請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1200完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張育森(Yu-Sen Chang) | |
| dc.contributor.author | Shao-Bo Huang | en |
| dc.contributor.author | 黃紹博 | zh_TW |
| dc.date.accessioned | 2021-05-12T09:34:08Z | - |
| dc.date.available | 2020-07-18 | |
| dc.date.available | 2021-05-12T09:34:08Z | - |
| dc.date.copyright | 2018-07-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-06 | |
| dc.identifier.citation | 丁韶伶、林鴻志. 2015. 卓蘭地區聖誕紅產業發展概況. 苗栗區農業專訓70:23-24.
王利軍、李家承、劉允芬、劉琪瑾、黃衛東、石玉林. 2003. 高溫乾旱脅迫下水楊酸和鈣對柑橘光合作用和葉綠素螢光的影響. 中國農學通報19:185-189. 王進學、葉德銘. 2013. 菊花之細胞膜熱穩定性檢測及其應用於篩選耐熱實生 苗. 臺灣園藝 59:153-166. 申屠文月、陳秉初、張纯大、袁靈芝. 2006. 多效唑對高羊茅草坪草耐热性的影響. 園藝學報 33:172-174. 吳承叡. 2015. 環保聖誕紅盆花生產體系之建立. 國立臺灣大學園藝學研究所碩士論文. 臺北市. 呂鳳山、侯建華1994. 陸稻抗旱性主要指標的研究. 華北農學報9:7-12. 李安然. 2005. 草坪草類抗旱性指標篩選與抗旱增進之研究. 臺灣大學園藝學研究所學位論文. 臺北市 林嘉洋. 2006. 耐熱矮牽牛之耐熱性與耐熱指標. 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北市 林澤延. 2016. 水楊酸及氯化鈣提升薰衣草及鼠尾草耐熱性之探討.國立臺灣大學園藝學研究所碩士論文. 臺北市. 陳葦玲. 2013. 作物耐熱性篩選指標之建立. 臺中區農業改良場特刊: 217-220. 陳葦玲、郭孚燿、陳榮五. 2009. 利用細胞膜熱穩定性技術篩選高耐熱性葉用蘿蔔. 臺中區農業改良場研究彙報 102:15-29 陳銘正、黃秀真. 2009. 利用矮化劑處理高品質的銀柳盆栽. 國立宜蘭大學農業推廣季刊 49:1-6. 傅仰人、楊雅淨、陳錦木、羅士凱. 2010. 聖誕紅栽培技術. 聖誕紅專輯.桃園區農業改良場編印:13-17. 黃怡嘉. 2008. 溫度, 光強度及水楊酸對火鶴花光合作用與生育品質之影響. 臺灣大學園藝學研究所學位論文:1-101. 楊雅淨. 2015. 104年聖誕紅產銷檢討座談會紀實. 桃園區農業專訓92:20-21. 齊曉花、張萍、徐強、陳學好. 2011. 黄瓜種子及幼苗期耐冷性鑑定. 中國蔬菜: 34-38. Anderson, J.A. and S.R. Padhye. 2004. Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat-stressed vinca and sweet pea leaves. J. Amer. Soc. Hort. Sci. 129:54-59. Arora, R., D.S. Pitchay, and B.C. Bearce. 1998. Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? Physiol. Plant. 103:23-34. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. Berry, J. and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Biol. 31:491-543. Bj€orkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. Blum, A. 1988. Plant breeding for stress environments. CRC Press, Boca Raton, FL. Booker, H.M., T.J. Gillespie, G. Hofstra, and R.A. Fletcher. 1991. Uniconazole-induced thermotolerance in wheat seedlings is mediated by transpirational cooling. Physiol. Plant. 81:335-342. Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell’Amico, A. Torrecillas, and J.J. Alarcón. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281-289. Carvalho, M.D. 2008. Drought stress and reactive oxygen species. Plant Signal Behav. 3: 156-165. Chauhan, Y.S. and T.Senboku. 1996. Thermostabilities of cell-membrane and photosynthesis in cabbage cultivars differing in heat tolerance. J Plant Physiol. 149:729-734. Chen, W.L., W.J. Yang, H.F. Lo, and D.M. Yeh. 2014. Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci. Hort. 179:367-375. Chen, X., D. Min, T.A. Yasir, and Y.G. Hu. 2012. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Res. 137:195-201. Daniel, G., G.F. D'Souza, C.G. Anand, B. Lamani, M.G. Awati, V.M. Saraswathy, and N. Sadananda. 2010. Effect of foliar application of Lantana camara leaf extract and chlormequat chloride (CCC) for drought tolerance in robusta coffee. J. Coffee Res. 38:48-58. Dinakar C., D. Djilianov, and D. Bartels. 2012. Photosynthesis in desiccation tolerant plants: energy metabolism andantioxidative stress defense. Plant Sci. 182:29-41. Ecke, P.Ⅲ, J.E. Faust, A. Higgins, and J. William. 2004. The Ecke poinsettia manual. Ball Publishing, Batavia. Fletcher, R.A., A. Gilley, N. Sankhla, and T.D. Davis. 2010. Triazoles as plant growth regulators and stress protectants. Hort. Rev. 24:55-138. Florido, B., R. Plana, G. Álvarez, L. Moya, R. Lara, N. Varela, and S. Shagarodsky. 2011. Relationship between the thermostability of membrane, cell viability and tolerance criteria for the assessment of tolerance to heat in tomato (Solanum L. section Lycopersicon Lycopersicon subsection). Cultivos Tropicales. 32:38-49. Fu, M.L., G.Z. Li, Q.H. Yang, X.Y. Yuan, and J.Q. Wang. 2011. Drought tolerance identification of interspecific hybrids from Brassica napus and Brassica juncea by subordinate function values. Chin. J. Oil Crop Sci. 33:368-373. Gilley, A. and R.A. Fletcher. 1997. Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings. Plant Growth Regul. 21:169-175. Gilroy, S., N. Suzuki, G. Miller, W.G. Choi, M. Toyota, A.R. Devireddy, and R. Mittler. 2014. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19:623-630. Greyvenstein, O., T. Starman, B. Pemberton, G. Niu, and D. Byrne. 2015. Development of a rapid screening method for selection against high temperature susceptibility in garden roses. HortScience. 50:1757-1764. Grossmann, K. 1990. Plant growth retardants as tools in physiological research. Physiol. Plantarum. 78:640-648. Hackl, H., J.P. Baresel, B. Mistele, Y. Hu, and U. Schmidhalter. 2012. A comparison of plant temperatures as measured by thermal imaging and infrared thermometry. J. Agron. Crop Sci. 198:415-29. Hao, H., C. Jiang, L. Shi, Y. Tang, J. Yao, and Z. Li. 2009. Effects of root temperature on thermostability of photosynthetic apparatus in Prunus mira seedlings. J. Plant Ecol- Chinese 33:984-992. Hayat, S., B. Alt, and A. Ahmad. 2007. Salicylic acid: biosynthesis, metabolism and physiological role in plants. Salicylic acid: a plant hormone. Springer Verlag. 1-14. He, X.Y., R.L. Wen, C.R. Wu, J.G. Zhou. 2008. Analysis of maize drought resistance at seeding stage by fuzzy subordination method. Southwest China J. Agric. Sci. 21:52-56. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts:I. Kinetics and stoichiometry of fatty acid pero ×idation. Arch. Biochem. Biophys. 125:189-198. Hwang, S.Y. and T.T. Van Toai. 1991. Abscisic acid induces anaerobiosis tolerance in corn.Plant Physiol. 97:593-597. Jacques, D.J., R.E.J. Boerner, J.C. Peterson, 1991. The effect of calcium spray on leaf and bract distortion, bound: unbound calcium ratio, and calcium distribution in two poinsettia cultivars. J. Plant. Nutri. 14:1391-1410. Janka, E., O. Körner, E. Rosenqvist, and C.O. Ottosen. 2013. High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant physiol. Biochem. 67:87-94. Jiang, Y.W. and B. Huang. 2001. Effects of calcium on antioxidant activities and water relations ass°Ciated with heat tolerance in two cool-season grass. J. Exp. Bot. 52: 341-349. Klessig, D.F., and J. Malamy. 1994. The salicylic acid signal in plants. Plant Mol. Biol. 26:1439-1458. Lawton, K.A., G.L. McDaniel, and E.T. Graham. 1989. Nitrogen source and calcium supplement affect stem strength of poinsettia. HortScience 24:463-465. Leul, M. and W.J. Zhou. 1999. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J. Plant Growth Regul. 18:9-14. Li, L., J. van Staden, and A.K. Jäger.1998. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 25.2:81-87. Lin, K.H., W.C. Hwang, and H.F. Lo. 2007. Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. Photosynthetica 45:628-632. Lin, L.N., K.L. Huang, and Okuibo, H. 2011. Alleviation of high temperature stress in wax begonia (Begonia× semperflorens-cultorum Hort.) by salicylic acid. J. Fac. Agr. Kyushu Univ. 56:193-198. Long, S.P., W.F. Postl, and H.R. Bolhar-Nordenkampf. 1993. Quantum yields for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and taxonomic groupings. Planta. 189:226-234. Meng, Q.L., Z.B. Guan, B.L. Feng, Y. Chai, and Y.G. Hu. 2009. Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet (Setaria italica). Sci. Agric. Sin. 42:2667-2675. Mittler, R., S. Vanderauwera, N. Suzuki, G. Miller, V. B. Tognetti, K. Vandepoele, and F. Van Breusegem. 2011. ROS signaling: the new wave?. Trends Plant Sci. 16:300-309. Nowak, J.S., and Z. Strojny. 1998. Effect of soil water potential on poinsettia plant. Acta Hort. 458:273-276. Nyarko, G., P.G. Alderson, J. Craigon, E. Murchie, and D.L. Sparkes. 2008. Comparison of cell membrane thermostability and chlorophyll fluorescence parameters for the determination of heat tolerance in ten cabbage lines. J. Hortic. Sci. Biotechnol. 83:678-682. Onwueme, I.C. 1979. Rapid, plant-conserving estimation of heat tolerance in plants. J. Agric. Sci. 92:527-535. Paoletti, F., D. Aldinucci, A. Mocali, and A. Capparini. 1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154:536-541. Peng, Y., C. Xu, L. Xu, and B. Huang. 2012. Improved heat tolerance through drought preconditioning ass°Ciated with changes in lipid composition, antioxidant enzymes, and protein expression in Kentucky bluegrass. Crop Sci. 52:807-817. Pinhero, R.G., M.V. Rao, G. Paliyath, D.P. Murr, and R.A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol. 114:695-704. Rademacher, W. 1997. Biaregulation of crop plants with inhibitors of gibberellin biosynthesis. Proc. Plant Growth Reg. Soc. Am. 24:27-31. Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Biol. 43: 439-463. Sairam, R.K. and A. Tyagi. 2004. Physiology and molecular biology of salinitystress tolerance in plants. Curr. Sci. 86:407-421. Saleema, M.F., M.F. Bilala, S.A. Anjuma, H.Z. Khana, M. Sarwara, and W. Farhadb. 2014. Planting time and N nutrition on cell membrane thermostability, bolls' retention and fibre traits in cotton. J. Anim. Plant Sci. 24:829-837. Shi, Q., Z. Bao, Z. Zhu, Q. Ying, and Q. Qian. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulat. 48:127-135 Sriniasan, A., H. Takeda, and T. Senboku. 1996. Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica 88:35-45. Still, J.R. and W.G. Pill. 2004. Growth and stress tolerance of tomato seedlings (Lycopersicon esculentum Mill.) in response to seed treatment with paclobutrazol. J. Hort. Sci. Biotechnol. 79:197-203. Sung, D.Y., F. Kaplan, K.J. Lee and C.L. Guy. 2003. Acquired tolerance to temperature e×tremes. Trends in Plant Sci. 8:79-187. Van Herk, M., M. Van Koppen, S. Smeding, C.J. Van Der Elzen, N. Van Rosmalen, J. Van Dijk, and J. Van Spingelen. 1998. Cultivation guide anthurium: global know-how for growers around the globe. Bleiswijk, Holland: Anthura BV (Ed.). Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Expt. Bot. 61:199-223. Whipker, B.E., I. McCall, and B.A. Krug. 2006. Flurprimidol substrate drenches and foliar sprays control growth of blue champion' Exacum. HortTechnology 16:354-356. Wise, R.R., A.J. Olson, S.M. Schrader, and T.D. Sharkey. 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 27:717-724. Wu, M.T. and S.J. Wallner. 1984. Heat stress responses in cultured plant cells heat tolerance induced by heat shock versus elevated growing temperature. Plant physiol. 75:778-780. Wu, S.K., I. Miyajima, K.L. Huang, Y.C. Kuo, and R.S. Lin. 2017. Assessment of cell membrane thermostability and silicon supplement on Dendrobium Lucky Girl. 九州大学大学院農学研究院紀要 62:337-343. Xu, S., J. Li, X. Zhang, H. Wei, and L. Cui. 2005. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress Environ. Exp. Bot. 56:274-285. Yeh, D.M. and P.Y. Hsu. 2004. Heat tolerance in English ivy as measured by an electrolyte leakage technique. J. Hort. Sci. Biotechnol. 79:298–302. Zhang, W.P., B. Jiang, L.N. Lou, M.H. Lu, M. Yang, J.F. Chen. 2011. Impact of salicylic acid on the antioxidant enzyme system and hydrogen peroxide production in Cucumis sativus L. under chilling stress. 7:413-422. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1200 | - |
| dc.description.abstract | 聖誕紅(Euphorbia pulcherrima Willd.)是臺灣產量第二大的盆花作物,在臺灣夏季栽培時易發生植株生長停滯、盲芽、停心及狹葉化等生理障礙。本研究目的為評估聖誕紅品種的耐熱性,並透過施用水楊酸(salicylic acid, SA)和氯化鈣(calcium chloride, CaCl2)藥劑及生長阻礙劑(plant growth retardant)等方式改善耐熱性。
品種耐熱性評估方面,利用葉綠素螢光、葉片溫度及細胞膜熱穩定性評估聖誕紅品種耐熱性,並根據隸屬度(membership function value, MFV)綜合上述各項評估指標,結果顯示‘美貝拉’(‘Marbella’)、‘彼得之星’( ‘Jacobson Peterstar’ )、‘聖誕玫瑰’( ‘Winter Rose’ )、‘四季桃喜’(‘Luv U Pink’ )、聖誕節’( ‘Noel’ )及 ‘紅寶石’(‘ Primero Glitter’ )等品種之平均隸屬度>64%,為較耐熱品種;‘倍利’(‘Pepride’)、‘桃莉’(‘Dulce Rosa’)、‘光輝’(‘Red Splender’)、‘黃金粉’(‘Monet Early Red’)、‘聖誕卡羅’(‘Christmas Carol’)及‘紅絲絨’(‘Red Velveteen’)之平均隸屬度介於64% 至 44% 之間,為中度耐熱品種;‘冰火’(‘Ice Punch’)、‘威望’(‘Prestige Early’)、‘旺德福’(‘Wonderful’)、‘檸檬雪’(‘Lemon Snow’)及‘聖誕情閃耀’(‘Red Glitter’)之平均隸屬度<44%,為較不耐熱的品種。 水楊酸和氯化鈣改善耐熱性方面,試驗以‘Winter Rose’、 ‘Noel ’ 、 ‘Ice Punch’扦插 6 週苗為材料,試驗共分為去離子水(對照組)、10 mM CaCl2、200 μM SA、400 μM SA、10 mM CaCl2 + 200 μΜ SA、10 mM CaCl2 + 400 μΜ SA等6種處理,SA和CaCl2藥劑可恢復‘Winter Rose’ 和‘Ice Punch’之Fv/Fm值至0.7以上,並降低三個品種聖誕紅之葉片相對傷害值(relative injury, RI),‘Winter Rose’以400 μM SA + 10 mM CaCl2處理之RI值最低; ‘Noel’以200 μM SA + 10 mM CaCl2、400 μM SA + 10 mM CaCl2及10 mM CaCl2三種處理之RI值最低;‘Ice Punch’則是處理間無顯著差異。在植株生長表現方面,經藥劑處理可提高‘Winter Rose’ 和‘Ice Punch’之側芽萌發率和新葉數,對‘Noel’則無顯著影響。藥劑處理可提升三個品種聖誕紅之外觀等級,‘Winter Rose’以10 mM CaCl2、400 μM SA + 10 mM CaCl2最佳;‘Noel’各藥劑處理間無顯著差異;‘Ice Punch’則以200 μM SA + 10 mM CaCl2最佳。澆灌或噴施200 μM SA + 10 mM CaCl2均可降低‘Winter Rose’之RI值並提升Fv/Fm和Y(Ⅱ)值,兩種處理方式間無顯著差異。施用200 μM SA + 10 mM CaCl2可顯著降低‘Noel’ 高溫逆境後之丙二醛(malondialdehyde, MDA)含量,並提升過氧化氫酶(catalase, CAT)之活性,對超氧歧化酶(superoxide dismutase, SOD)則沒有顯著影響。總結來說,以外觀品質和葉片相對傷害值作為標準,各品種最佳之藥劑配方為:‘Winter Rose’為400 μM SA + 10 mM CaCl2;‘Noel ’為400 μM SA + 10 mM CaCl2 和200 μM SA + 10 mM CaCl2;‘Ice Punch’為200 μM SA + 10 mM CaCl2。 生長阻礙劑提升耐熱性方面,巴克素(paclobutrazol, PP-333) 23.5 mg·L-1或克美素(chlormequat, CCC) 1500 mg·L-1可增加‘Winter Rose’、‘Noel’、‘Ice Punch’之Y(Ⅱ)值和Fv/Fm值,並降低‘Ice Punch’之RI值。另分別於摘心後側芽長2、3、5 cm時澆灌23.5 mg·L-1 PP-333,結果顯示摘心後側芽長2 cm時施用PP-333之株高最低,葉長和葉寬最小,葉綠素計讀値亦較其他兩個處理低;於摘心後側芽長5 cm時施用PP-333除了降低株高,並兼具提升葉綠素計讀値以及葉長葉寬之效果。耐熱指標方面,摘心後各時期施用PP-333皆可減緩高溫處理後Fv/Fm和Y(Ⅱ)下降的幅度,並且降低RI值,各時期處理間則沒有顯著差異。負日夜溫差(difference in day and night temperature, DIF)(25/30℃)處理30天可降低‘Winter Rose’之株高,但對各項耐熱指標均無顯著影響,推測影響聖誕紅耐熱性之因子可能為生長阻礙劑之化學特性,其他矮化植物的方式對耐熱性不一定有顯著影響。 總結來說,本試驗耐熱性評估結果與桃園區農業改良場專家實際栽培經驗、吳(2015)之結果相似,表示以隸屬度綜合各項耐熱指標評估聖誕紅耐熱性應具有相當的參考價值。施用SA和CaCl2可提升聖誕紅各項耐熱生理指標,唯複合施用更能提升外觀等級,最適濃度依品種而異。施用PP-333可提升聖誕紅耐熱性,待摘心後側芽長5 cm施用可兼具降低株高和提升耐熱性之效果。 | zh_TW |
| dc.description.abstract | Poinsettia (Euphorbia pulcherrima Willd.) is the second most pot flower in Taiwan. Heat stress in summer could inhibit plant growth and result in abnormal leaf, which is the most severe problem that producer is facing. This research aims at evaluating heat tolerance in poinsettia cultivars and improving heat tolerance by applying salicylic acid (SA), calcium chloride (CaCl2), and plant growth retardant.
Three heat tolerance index (leaf temperature, chlorophyll fluorescence and cell membrane thermostability) were integrated by membership function value (MFV). Results shows that ‘Marbella’, ‘Jacobson Peterstar’,‘Winter Rose’, ‘Luv U Pink’, ‘Noel’ and ‘Primero Glitter’ were heat tolerant cultivars, the MFV of which were more than 64% ; ‘Pepride’, ‘Dulce Rosa’, ‘Red Splender’, ‘Monet Early Red’, ‘Christmas Carol’ and ‘Red Velveteen’ were medium heat tolerant cultivars, the MFV of which were between 44% and 64%; ‘Ice Punch’, ‘Prestige Early’, ‘Wonderful’, ‘Lemon Snow’ and ‘Red Glitter’ were heat sensitive cultivars, the MFV of which were under 44%. ‘Winter Rose’, ‘Noel’ and ‘Ice Punch’ were sprayed on various concentrations of SA (0, 200, 400 μΜ) and CaCl2 (0, 10 mM). Fv/Fm values were higher (more than 0.7) and relative injury (RI) values were lower in ‘Winter Rose’ and ‘Ice Punch’ which were sprayed on SA, CaCl2. RI values were lowest by applying 400 μM SA + 10 mM CaCl2 for ‘Winter Rose’ , 200 μM SA + 10 mM CaCl2, 400 μM SA + 10 mM CaCl2 or 10 mM CaCl2 for ‘Noel’. For ‘Ice Punch’, all treatment could increase Fv/Fm values and reduce relative injury, and there was no significant difference among treatments. There were more lateral buds and young leaves of ‘Winter Rose’ and ‘Ice Punch’ sprayed on SA and CaCl2, but no effect on ‘Noel’ was found. Appearance quality was better of all cultivars sprayed on SA and CaCl2. Appearance quality was highest by applying 10 mM CaCl2、400 μM SA + 10 mM CaCl2 for ‘Winter Rose’, 200 μM SA + 10 mM CaCl2 for ‘Ice Punch’. No matter sprayed or drenched 200 μM SA + 10 mM CaCl2, RI value was lower and Fv/Fm value was higher of ‘Winter Rose’. The effects of spraying or drenching were similar, and there was no significant difference between two methods. MDA could be reduced by spraying 200 μM SA + 10 mM CaCl2, but there was no effect on increasing activity of superoxide dismutase (SOD) and catalase (CAT). Considering RI value and appearance quality as a standard, the optimal concentration of SA and CaCl2 was 400 μM SA +10 mM CaCl2 for‘Winter Rose’; 400 μM SA + 10 mM CaCl2 or 200 μM SA + 10 mM CaCl2 for‘Noel ’; 200 μM SA + 10 mM CaCl2 for ‘Ice Punch’. Drenched in 23.5 mg.L-1 or chlormequat (CCC) 1500 mg·L-1, there were higher Fv/Fm and Y(Ⅱ) values in 3 cultivars of poinsettia, and RI values was lower in ‘Ice Punch’. Fv/Fm and Y(Ⅱ) values were higher of ‘Noel’ and ‘Ice Punch’ drenched in PP-333. Treated PP-333 when lateral bud was 5 cm could reduced plant height and increased quality of appearance and heat tolerance. Plant height was lower of ‘Winter Rose’ with negative difference in day and night temperature treatment (-DIF, 25/30℃), but there was no significant effect on heat tolerant indexes with -DIF treatment. It was supposed that heat tolerance was affected by chemical compounds of plant growth retardants instead of other retardant method. In conclusion, results of evaluiation of heat tolerance was similar with previous studies including the field experience of specialists in Taoyuan district agricultural improvement station, COA, EY, and the results of 吳(2015). Therefore, leaf temperature, chlorophyll fluorescence and cell membrane thermostability may be a reliable way of evaluation of heat tolerance. Applying SA and CaCl2 could improve heat tolerance, and the optimal concentration varied from different cultivars. Treated PP-333 when lateral bud was 5 cm could not only reduce plant height but improve heat tolerance. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-12T09:34:08Z (GMT). No. of bitstreams: 1 ntu-107-R05628123-1.pdf: 7563674 bytes, checksum: a499fa4656cd86cf0c680d8385f8cda4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 表目錄 VI 圖目錄 VII 第一章 前言(Introduction) 1 第二章 前人研究(Literature Review) 3 第三章 聖誕紅品種耐熱性評估 13 一、前言(Introduction) 14 二、材料與方法(Materials and Methods) 15 三、結果(Results) 19 四、討論(Discussion) 22 第四章 施用水楊酸和氯化鈣提升聖誕紅耐熱性之應用 39 一、前言(Introduction) 40 二、材料與方法(Materials and Methods) 41 三、結果(Results) 48 四、討論(Discussion) 50 第五章 施用生長阻礙劑提升聖誕紅耐熱性之應用 69 一、前言(Introduction) 70 二、材料與方法(Materials and Methods) 71 三、結果(Results) 76 四、討論(Discussion) 78 第六章 結論(Conclusion) 89 參考文獻(References) 91 附錄 (Appendix) 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水楊酸 | zh_TW |
| dc.subject | 耐熱性 | zh_TW |
| dc.subject | 隸屬度 | zh_TW |
| dc.subject | 生長阻礙劑 | zh_TW |
| dc.subject | 氯化鈣 | zh_TW |
| dc.subject | 聖誕紅 | zh_TW |
| dc.subject | plant growth retardant | en |
| dc.subject | heat tolerance | en |
| dc.subject | Poinsettia | en |
| dc.subject | calcium chloride | en |
| dc.subject | salicylic acid | en |
| dc.title | 聖誕紅品種耐熱性評估與提升耐熱性之方法 | zh_TW |
| dc.title | The Evaluation and Alleviation of Heat Tolerance in Poinsettia Cultivars | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳右人,沈榮壽,傅仰人 | |
| dc.subject.keyword | 聖誕紅,耐熱性,隸屬度,水楊酸,氯化鈣,生長阻礙劑, | zh_TW |
| dc.subject.keyword | Poinsettia,heat tolerance,salicylic acid,calcium chloride,plant growth retardant, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201801331 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-07-06 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 7.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
