Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林銘崇(Ming-Chung Lin)
dc.contributor.authorHeng-Wen Changen
dc.contributor.author張恆文zh_TW
dc.date.accessioned2021-05-12T09:35:49Z-
dc.date.available2019-02-23
dc.date.available2021-05-12T09:35:49Z-
dc.date.copyright2018-02-23
dc.date.issued2018
dc.date.submitted2018-02-07
dc.identifier.citation1. 林欽隆、謝文忠、吳嘉弘 (2008),台灣海域沈船處理與對策研究,行政院海岸巡防署海岸巡防總局自行研究,CGA-COAST-097001。
2. 海岸巡防署網頁,http://www.cga.gov.tw/interactive/interactive3.html。
3. 經濟部中央地質調查所 (2007),10萬分之1海洋地質圖測製及編製作業規範(草案)。
4. 經濟部研究機構能源科技專案 (2013),離岸風場調查分析及技術研發計畫,財團法人工業技術研究院。
5. 經濟部研究機構能源科技專案 (2016),千架海陸風力機設置推動及關鍵技術研發計畫(1/3),財團法人工業技術研究院。
6. 經濟部研究機構能源科技專案 (2017),千架海陸風力機設置推動及關鍵技術研發計畫(2/3),財團法人工業技術研究院。
7. 經濟部研究機構能源科技專案 (2015),千架海陸風力機設置推動及關鍵技術研發計畫,財團法人工業技術研究院。
8. 陳炫杉 (1994),WAM模式評介,交通部中央氣象局,氣象學報,第39卷,第2期,106-115。
9. 吳南靖、廖哲樞、朱志誠 (2005),WTA 類神經網路在風浪推算之應用,中華技術,第67期,第1篇。
10. 台灣颱風資訊中心,http://typhoon.ws/learn/reference/beaufort_scale.
11. 郭一羽等 (2001),海岸工程學,文山書局。
12. 交通部中央氣象局 (2011),災害性天氣監測與預報作業建置計畫-改善海象預報作業100年度委外開發設計案,財團法人成大研究發展基金會。
13. 李至昕、洪景山 (2011),區域系集預報系統研究:物理參數化擾動。大氣科學,39,95-115。
14. 李至昕、洪景山、曹嘉宏 (2010),區域系集預報系統設計之初步研究,中央氣象局 99 年度天氣分析研討會。
15. 交通部中央氣象局 (2012),建構波浪系集預報系統(1/4),工業技術研究院。
16. 交通部中央氣象局 (2013),建構波浪系集預報系統(2/4),工業技術研究院。
17. 交通部中央氣象局 (2014),建構波浪系集預報系統(3/4),工業技術研究院。
18. 交通部中央氣象局 (2015),建構波浪系集預報系統(4/4),工業技術研究院。
19. 交通部中央氣象局 (2016),發展波浪資料同化技術及強化波浪系集預報系統(1/4),工業技術研究院。
20. 交通部中央氣象局 (2017),發展波浪資料同化技術及強化波浪系集預報系統(2/4),工業技術研究院。
21. 交通部中央氣象局 (2011),發展鄉鎮逐時天氣預報系統-高解析度波浪模式委外開發案,工業技術研究院。
22. 交通部中央氣象局 (2010),發展鄉鎮逐時天氣預報系統-高解析度波浪模式網格分析與預報系統99年度軟體委外開發,工業技術研究院。
23. 顏厥正、張恆文 (2016). 離岸施工運維決策支援系統建置,2016台灣風能協會會員大會暨學術研討會,
24. 陳美蘭,張恆文,林勝豐,顏厥正 (2014),海域施工環境分析暨自動預測系統應用,機械工業雜誌,379期,154-165。
25. 黃任生 (2006), 動力氣候預報系統發展計畫實習報告, 動力氣候預報系統發展計畫,交通部中央氣象局。
26. 氣象局 (2017). http://www.cwb.gov.tw/V7e/knowledge/encyclopedia/ty015.htm.
27. Alves, J. -H. G. M., M. L. Banner, and I. R. Young (2003). Revisiting the Pierson-Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33, 1301–1323.
28. Alves, J. -H. G. M., P. Wittmann, M. Sestak, J. Schauer, S. Stripling, N. B. Bernier, J. McLean, Y. Chao, A. Chawla, H. Tolman, G. Nelson, S. Klotz. (2013). The NCEP–FNMOC combined wave ensemble product: expanding benefits of interagency probabilistic forecasts to the oceanic environment. American Meteorological Society, 1893-1905.
29. Ardhuin, F., H. Mathieu, C. Fabrice, C. Bertrand, Q. Pierre. (2008). Spectral wave evolution and spectral dissipation based on observations: a global validation of new source functions. Proceedings, 4th Chinese-German joint symposium on Coastal and Ocean Engineering.
30. Bretschneider, C. L. (1952). The generation and decay of wind waves in deep water, Transaction American Geophysical Union, Vol. 33, No. 3, 381-389.
31. Booij, N. and L. H. Holthuijsen (1987). Propagation of ocean waves in discrete spectral wave models. Journal of Computational Physics, 68, 307-326.
32. Cao, D., H. L. Tolman, H. S. Chen, A. Chawla, & Gerald, V. M. (2009). Performance of the ocean wave ensemble forecast system at NCEP. The 11th International Workshop on Wave Hindcasting & Forecasting and 2nd Coastal Hazards Symposium.
33. Cao, D., H. S. Chen and H. L. Tolman (2007). Verification of ocean wave ensemble forecast at NCEP. The 10th international workshop on wave hindcasting and forecasting & coastal hazards symposium, Turtle Bay, Oahu, paper G1.
34. Casanova S. and B. Ahrens (2009). On the Weighting of Multimodel Ensembles in Seasonal and Short-Range Weather Forecasting, Monthly weather review, vol 137, 3811-3822.
35. Chawla A., H. L. Tolman, J. L. Hanson, E.-M. Devaliere and V. M. Gerald (2009). Validation of a multi-grid WAVEWATCH Ⅲ modeling system. 11th Waves forecasting and forecasting workshop, Halifax Nova Scotia.
36. Chawla A. and H. L. Tolman (2007). Automated grid generation for WAVEWATCH III. MMAB Contribution No. 254.
37. Chawla A. and H. L. Tolman (2008). Obstruction grids for spectral wave models. Ocean Modeling, 22, 12-25.
38. Chen, H.S. (2006). Ensemble prediction of ocean waves at NCEP. Proceedings of 28th Ocean Engineering Conference in Taiwan, NSYSU.
39. Chen, Y. and P. Mukerji (2008). Weather window statistical analysis for off-shore marine operations. ISOPE-I-08-158, the Eighteenth International Offshore and Polar Engineering Conference, 6-11 July, Vancouver, Canada.
40. European Wind Energy Technology Platform (2014). Market Deployment Strategy (SRA/MDS). The European Wind Energy Association (EWEA).
41. Fortin, V., M. Abaza, F. Anctil, and R. Turcotte (2014). Why should ensemble spread match the RMSE of the ensemble mean?. J. Hydrometeor., 15, 1708–1713, doi:10.1175/JHM-D-14-0008.1.
42. Hamill, T. M. (2001). Interpretation of Rank Histograms for Verifying Ensemble Forecasts. Mon. Wea. Rev., 129, 550–560.
43. Hasselmann K. et al. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deut. Hydrogr. Z., 8, 1-95.
44. http://www.ecmwf.int/products/forecasts/guide/Wave_EPSgrams.html.
45. Kolczynski Jr., W. C., D. R. Stauffer, S. E. Haupt, and A. Deng (2009). Ensemble variance calibration for representing meteorological uncertainty for atmospheric transport and dispersion modeling, J. Appl. Meteor. Clima. 48, 2001-2021.
46. Kuznetsova, A., G. Baydakov, V. Papko, A. Kandaurov, M. Vdovin, D. Sergeev, Y. Troitskaya. (2016). Adjusting of Wind Input Source Term in WAVEWATCH III Model for the Middle-Sized Water Body on the Basis of the Field Experiment. Advances in Meteorology, vol. 2016, Article ID 8539127, 13 pages, doi:10.1155/2016/8539127.
47. O’Connor M. (2012). Weather windows analysis of Galway Bay wave data. Hydraulics & Maritime Research Centre, Sustainable Energy Authority of Ireland.
48. O’Connor M., T. Lewis and G. Dalton (2013). Weather window analysis of Irish west coast wave data with relevance to operations & maintenance of marine renewables. Renewable Energy 52, 57-66.
49. Peña M. (2014). Ensemble Forecasting and their Verification, Environmental Modeling Center, NCEP/NOAA. April 16th.
50. Persson A. (2011). User guide to ECMWF forecast products, ECMWF.
51. Pierson, W. J. and L. Moskowitz, (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodski, J. Geophys. Res., 69(24), 5181-5190.
52. Rascle, N. and F. Ardhuin (2013). A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean modeling, 70, 174-188.
53. http://dx.doi.org/10.1016/j.ocemod.2012 .12.001.
54. Salzman D. J, FWB Gerner, A. Gobel and J. Koch (2007). Am-pelmann demonstrator – completion of a motion compensation platform for offshore access. Berlin: European offshore wind, http://www.eow2007.info/index.php?id=16.
55. Stanislaw R. M. (2013). Ocean surface waves, their physics and prediction, 2nd Ed. Advanced series on ocean engineering (Vol. 36).
56. Tebaldi C. and R. Knutti (2007). The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053–2075. doi:10.1098/rsta.2007.2076.
57. Tolman, H. L. (2002). Alleviating the Garden Sprinkler Effect in wind wave models. Ocean Modeling 4. 269-289.
58. Tolman, H. L. (2008). User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP MMAB Tech. Note 268.
59. Walker, R.T., L. Johanning and R. J. Parkinson (2011). Weather windows for device deployment at UK test sites: availability and cost implications. Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK.
60. Wilks, D. S. (2006). Statistical methods in the atmospheric sciences. 2nd Ed. (Vol. 91). Academic press.
61. Wilson L. J. Verification of probability and ensemble forecasts. Atmospheric Science and Technology Branch, Environment Canada.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1298-
dc.description.abstract系集預報的目的是為了彌補單一模式預報的不足且能包含模式的不確定性,同時能夠提供機率性預報。發展系集預報系統,需提供有效且合理的系集預報成員,以產生足夠的系集分歧,據以最大程度涵蓋可能的發生機率,同時需透過量化系集預報指標,來檢視系集預報系統之預報能力和可信度。本研究引用氣象系集的概念,建置2層的多重網格NWW3波浪模式,使用中央氣象局WRF系集模式之20組系集風場來建置作業化系集預報系統,並利用氣象局設置之波浪浮標觀測資料當作真值,驗證其系集成員的分歧度是否足夠及可否最大程度涵蓋可能的發生機率,並檢視系統是否具備預報能力與區分事件發生及未發生的能力。
研究結果顯示,在系集成員的組成部分,使用風驅動公式Tolman之設定參數對於深海測站而言,在季風期有較佳的預報能力,但在颱風時期則呈現偏大的趨勢;而使用WAM4公式則剛好相反,顯示無法以一個公式同時滿足二種風況。對此,本研究首創提出之二種風場輸入公式組合方式以涵蓋季風及颱風的波浪特性(10個系集使用Tolman公式,10個系集使用WAM4公式),結果顯示此種方式可保留各個風場輸入公式在不同風場狀況下的優點,同時提高SPRD,拉近RMSE及SPRD的差距,使得系集系統已較使用單一公式能掌握模式的不確定性。在系集預報系統的執行力分析部分,透過Reliability diagram、BSS及ROC分析,顯示系統針對深海測站已具備預報能力及區別事件發生及未發生的預報能力,同時優於氣候平均及單一決定性預報,亦堪與NCEP的系集系統相較之,換言之,本研究所研發之區域性作業化波浪系集預報系統已具有預報能力,可以提供波浪的機率預報。然而對於近域部分,受限於網格太大導致無法解析近岸複雜地形而導致差異較大的現象,將先以提高網格解析度在下一步進行改善之。
系集預報的應用研究包括作業化系集預報系統的建置及機率預報用於海上施工的決策。系集預報系統已作業化運作,每天四次、每次預報72小時產出波浪機率預報,輸出包括點輸出及面輸出,點輸出使用盒鬚圖,並於三天後另產出即時驗證盒鬚圖,面輸出包括系集成員圖、系集平均、系集平均及系集分歧、機率分布圖、Spaghetti圖、10%超越機率圖等,可供不同的使用需求使用。而機率預報結合蒙地卡羅法,可分析某一施工序在波高、風速及施工所需時間等限制條件下之機率預報,提供作為施工決策之參考,而使用介面可以更改接收不同的系集預報來源,提供快速的施工延時資訊,便利施工決策參考。
zh_TW
dc.description.abstractA wave ensemble forecast system is being developed based on the NOAA WAVEWATCH III (NWW3) two nesting multi-grid model over Taiwan area. The ensemble system consisted of 20 ensemble members and was set with spatial resolutions of 0.25 and 0.1. The wind forcing is coming from the WRF-based ensemble forecast system (WEPS) 10m wind fields of Central Weather Bureau (CWB) with spatial resolutions of 45km and 15km. The cycle initial condition of each wave ensemble member from the previous run of the same ensemble member is applied to generate a history perturbation of swell. The objectives of this work are to verify the impact of different wind forcing formulas, to find the better composition of ensemble members, and to evaluate the forecast capacity of resulting ensemble forecast system. We first proposed the combination of using two built-in wind forcing formulas to form twenty ensemble members (each for ten members), which can reserve the advantages of different formulas under various wind fields (monsoon and typhoon period), increase the average ensemble spread and decrease the difference between the root mean square error and average ensemble spread based on the truth value at open seas. With Reliability diagram, Brier Skill Score and Relative Operating Characteristic analyses of assessing the quality of forecasts, the ensemble system has good forecast capacity and discriminate between the events and non-events. It also has better forecast skill than the operational deterministic forecast, and can be comparable with NCEP global ensemble system. Consequently, the wave ensemble forecast system is approved to have the skill in terms of probability forecast at open sea and some coast areas around Taiwan.
Nevertheless the overestimation near some coast areas could be improved by increasing the grid resolution and resolving nearshore wave simulation to reduce RMSE. For the underestimation of SPRD we intend to add perturbation at low frequency swell as initial condition to increase SPRD in the near future.
Application of ensemble forecast includes the establistment of operational wave ensemble forecast system and probability forecast on decision making of marine installation. The operational wave ensemble forecast system performs 4 times daily and 72 hours forecast for each time. Products of ensemble forecast system involve point output and gridded output. The point output utilizes boxplot to show ensembles. The gridded output contains ensemble members, ensemble means and spread, 10% exceeding probabilities, probability and spaghetti diagrams at different thresholds every three hours. Ensemble forecast combined with monte-carlo method could provide the probability of operation under the thresholds of wave height, wind speed and duration of operation for decision making.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:35:49Z (GMT). No. of bitstreams: 1
ntu-107-D94525005-1.pdf: 19374921 bytes, checksum: 7b28ebe98c3c6bea55f9a982a5039234 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 V
目 錄 VII
圖目錄 VIII
表目錄 XI
符號表 XII
第一章 緒論 1
1.1研究動機及研究目的 1
1.2系集預報 3
1.3文獻回顧 5
1.4研究流程 16
第二章 波浪系集預報系統建置 19
2.1波浪數值模式 19
2.2觀測資料及系集分析方法 31
2.3模式建置及計算範圍分析 38
第三章 波浪系集預報系統驗證分析 50
3.1不確定度分析 50
3.2波浪系集成員分析 52
3.3波浪系集預報系統執行力分析 68
第四章 應用研究 77
4.1波浪系集預報系統應用 77
4.2結合機率之施工期程判釋 87
第五章 結論與建議 94
參考文獻 97
附件一 系集分析相關繪圖 102
dc.language.isozh-TW
dc.subject系集預報zh_TW
dc.subject運維zh_TW
dc.subject氣候窗zh_TW
dc.subject系集分岐zh_TW
dc.subject機率預報zh_TW
dc.subjectensemble spreaden
dc.subjectprobability forecasten
dc.subjectweather windowen
dc.subjectoperation and maintenanceen
dc.subjectensemble forecasten
dc.title區域波浪系集預報系統建立及其應用之研究zh_TW
dc.titleEstablishment and application of regional wave ensemble forecast systemen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee梁乃匡,蔡清標,蕭松山,滕春慈,丁肇隆
dc.subject.keyword系集預報,機率預報,系集分岐,氣候窗,運維,zh_TW
dc.subject.keywordensemble forecast,probability forecast,ensemble spread,weather window,operation and maintenance,en
dc.relation.page150
dc.identifier.doi10.6342/NTU201800352
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf18.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved