den Berg, A. (2012). Organs-on-chips: breaking the in vitro impasse. Integrative Biology, 4 (5), 461-470. 61. Wang, J., Pumera, M., Chatrathi, M. P., Escarpa, A., Konrad, R., Griebel, A., Dörner, W., & Löwe, H. (2002). Towards disposable lab‐on‐a‐chip: Poly (methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis, 23 (4), 596-601. 62. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10 (1), 57. 63. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442 (7101), 368. 64. Wikswo, J.P., Block, F.E. 3rd, Cliffel, D.E., Goodwin, C.R., Marasco, C.C., Markov, D.A., et al. 2013. Engineering Challenges for Instrumenting and Controlling Integrated Organ-on-Chip Systems. IEEE Trans Biomed Eng, 60 , 682-690. 65. Wilkening, S., Stahl, F., & Bader, A. (2003). Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug metabolism and disposition, 31 (8), 1035-1042. 66. Xu, J., Locascio, L., Gaitan, M., & Lee, C. S. (2000). Room-temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry, 72 (8), 1930-1933. 67. Yamada, M., Utoh, R., Ohashi, K., Tatsumi, K., Yamato, M., Okano, T., & Seki, M. (2012). Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials, 33 (33), 8304-8315. 68. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., & Slukvin, I. I., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318 (5858), 1917-1920. 69. Yu, L., Chen, M. C., & Cheung, K. C. (2010). Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab on a Chip, 10 (18), 2424-2432. 70. Zeilinger, K., Freyer, N., Damm, G., Seehofer, D., & Knöspel, F. (2016). Cell sources for in vitro human liver cell culture models. Experimental Biology and Medicine, 241 (15), 1684-1698. 71. Zeisberg, M., Yang, C., Martino, M., Duncan, M. B., Rieder, F., Tanjore, H., & Kalluri, R. (2007). Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. Journal of Biological Chemistry, 282 (32), 23337-23347. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1351 | - |
| dc.description.abstract | 肝臟具備合成代謝解毒等功能,然而肝臟的in vitro study 常受限於無法完全長期評估體內情況,因此如何建立一個能精準模擬體內肝臟環境且能進一步作為藥物/毒物檢測的體外平台是所有肝臟研究者的共同願景。
本研究擬以微流道系統 (Microfluidic system) 建立一個新型的Liver-on-chip 的培養平台,並使用大鼠的小型肝細胞 (Small hepatocyte) 作為細胞來源,小型肝細胞是肝臟前驅細胞 (Liver progenitor cell) 的一種,具有良好的分化與生存能力。由實驗結果得知小型肝細胞在 2D 培養環境下會形成大小約為300-400 μm 的肝細胞聚落 (Colony) ,且肝細胞生存活性會由原本的 5-7 天提升至 3-4 周;另一方面,以 Quantitative real-time PCR (qPCR) 方式進行基因表現檢測也發現小型肝細胞的白蛋白 (Albumin) 表現量隨著培養時間上升約 3 倍,且 Follistatin (小型肝細胞的 Marker) 隨著培養時間降低約 0.4 倍;而以次世代定序 (Next generation sequencing,NGS) 來進行基因表現檢測亦發現 Cytokeratin 18 (CK 18 ,成熟肝細胞的 Marker) 及 Cytokeratin 19 (CK 19 ,具膽管分化的肝細胞的 Marker) 表現量隨著培養時間皆升約 2 倍,且 Cluster of designation 44 (CD 44 ,小型肝細胞的 Marker) 降低約 7 倍;我們以免疫染色方式亦發現 CK18 之表現隨著培養時間上升。以上結果都證實了小型肝細胞除能分化為成熟肝細胞之外亦能於體外培養的環境下長時間維持其肝機能。 除了小型肝細胞的培養技術開發之外,本研究亦利用聚甲基丙烯酸甲酯 [(Poly(methyl methacrylate) ,PMMA] 開發一套僅需利用市售微波爐及雷射加工即可製作供細胞培養的微流道系統,其製作方式不但簡單容易,且比起傳統以聚雙甲基矽氧烷 [Poly(dimethylsiloxane) ,PDMS] 需花費 1~2 天才能製備而成的微流道而言約,PMMA 的微流道製程可以大幅度縮減至僅需 3~4 小時即可從微流道設計到微流道晶片實體完成;此外,我們亦成功於 PMMA 之微流道上來培養小型肝細胞,而細胞生存率更相較傳統 2D 培養提升約 27 % 。 利用小型肝細胞以及 PMMA 作為肝臟晶片 (Liver-on chip) 平台的開發不但製作簡單、亦具有潛力做為肝臟晶片之開發平台,相信也更能模擬真正的器官功能,因此能幫助我們能在體外建立藥物於肝臟代謝後的毒理數據。我們之後更將進一步對藥物,化學藥品和農藥於此肝臟平台進行安全性評估。相信這樣的技術對於未來肝臟晶片的研究開發有著拋磚引玉之效。 | zh_TW |
| dc.description.abstract | The liver is an organ with vital functions, including energy storage, secretion protein synthesis, and especially metabolism of pharmaceutical drugs. However, in vitro studies of drug test are usually limited to precisely evaluate the real influences on hepatic tissue because it is an obstacle to develop a platform which can sophisticatedly mimic in vivo hepatic environment.
Thus, in this study we established a microenvironment-mimicking liver-on-chip (LOC) platform for in vitro hepatotoxicity test. Small hepatocytes, which have been identified in primary hepatocyte cultures with high potential for proliferation and differentiation into mature hepatocytes, was used as cell source for LOC platform. The result shows that small hepatocytes can survive in 2D primary cultures, and form 300-400 μm colonies for maintaining hepatocyte functions. Compared to primary hepatocytes, which normally maintain their function for about 7 days, small hepatocytes can survive at least 4 weeks. We analyzed the gene expression of small hepatocytes by q-PCR. Expression of albumin and Tryptophan 2,3-dioxygenase (marker of primary hepatocytes) are 3 times and 120 times increase, whereas Follistatin (marker of small hepatocytes) expression is 0.4 times decrease, after 2 weeks of culture. We also analyzed the RNA expression by NGS. The expression of CK18 and CK19 increase 2 times whereas CD44 decreases 7 times, after 2 weeks of culture. On the other hand, poly(methyl methacrylate) was utilized to fabricate microfluidic devices. The substrates are patterned using the laser cutter, and bonded in a commercial microwave.Compared to the traditional PDMS fabrication process (usually needs 1~2 days), this bonding process is very simple and can therefore save more time (only 3~4 hours)). Besides, the viability of small hepatocytes in poly(methyl methacrylate)-microfluidic devices is 27% higher than that in 2D primary cultures. In summary, the small hepatocytes-derived liver-on-chip platform was successfully developed and therefore can simulate the real environment in model animals, and also build toxicology database and make safety assessment of drugs, chemicals and pesticides in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-12T09:36:59Z (GMT). No. of bitstreams: 1 ntu-107-R05631005-1.pdf: 5084517 bytes, checksum: 4aaf45e2e109d338a7799aa0b0d794bd (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xiv 第一章 前言 1 1.1 背景 1 1.2 研究目的 2 1.3 研究架構 3 第二章 文獻探討 4 2.1 藥物研發工程 4 2.2 動物福利 5 2.3 器官晶片 6 2.4 肝臟功能及 Liver-on chip 7 2.5 肝前驅細胞 10 2.6 Poly(dimethylsiloxane) 微流道系統 10 2.7 PDMS 微流道系統應用於細胞培養 12 2.8 PDMS 微流道系統應用於肝細胞培養 16 2.9 Poly(methyl methacrylate)微流道系統 21 2.9.1 PMMA微流道系統製作 21 2.9.2 PMMA微流道系統黏合 25 第三章 試驗設備與方法 27 3.1 實驗藥品、耗材、儀器設備與實驗動物 27 3.1.1 實驗藥品 27 3.1.2 儀器設備 28 3.1.3 實驗耗材 28 3.1.4 實驗動物 29 3.2 細胞懸浮液組成分析 29 3.3 膠原蛋白修飾培養皿製備 29 3.4 肝細胞採取與培養 30 3.5 肝細胞於經光固化膠處理的 PMMA 上進行培養 32 3.6 PMMA 微流道晶片製程及細胞培養 33 3.7 實驗相關檢測方法 34 3.7.1 免疫螢光染色 34 3.7.2 白蛋白 (Albumin) 分泌量檢測 34 3.7.3 Quantitative real-time PCR (qPCR) 35 3.7.4 尿素 (Urea) 分泌量檢測 38 3.7.5 次世代定序 (Next generation sequencing, NGS) 38 第四章 結果與討論 40 4.1 細胞懸浮液組成分析結果 40 4.2 肝細胞培養結果 41 4.2.1 利用不同分離步驟來採取小型肝細胞之比較 41 4.2.2 小型肝細胞與成熟肝細胞於體外培養之型態比較 43 4.3 活體螢光染色 46 4.4 Quantitative real-time PCR 49 4.5 次世代定序 (NGS) 51 4.6 肝細胞之白蛋白分泌量 52 4.7 肝細胞之尿素分泌量 54 4.8 PMMA 微流道製作結果 55 4.8.1 肝細胞於經光固化膠處理的 PMMA 上進行培養之結果 55 4.8.2 PMMA 微流道表面處理結果比較 56 4.9 小型肝細胞於 PMMA 微流道培養結果 57 4.9.1 於不同濃度膠原蛋白修飾的微流道之培養結果比較 57 4.9.2 以膠原蛋白修飾的培養皿與微流道之培養結果比較 59 第五章 結論與未來展望 60 5.1 結論 60 5.2 未來展望 62 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小型肝細胞 | zh_TW |
| dc.subject | 肝臟晶片 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | Small hepatocytes | en |
| dc.subject | Microfluidic system | en |
| dc.subject | Live-on-chip | en |
| dc.title | 以小型肝細胞培養技術應用於肝臟晶片的開發 | zh_TW |
| dc.title | Liver-on-chip: Primary rat small hepatocytes in a
microfluidic platform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧彥文(Yen-Wen Lu),陳林祈(Lin-Chi Chen),劉承賢(Cheng-Hsien Liu),陳惠玲(Hui-Ling Chen) | |
| dc.subject.keyword | 肝臟晶片,微流道,小型肝細胞, | zh_TW |
| dc.subject.keyword | Live-on-chip,Microfluidic system,Small hepatocytes, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201803374 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 4.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
