請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1228完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | |
| dc.contributor.author | Cheng-Chun He | en |
| dc.contributor.author | 何承准 | zh_TW |
| dc.date.accessioned | 2021-05-12T09:34:34Z | - |
| dc.date.available | 2018-07-03 | |
| dc.date.available | 2021-05-12T09:34:34Z | - |
| dc.date.copyright | 2018-07-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-06-21 | |
| dc.identifier.citation | Abramov, V. O., Abramova, A.V., Keremetin, P. P., Mullakaev, M.S., Vexler, G. B. and Mason, T. J. (2014) Ultrasonically improved galvanochemical technology for the remediation of industrial wastewater. Ultrasonics Sonochemistry 21(2), 812-818.
Anbia, M. and Salehi, S. (2012) Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes and Pigments 94(1), 1-9. Attour, A., Touati, M., Tlili, M., Ben Amor, M., Lapicque, F. and Leclerc, J.P. (2014) Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Separation and Purification Technology 123, 124-129. Aziz, A. R. A., Asaithambi, P. and Daud, W. M. A. B. W. (2016) Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent. Process Safety and Environmental Protection 99, 227-235. Badawy, W.A., Al-Kharafi, F.M. and El-Azab, A.S. (1999) Electrochemical behaviour and corrosion inhibition of Al, Al-6061 and Al–Cu in neutral aqueous solutions. Corrosion Science 41(4), 709-727. Campos, I., Palomar-Pardavé, M., Amador, A., VillaVelázquez, C. and Hadad, J. (2007) Corrosion behavior of boride layers evaluated by the EIS technique. Applied Surface Science 253(23), 9061-9066. Chou, W. L., Wang, C. T. and Huang, K. Y. (2009) Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption. Journal of Hazardous Materials 167(1-3), 467-474. Santos, A. B. d., Cervantes, F.J. and van Lier, J.B. (2007) Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology 98(12), 2369-2385. Emamjomeh, M. M. and Sivakumar, M. (2009) Fluoride removal by a continuous flow electrocoagulation reactor. Journal of Environmental Management 90(2), 1204-1212. EPA (1987) Phosphorus Removal: Design Manual. Environmental Protection Agency. Eyvaz, M., Kirlaroglu, M., Aktas, T. S. and Yuksel, E. (2009) The effects of alternating current electrocoagulation on dye removal from aqueous solutions. Chemical Engineering Journal 153(1-3), 16-22. Fontana, J. (1990) Corrosion Engineering. Mc Graw-Hill. García-García, A., Martínez-Miranda, V., Martínez-Cienfuegos, I. G., Almazán-Sánchez, P. T., Castañeda-Juárez, M. and Linares-Hernández, I. (2015) Industrial wastewater treatment by electrocoagulation–electrooxidation processes powered by solar cells. Fuel 149, 46-54. Ghauch, A., Baydoun, H. and Dermesropian, P. (2011) Degradation of aqueous carbamazepine in ultrasonic/Fe0/H2O2 systems. Chemical Engineering Journal 172(1), 18-27. Hamdan, S.S. and El-Naas, M. H. (2014) An electrocoagulation column (ECC) for groundwater purification. Journal of Water Process Engineering 4, 25-30. Hao, O.J., Kima, H. and Chianga, P.-C. (2000) Decolorization of Wastewater. Critical Reviews in Environmental Science and Technology 30(4). Hashim, K.S., Shaw, A., Al Khaddar, R., Pedrola, M. O. and Phipps, D. (2017) Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach. Journal of Environmental Management 196, 224-233. Heidmann, I. and Calmano, W. (2008) Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Separation and Purification Technology 61(1), 15-21. Hu, C.Y., Lo, S.L. and Kuan, W. H. (2007) Simulation the kinetics of fluoride removal by electrocoagulation (EC) process using aluminum electrodes. Journal of Hazardous Materials 145(1-2), 180-185. Huang, C.J. and Liu, J.C. (1999) Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer. Water Research 33(16), 3403-3412. Kabdaşlı, I., Vardar, B., Arslan-Alaton, I. and Tünay, O. (2009) Effect of dye auxiliaries on color and COD removal from simulated reactive dyebath effluent by electrocoagulation. Chemical Engineering Journal 148(1), 89-96. Khandegar, V. and Saroha, A. K. (2013) Electrocoagulation for the treatment of textile industry effluent--a review. Journal of Environmental Management 128, 949-963. Kolics, A., Polkinghorne, J. C. and Wieckowski, A. (1998) Adsorption of sulfate and chloride ions on aluminum. Electrochimica Acta 43(18), 2605-2618. Koyuncu, I. (2002) Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity. Desalination 143(3), 243-253. Li, C., Ma, J., Shen, J. and Wang, P. (2009a) Removal of phosphate from secondary effluent with Fe2+ enhanced by H2O2 at nature pH/neutral pH. Journal of Hazardous Materials 166(2-3), 891-896. Li, H., Ru, J., Yin, W., Liu, X., Wang, J. and Zhang, W. (2009b) Removal of phosphate from polluted water by lanthanum doped vesuvianite. Journal of Hazardous Materials 168(1), 326-330. Li, M., Feng, C., Zhang, Z. and Sugiura, N. (2009c) Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochimica Acta 54(20), 4600-4606. Maha Lakshmi, P. and Sivashanmugam, P. (2013) Treatment of oil tanning effluent by electrocoagulation: Influence of ultrasound and hybrid electrode on COD removal. Separation and Purification Technology 116, 378-384. Majlesi, M., Mohseny, S.M., Sardar, M., Golmohammadi, S. and Sheikhmohammadi, A. (2016) Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes. Sustainable Environment Research 26(6), 287-290. Malik, P.K. and Saha, S.K. (2003) Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology 31(3), 241-250. Mendez-Arriaga, F., Torres-Palma, R. A., Petrier, C., Esplugas, S., Gimenez, J. and Pulgarin, C. (2008) Ultrasonic treatment of water contaminated with ibuprofen. Water Research 42(16), 4243-4248. Mollah, M.Y.A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J. and Cocke, D.L. (2004) Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials 114(1–3), 199-210. Mollah, M.Y.A., Schennach, R., Parga, J.R. and Cocke, D.L. (2001) Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials 84(1), 29-41. Mottaleb, M.A. and Littlejohn, D. (2001) Application of an HPLC-FTIR Modified Thermospray Interface for Analysis of Dye Samples. Analytical Sciences 17(3), 429-434. Mouedhen, G., Feki, M., Wery Mde, P. and Ayedi, H.F. (2008) Behavior of aluminum electrodes in electrocoagulation process. Journal of Hazardous Materials 150(1), 124-135. Moussavi, G. and Mahmoudi, M. (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials 168(2-3), 806-812. Nie, E., Yang, M., Wang, D., Yang, X., Luo, X. and Zheng, Z. (2014) Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways. Chemosphere 113, 165-170. Ouaissa, Y.A., Chabani, M., Amrane, A. and Bensmaili, A. (2014) Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption. Journal of Environmental Chemical Engineering 2(1), 177-184. Özcan, A., Ömeroğlu, Ç., Erdoğan, Y. and Özcan, A.S. (2007) Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19. Journal of Hazardous Materials 140(1–2), 173-179. Palahouane, B., Drouiche, N., Aoudj, S. and Bensadok, K. (2015) Cost-effective electrocoagulation process for the remediation of fluoride from pretreated photovoltaic wastewater. Journal of Industrial and Engineering Chemistry 22, 127-131. Qu, J.G., Li, N.N., Liu, B.J. and He, J.X. (2013) Preparation of BiVO4/bentonite catalysts and their photocatalytic properties under simulated solar irradiation. Materials Science in Semiconductor Processing 16(1), 99-105. Quan, X., Ye, C., Xiong, Y., Xiang, J. and Wang, F. (2010) Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. Journal of Hazardous Materials 178(1-3), 326-332. Raschitor, A., Fernandez, C. M., Cretescu, I., Rodrigo, M. A. and Cañizares, P. (2014) Sono-electrocoagulation of wastewater polluted with Rhodamine 6G. Separation and Purification Technology 135, 110-116. Ruihua, L., Lin, Z., Tao, T. and Bo, L. (2011) Phosphorus removal performance of acid mine drainage from wastewater. Journal of Hazardous Materials 190(1-3), 669-676. Sirés, I. and Brillas, E. (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environment International 40, 212-229. Song, P., Yang, Z., Xu, H., Huang, J., Yang, X. and Wang, L. (2014) Investigation of Influencing Factors and Mechanism of Antimony and Arsenic Removal by Electrocoagulation Using Fe–Al Electrodes. Industrial & Engineering Chemistry Research 53(33), 12911-12919. Taheri, M., Alavi Moghaddam, M. R. and Arami, M. (2013) Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models. Journal of Environmental Management 128, 798-806. Thiam, A., Zhou, M., Brillas, E. and Sirés, I. (2014) Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Applied Catalysis B: Environmental 150-151, 116-125. Thinakaran, N., Baskaralingam, P., Pulikesi, M., Panneerselvam, P. and Sivanesan, S. (2008) Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Journal of Hazardous Materials 151(2–3), 316-322. Torres, R.A., Abdelmalek, F., Combet, E., Petrier, C. and Pulgarin, C. (2007) A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters. Journal of Hazardous Materials 146(3), 546-551. Vasudevan, S., Lakshmi, J., Jayaraj, J. and Sozhan, G. (2009) Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes. Journal of Hazardous Materials 164(2-3), 1480-1486. Vik, E. A., Carlson, D. A., Eikum, A.S. and Gjessing, E. T. (1984) Electrocoagulation of potable water. Water Research 18(11), 1355-1360. Villaroel, E., Silva-Agredo, J., Petrier, C., Taborda, G. and Torres-Palma, R.A. (2014) Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix. Ultrasonics Sonochemistry 21(5), 1763-1769. Lee, W. J, Pyun, S. L. (2000) Effects of sulphate ion additives on the pitting corrosion of pure aluminium in 0.01 M NaCl solution. Electrochimica Acta 45, 1901–1910. Wu, F. C. and Tseng, R. L. (2008) High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. Journal of Hazardous Materials 152(3), 1256-1267. Yüksel, E., Şengil, İ.A. and Özacar, M. (2009) The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chemical Engineering Journal 152(2-3), 347-353. Yang, Z. H., Xu, H.Y., Zeng, G. M., Luo, Y. L., Yang, X., Huang, J., Wang, L. K. and Song, P. P. (2015) The behavior of dissolution/passivation and the transformation of passive films during electrocoagulation: Influences of initial pH, Cr(VI) concentration, and alternating pulsed current. Electrochimica Acta 153, 149-158. Yu, L., Wang, C., Ren, X. and Sun, H. (2014) Catalytic oxidative degradation of bisphenol A using an ultrasonic-assisted tourmaline-based system: Influence factors and mechanism study. Chemical Engineering Journal 252, 346-354. Zhao, Y., Wang, J., Luan, Z., Peng, X., Liang, Z. and Shi, L. (2009) Removal of phosphate from aqueous solution by red mud using a factorial design. Journal of Hazardous Materials 165(1-3), 1193-1199. 林權澤,「以交流阻抗探討鋰離子電池之老化行為」,碩士論文,國立勤益科技大學(2010) 胡景堯,「電膠羽浮除法去除廢水中氟離子之研究」,博士論文,國立台灣大學(2005) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1228 | - |
| dc.description.abstract | 電混凝在廢水的使用上已有很長時間,可應用於去除染料、重金屬等物質,特別是針對有機物及懸浮固體,可用於潔淨、無色、無臭味之水質,其優點可避免化學品的使用、設備簡單、操作容易且污泥量少;然而,使用一段時間後,極版表面會發生鈍化現象生成惰性層,惰性層會增加阻抗以及減少混凝物質的產生。據此,本研究主要以合成水樣評估超聲波結合電混凝程序對於極版之惰性層控制去除以及探討陰離子對於惰性層所造成之影響。
本研究以染料Reactive Blue 19(RB19)、磷酸鹽及硝酸鹽為研究對象,分別探討超聲波所造成之影響,RB19之研究結果發現,為添加超聲波程序時,極版上之惰性層亦會產生些微之上升,添加超聲波程序後可使表面阻抗下降,並可使溶液中粒子粒徑變小,因此可以增加更多的面積,有利於染料之去除,釋出的鋁離子本身則帶正電,有利於與帶負電之染料吸附結合後沉澱去除,而超聲波在使用過程中會造成水中形成膠羽被打破,此現象則可透過雙槽反應器以及間歇式超聲波程序避免,以間歇式超聲波程序複合電混凝程序可提升去除效率約10%,並可避免在超聲波使用過程中造成大量的能源消耗。動力學結果發現,其結果較符合擬一階之方程式。 以陰離子磷酸根為目標污染物,結果發現,濃度越高之磷酸根,極版表面所產生之惰性層則越高,使得釋鋁量下降並降低去除效率,對於陰離子所造成之惰性層則可有效的透過超聲波程序以及添加氯離子去除表面之惰性層。氯離子可溶解惰性層,Al2O3與氯反應形成Al(OH)2Cl、Al(OH)Cl2、AlCl3。超聲波則可產生空洞現象,使微泡累積至固液體表面之間,爆裂後產生瞬間高溫高壓去除惰性層,在超聲波添加的瓦數以150 W以下具有最佳效果,而兩者同時添加並無協同效應,使用任一方法均可將表面之惰性層去除,使釋出之鋁離子不受到惰性層之影響,效率提升可超過50%。在多次重複實驗就中發現,添加超聲波之電混凝程序後可有效增加磷酸鹽之去除率並且延長極版的壽命。最後,在多陰離子實驗中發現,超聲波可有效提升含有磷酸根及碳酸根溶液之去除效率。 | zh_TW |
| dc.description.abstract | Electrocoagulation (EC) has a long history of use in as a wastewater treatment process. It has been applied to remove dye, and heavy metal, especially in organic and suspended matter. Deploying EC process to produce clear, colorless and odorless water exhibits many advantages, such as avoidance of chemicals use, simplicity in configuration, ease of operation, and low sludge generation. However, electrode passivation occurs on the surface of electrode after a period of operation. The passive film increases the resistance and diminishes the release of the coagulation material. The removal efficiency is decreased.
The aim of this study was to evaluate the effects of integrating the methods on eliminating the passive film on the electrode surface to enhance energy efficiency and the contamination removal efficiency from synthesized water during ultrasound-electrocoagulation (sono-EC). The result shows the passive film is increased slightly by using the dye of Reactive Blue 19 as contamination. Integration of ultrasound and EC process are deceased the impedance on the electrode surface. Moreover, Ultrasonic treatment can reduce the size of particle, thereby increasing their surface areas and promoting their sorption capacity. The releasing of aluminum ion is positive charge; it is favor to adsorb the dye with negative charge. However, the ultrasonic process is broken the floc in the operation periods, it is avoided by double reactor or intermittent process. The ultrasound of intermittent process is not only prevented the floc broken, but also consumption unnecessary energy. The EC process can be best described using variable-order kinetics. The result shows the passive film is proportion to the concentration by using phosphate as contamination. It is also effected the amount of releasing aluminum particle, moreover it is decreased the removal efficiency. From the result, addition of chloride or integration of ultrasound are both efficiency to reduce the passive film. The chloride can be dissolve the passive film, the Al2O3 is active with chloride, the compound is formed Al(OH)2Cl, Al(OH)Cl2 and AlCl3. The ultrasound induces cativation. Bubbles grow in successive cycles forming bubbles of cavitation which, at sufficient high power, reach an unstable size and collapse violently. It is called ‘‘hotspots’’ with high temperature and pressure. The optimal ultrasonic power to treat contamination is under 150 W. However, the chloride and ultrasound additions do not exhibit synergistic effects. Because the passive film is limited, it is reduced by one of way. Cycling runs testing shows ultrasound can be used with EC to enhance the phosphate removal efficiency and extend the life of an electrode. The muti-anion experiment shows, ultrasound is useful to enhance the removal efficiency with phosphate and carbonate anion in the solution. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-12T09:34:34Z (GMT). No. of bitstreams: 1 ntu-107-D01541002-1.pdf: 3859568 bytes, checksum: d38cd19cd1efb8c3a8b5ef7cd64d48bc (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT V 目錄 VII 圖目錄 IX 表目錄 XI 第一章 研究緣起 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 污染物介紹 3 2.1.1 染料Reactive Blue 19介紹 3 2.1.2 磷酸鹽介紹 7 2.1.3 硝酸鹽介紹 8 2.2電化學混凝浮除法 8 2.2.1原理與機制 10 2.2.2主要影響參數 13 2.2.3 對不同污染物處理之績效 15 2.2.4 惰性層生成之成因 17 2.3 超聲波技術 22 2.3.1原理與機制 22 2.3.2對不同污染物之績效 22 2.4 新穎電混凝複合程序 26 2.5 交流阻抗分析 32 2.5.1 分析原理 32 2.5.2電極量測 34 第三章 研究方法 35 3.1研究架構與流程 35 3.1.1超聲波成效確認 36 3.1.2 研析RB19去除率之實驗 37 3.1.3 研析水中陰離子對去除率之影響 39 3.2材料與分析 39 3.2.1 實驗設備與藥品 39 3.2.2 分析方法 44 3.3分析品質保證與品質管理(QA/QC) 46 3.3.1 pH量測分析之品保品管 46 3.3.2分析之品保品管 46 第四章 超聲波技術評估 50 4.1 sono-EC成效評估 50 4.1.1 阻抗分析 50 4.2 不同反應槽對於去除效率之影響 56 4.2.1 單槽反應器 56 4.2.1雙槽反應器 57 4.3 鑑別sono-EC之重要關鍵操作因素 59 4.3.1 電流密度 59 4.3.2 超聲波瓦數 60 4.3.3 溶液中之pH之影響 61 4.4 電極表面鑑定 62 4.4.1 電子顯微鏡分析(SEM) 62 4.4.2 能量色散X-射線光譜分析(EDX) 64 4.5 建立程序動力學模式 65 4.6 小結 67 第五章 研析複合程序之影響 68 5.1 陰離子初始濃度 69 5.2 超聲波瓦數 71 5.2.1操作瓦數 71 5.2.2 操作頻率 73 5.3 氯離子添加 75 5.3 複合操作程序 77 5.3.1 超聲波及氯離子添加 77 5.3.2 複合程序比較 78 5.3.3 重覆實驗 81 5.4 電極表面鑑定 82 5.5 陰離子對於陰極之影響 84 5.6 小結 88 第六章 結論與建議 89 6.1 結論 89 6.2建議 91 第七章 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷酸根 | zh_TW |
| dc.subject | 超聲波 | zh_TW |
| dc.subject | 陰離子 | zh_TW |
| dc.subject | 阻抗 | zh_TW |
| dc.subject | 染料 | zh_TW |
| dc.subject | 電混凝 | zh_TW |
| dc.subject | impedance | en |
| dc.subject | phosphate | en |
| dc.subject | dye | en |
| dc.subject | ultrasound | en |
| dc.subject | electrocoagulation | en |
| dc.subject | anion | en |
| dc.title | 以超聲波程序提升電混凝效能之研究 | zh_TW |
| dc.title | Ultrasonically Improved the Effectiveness of Electrocoagulation Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 官文惠,郭昭吟,胡景堯,侯嘉洪 | |
| dc.subject.keyword | 超聲波,電混凝,陰離子,阻抗,染料,磷酸根, | zh_TW |
| dc.subject.keyword | ultrasound,electrocoagulation,anion,impedance,dye,phosphate, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201801018 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-06-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 3.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
