Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊
dc.contributor.authorTing-Yu Changen
dc.contributor.author張庭瑜zh_TW
dc.date.accessioned2021-05-12T09:33:29Z-
dc.date.available2020-08-01
dc.date.available2021-05-12T09:33:29Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation1. Larsen, C.M., et al., Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med, 2007. 356(15): p. 1517-26.
2. Ridker, P.M., et al., Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J, 2011. 162(4): p. 597-605.
3. Boni-Schnetzler, M., et al., Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology, 2009. 150(12): p. 5218-29.
4. Yang, T.C., P.Y. Chang, and S.C. Lu, L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol, 2017. 312(2): p. H265-H274.
5. Gruzdeva, O., et al., Multivessel coronary artery disease, free fatty acids, oxidized LDL and its antibody in myocardial infarction. Lipids Health Dis, 2014. 13: p. 111.
6. Lv, Z.H., et al., Association between serum free fatty acid levels and possible related factors in patients with type 2 diabetes mellitus and acute myocardial infarction. BMC Cardiovasc Disord, 2014. 14: p. 159.
7. Bergman, R.N. and M. Ader, Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab, 2000. 11(9): p. 351-6.
8. Sears, B. and M. Perry, The role of fatty acids in insulin resistance. Lipids Health Dis, 2015. 14: p. 121.
9. Boden, G. and X. Chen, Effects of fatty acids and ketone bodies on basal insulin secretion in type 2 diabetes. Diabetes, 1999. 48(3): p. 577-83.
10. Boden, G., Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes, 2011. 18(2): p. 139-43.
11. Stienstra, R., et al., Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A, 2011. 108(37): p. 15324-9.
12. Masters, S.L., et al., Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol, 2010. 11(10): p. 897-904.
13. Khan, F., B. Galarraga, and J.J. Belch, The role of endothelial function and its assessment in rheumatoid arthritis. Nat Rev Rheumatol, 2010. 6(5): p. 253-61.
14. Estruch, M., et al., Increased inflammatory effect of electronegative LDL and decreased protection by HDL in type 2 diabetic patients. Atherosclerosis, 2017. 265: p. 292-298.
15. Radaelli, M.G., et al., NAFLD/NASH in patients with type 2 diabetes and related treatment options. J Endocrinol Invest, 2018. 41(5): p. 509-521.
16. Patil, R. and G.K. Sood, Non-alcoholic fatty liver disease and cardiovascular risk. World J Gastrointest Pathophysiol, 2017. 8(2): p. 51-58.
17. Emre, A., et al., Impact of Nonalcoholic Fatty Liver Disease on Myocardial Perfusion in Nondiabetic Patients Undergoing Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction. Am J Cardiol, 2015. 116(12): p. 1810-4.
18. Yimin, et al., A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Invest, 2012. 92(2): p. 265-81.
19. Rajamaki, K., et al., Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem, 2013. 288(19): p. 13410-9.
20. Eder, C., Mechanisms of interleukin-1beta release. Immunobiology, 2009. 214(7): p. 543-53.
21. Mehta, N., et al., Purinergic receptor P2X(7): a novel target for anti-inflammatory therapy. Bioorg Med Chem, 2014. 22(1): p. 54-88.
22. Bauernfeind, F.G., et al., Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 2009. 183(2): p. 787-91.
23. Vandanmagsar, B., et al., The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 2011. 17(2): p. 179-88.
24. Duewell, P., et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010. 464(7293): p. 1357-61.
25. Schroder, K. and J. Tschopp, The inflammasomes. Cell, 2010. 140(6): p. 821-32.
26. Karasawa, T., et al., Saturated Fatty Acids Undergo Intracellular Crystallization and Activate the NLRP3 Inflammasome in Macrophages. Arterioscler Thromb Vasc Biol, 2018. 38(4): p. 744-756.
27. Munoz-Planillo, R., et al., K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013. 38(6): p. 1142-53.
28. Ozaki, E., M. Campbell, and S.L. Doyle, Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res, 2015. 8: p. 15-27.
29. Riteau, N., et al., ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis, 2012. 3: p. e403.
30. L'Homme, L., et al., Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res, 2013. 54(11): p. 2998-3008.
31. Henriksen, T. and S.A. Evensen, Human endothelial cells in primary culture. Incorporation of acetate and mevalonate into lipids. Microvasc Res, 1978. 15(3): p. 339-47.
32. Henriksen, T., S.A. Evensen, and B. Carlander, Injury to human endothelial cells in culture induced by low density lipoproteins. Scandinavian Journal of Clinical and Laboratory Investigation, 2009. 39(4): p. 361-368.
33. Goldstein, J.L., et al., Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A, 1979. 76(1): p. 333-7.
34. Hessler, J.R., et al., Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis, Thrombosis, and Vascular Biology, 1983. 3(3): p. 215-222.
35. Morel, D.W., J.R. Hessler, and G.M. Chisolm, Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res, 1983. 24(8): p. 1070-6.
36. Steinbrecher, U.P., et al., Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A, 1984. 81(12): p. 3883-7.
37. Henriksen, T., E.M. Mahoney, and D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A, 1981. 78(10): p. 6499-503.
38. Avogaro, P., G.B. Bon, and G. Cazzolato, Presence of a modified low density lipoprotein in humans [published erratum appears in Arteriosclerosis 1988 Nov-Dec;8(6):857]. Arteriosclerosis, Thrombosis, and Vascular Biology, 1988. 8(1): p. 79-87.
39. Steinberg, D. and J.L. Witztum, Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol, 2010. 30(12): p. 2311-6.
40. Yoshida, H. and R. Kisugi, Mechanisms of LDL oxidation. Clin Chim Acta, 2010. 411(23-24): p. 1875-82.
41. Yang, C.Y., et al., Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol, 2003. 23(6): p. 1083-90.
42. Ivanova, E.A., Y.V. Bobryshev, and A.N. Orekhov, LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag, 2015. 11: p. 525-32.
43. Hodgkinson, C.P., et al., Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler Thromb Vasc Biol, 2008. 28(12): p. 2275-81.
44. Lai, Y.S., et al., Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. J Nutr Biochem, 2016. 30: p. 44-52.
45. Yang, T.C., et al., Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-kappaB and ERK2 activation. Atherosclerosis, 2017. 267: p. 1-9.
46. Levitan, I., S. Volkov, and P.V. Subbaiah, Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal, 2010. 13(1): p. 39-75.
47. Kinnunen, P.K. and J.M. Holopainen, Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide, and apoptosis? Trends Cardiovasc Med, 2002. 12(1): p. 37-42.
48. Parasassi, T., et al., Low density lipoprotein misfolding and amyloidogenesis. FASEB J, 2008. 22(7): p. 2350-6.
49. Schissel, S.L., et al., Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest, 1996. 98(6): p. 1455-64.
50. Ke, L.Y., et al., Chemical composition-oriented receptor selectivity of L5, a naturally occurring atherogenic low-density lipoprotein. Pure Appl Chem, 2011. 83(9).
51. Dasu, M.R. and I. Jialal, Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab, 2011. 300(1): p. E145-54.
52. Shi, H., et al., TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest, 2006. 116(11): p. 3015-25.
53. Nguyen, M.T., et al., A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem, 2007. 282(48): p. 35279-92.
54. Rogero, M.M. and P.C. Calder, Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients, 2018. 10(4).
55. Huang, S., et al., Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res, 2012. 53(9): p. 2002-13.
56. Wen, H., et al., Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol, 2011. 12(5): p. 408-15.
57. Laugerette, F., et al., Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. Am J Physiol Endocrinol Metab, 2012. 302(3): p. E374-86.
58. Tardif, N., et al., Oleate-enriched diet improves insulin sensitivity and restores muscle protein synthesis in old rats. Clin Nutr, 2011. 30(6): p. 799-806.
59. van Dijk, S.J., et al., A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr, 2009. 90(6): p. 1656-64.
60. Wang, X., et al., Differential effects of high-fat-diet rich in lard oil or soybean oil on osteopontin expression and inflammation of adipose tissue in diet-induced obese rats. Eur J Nutr, 2013. 52(3): p. 1181-9.
61. Hodson, L., C.M. Skeaff, and B.A. Fielding, Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res, 2008. 47(5): p. 348-80.
62. Yan, Y., et al., Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity, 2013. 38(6): p. 1154-63.
63. Ke, L.Y., et al., The underlying chemistry of electronegative LDL's atherogenicity. Curr Atheroscler Rep, 2014. 16(8): p. 428.
64. Ishiyama, J., et al., Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis, 2010. 209(1): p. 118-24.
65. Taye, A. and A.A. El-Sheikh, Lectin-like oxidized low-density lipoprotein receptor 1 pathways. Eur J Clin Invest, 2013. 43(7): p. 740-5.
66. Lee, A.S., et al., Human electronegative low-density lipoprotein modulates cardiac repolarization via LOX-1-mediated alteration of sarcolemmal ion channels. Sci Rep, 2017. 7(1): p. 10889.
67. Jay, A.G., et al., CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding. J Biol Chem, 2015. 290(8): p. 4590-603.
68. Kanneganti, T.D. and M. Lamkanfi, K(+) drops tilt the NLRP3 inflammasome. Immunity, 2013. 38(6): p. 1085-8.
69. Daigneault, M., et al., The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010. 5(1): p. e8668.
70. Allaeys, I., F. Marceau, and P.E. Poubelle, NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts. Arthritis Res Ther, 2013. 15(6): p. R176.
71. Redmann, M., et al., Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol, 2017. 11: p. 73-81.
72. Trapani, L., M. Segatto, and V. Pallottini, Regulation and deregulation of cholesterol homeostasis: The liver as a metabolic 'power station'. World J Hepatol, 2012. 4(6): p. 184-90.
73. Murphy, J.E., et al., Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2. J Cell Sci, 2008. 121(Pt 13): p. 2136-47.
74. Zakynthinos, E. and N. Pappa, Inflammatory biomarkers in coronary artery disease. J Cardiol, 2009. 53(3): p. 317-33.
75. Dinarello, C.A., Blocking IL-1 in systemic inflammation. J Exp Med, 2005. 201(9): p. 1355-9.
76. Dinarello, C.A. and J.W. van der Meer, Treating inflammation by blocking interleukin-1 in humans. Semin Immunol, 2013. 25(6): p. 469-84.
77. Torzewski, M., et al., Reduced in vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol, 2004. 24(12): p. 2307-12.
78. Phinikaridou, A., et al., A robust rabbit model of human atherosclerosis and atherothrombosis. J Lipid Res, 2009. 50(5): p. 787-97.
79. Chen, C. and D.B. Khismatullin, Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells. PLoS One, 2015. 10(3): p. e0123088.
80. Takashiba, S., et al., Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic nuclear factor kappaB. Infect Immun, 1999. 67(11): p. 5573-8.
81. Zeng, C., et al., Pathways related to PMA-differentiated THP1 human monocytic leukemia cells revealed by RNA-Seq. Sci China Life Sci, 2015. 58(12): p. 1282-7.
82. Jung, T.W., et al., Protectin DX ameliorates palmitate- or high-fat diet-induced insulin resistance and inflammation through an AMPK-PPARalpha-dependent pathway in mice. Sci Rep, 2017. 7(1): p. 1397.
83. West, M.A., et al., Protein kinase C regulates macrophage tumor necrosis factor secretion: direct protein kinase C activation restores tumor necrosis factor production in endotoxin tolerance. Surgery, 1997. 122(2): p. 204-11; discussion 211-2.
84. Li, Y., J. Cam, and G. Bu, Low-density lipoprotein receptor family: endocytosis and signal transduction. Mol Neurobiol, 2001. 23(1): p. 53-67.
85. Schneider, W.J. and J. Nimpf, LDL receptor relatives at the crossroad of endocytosis and signaling. Cell Mol Life Sci, 2003. 60(5): p. 892-903.
86. Christ, A. and E. Latz, LOX-1 and mitochondria: an inflammatory relationship. Cardiovasc Res, 2014. 103(4): p. 435-7.
87. Dunn, S., et al., The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease. Biochem J, 2008. 409(2): p. 349-55.
88. Sagi, L., et al., Autoimmune bullous diseases the spectrum of infectious agent antibodies and review of the literature. Autoimmun Rev, 2011. 10(9): p. 527-35.
89. Chen, K.C., et al., Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J Cell Sci, 2011. 124(Pt 23): p. 4115-24.
90. Hermonat, P.L., et al., LOX-1 transcription. Cardiovasc Drugs Ther, 2011. 25(5): p. 393-400.
91. Orn, S., et al., Increased interleukin-1beta levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J Intern Med, 2012. 272(3): p. 267-76.
92. Van Tassell, B.W., et al., Targeting interleukin-1 in heart disease. Circulation, 2013. 128(17): p. 1910-23.
93. Guha, M. and N. Mackman, LPS induction of gene expression in human monocytes. Cell Signal, 2001. 13(2): p. 85-94.
94. Krenzel, E.S., Z. Chen, and J.A. Hamilton, Correspondence of fatty acid and drug binding sites on human serum albumin: a two-dimensional nuclear magnetic resonance study. Biochemistry, 2013. 52(9): p. 1559-67.
95. Soltys, B.J. and J.C. Hsia, Fatty acid enhancement of human serum albumin binding properties. A spin label study. J Biol Chem, 1977. 252(12): p. 4043-8.
96. Spector, A.A., K. John, and J.E. Fletcher, Binding of long-chain fatty acids to bovine serum albumin. J Lipid Res, 1969. 10(1): p. 56-67.
97. Milligan, G., et al., Complex Pharmacology of Free Fatty Acid Receptors. Chem Rev, 2017. 117(1): p. 67-110.
98. Lee, J.Y., et al., Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem, 2001. 276(20): p. 16683-9.
99. Parry, G.C.N., et al., IL-1 Induced Monocyte Chemoattractant Protein-1 Gene Expression in Endothelial Cells Is Blocked by Proteasome Inhibitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998. 18(6): p. 934-940.
100. Jayaraman, P., et al., IL-1beta promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation. J Immunol, 2013. 190(8): p. 4196-204.
101. Suganami, T., et al., Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol, 2007. 27(1): p. 84-91.
102. Hommelberg, P.P., et al., Fatty acid-induced NF-kappaB activation and insulin resistance in skeletal muscle are chain length dependent. Am J Physiol Endocrinol Metab, 2009. 296(1): p. E114-20.
103. Cogswell, J.P., et al., NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol, 1994. 153(2): p. 712-23.
104. Falvo, J.V., A.V. Tsytsykova, and A.E. Goldfeld, Transcriptional control of the TNF gene. Curr Dir Autoimmun, 2010. 11: p. 27-60.
105. Libermann, T.A. and D. Baltimore, Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol, 1990. 10(5): p. 2327-34.
106. Lawrence, T., The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a001651.
107. Mortaz, E., et al., Role of P2X7 Receptors in Release of IL-1beta: A Possible Mediator of Pulmonary Inflammation. Tanaffos, 2012. 11(2): p. 6-11.
108. Velasquez, S. and E.A. Eugenin, Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases. Front Physiol, 2014. 5: p. 96.
109. Bekkering, S., et al., Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol, 2014. 34(8): p. 1731-8.
110. Yang, T.C., Electronegative low-density lipoprotein from acute myocardial infraction patients induces inflammation in macrophages. Graduate Institute of Biochemistry and Molecular Biology, College of Medicine National Taiwan University, Doctoral Dissertation, 2017.
111. 郭姿伶 循環中陰電性低密度脂蛋白透過LOX-1及活化NF-κB、ERK2和JNK在巨噬細胞中引起G-CSF 和GM-CSF表現。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文 (2013)
112. 周元浚 陰電性低密度脂蛋白對巨噬細胞極化的影響:LOX-1 扮演的關鍵角
色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文 (2018)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1156-
dc.description.abstract近年來,由於飲食習慣改變,肥胖率越來越高,肥胖者為代謝症候群的高危險族群,容易罹患第二型糖尿病、心血管疾病,如動脈粥狀硬化與心肌梗塞等。這些病人血液中,陰電性低密度脂蛋白(LDL(-))、游離脂肪酸及介白激素1β (IL-1β) 都明顯提高,巨噬細胞分泌的 IL-1β 在這些疾病扮演重要的角色,因此在這個研究我們探討LDL(-) 與游離脂肪酸在巨噬細胞引起之IL-1β 產生。
IL-1β 的產生需要兩條訊號:第一,啟動訊號為 NF-κB 活化,接著 NF-κB 作為轉錄因子促進 pro-IL-1β 和 NLRP3的表現;第二,激活訊號為 NLRP3 發炎小體活化,導致 Caspase-1 被切割且活化後,將 pro-IL-1β 切割轉變為成熟型 IL-1β。先前實驗室研究指出,LDL(-) 在巨噬細胞能誘導 NF-κB及Caspase-1 活化,但Caspase-1活化程度並不高。另外,游離脂肪酸被認為可以促進 NLRP3 發炎小體活化。因此,我們想探討 LDL(-)、游離脂肪酸和 IL-1β 在發炎反應之間的交互作用,且是否游離脂肪酸能提高 LDL(-) 在巨噬細胞誘導之 IL-1β 產生。
我們從餵食高膽固醇脂飲食之兔子的血漿分離到 LDL(-),將其與飽和或不飽和游離脂肪酸一起處理人類單核球細胞 (THP-1) 分化之巨噬細胞,分析分泌到細胞培養液中的 IL-1β 含量。結果顯示,棕櫚酸單獨不能造成 IL-1β 產生,且其沒有誘導 NF-κB 活化之能力;但能促進 LDL(-) 誘導之 IL-1β 產生。而LDL(-) 會誘導清道夫受體 LOX-1 表現增加,LOX-1 也被指出和發炎反應有密切關係,然而棕櫚酸並不會進一步透過促進 LOX-1 表現,而增加 IL-1β 產生。將細胞培養在無鉀離子之培養基下可以使LDL(-) 誘導之 IL-1β達到 LDL(-) 與棕櫚酸一起處理的程度。相對的,幾種非專一性的鉀離子通道抑制劑會抑制 LDL(-) 與棕櫚酸一起所誘導之 IL-1β。這些結果顯示,棕櫚酸可能是透過促進鉀離子流出細胞之作用,造成 NLRP3發炎小體與caspase-1進一步活化,而使IL-1β 產生增加。
總結,在我們的研究發現LDL(-) 和棕櫚酸對於 IL-1β 產生有協同效應,並且發現棕櫚酸會提高LDL(-) 誘導 IL-1β 產生之機制可能是增加鉀離子排出。因此我們認為病人血液中若是 LDL(-) 和飽和游離脂肪酸升高,可能會引起IL-1β大量產生,是引起發炎的關鍵因素。但我們並不清楚棕櫚酸是影響那個鉀離子通道,其機制有待進一步探討。
zh_TW
dc.description.abstractRecently, prevalence of obesity is increasing worldwide because of changing of diet preference. And obesity is a major risk factor for metabolic diseases, which usually progresses to type 2 diabetes mellitus and cardiovascular diseases; such as atherosclerosis, myocardial infarction. Inflammation is associated with these diseases, and macrophages are the predominant contributor of inflammation. Moreover, electronegative LDL (LDL(-)), free fatty acids and interleukin-1β (IL-1β) are increased significantly in the blood of these patients.
Production of IL-1β requires two signals. Firstly, the priming signal is to activate NF-κB signaling. NF-κB as a transcription factor that promotes pro-IL-1β and NLRP3 expression. Secondly, the activating signal is to activate NLRP3 inflammasome and caspase-1. Then activated caspase-1 proteolytically cleaves pro-IL-1β into mature IL-1β. Our previous study showed that LDL(-) could induce NF-κB activation in macrophage, and weakly promote caspase-1 activation. Evidence has shown that palmitic acid could promote NLRP3 inflammasome/caspase-1 activation. Thus, in this study we investigated whether there is an interaction between LDL(-) and palmitic acid in inducing IL-1β production in macrophages.
LDL(-) was isolated from the plasma of the rabbits fed with high-fat/cholesterol diet.
THP-1 macrophages were treated with LDL(-) and BSA bound saturated or unsaturated free fatty acids, then the levels of IL-1β in culture medium were analyzed by ELISA. The results show that palmitate, a saturated fatty acid, alone is unable to induce NF-κB activation and IL-1β production in macrophages. However, palmitate enhances LDL(-)-induced IL-1β production. Palmitate did not further activate NF-κB or increase the levels of pro-IL-1β mRNA and protein when treated with LDL(-). Our data also show that palmitate did not further increase LDL(-)-induced increase of LOX-1, a scavenger receptor for LDL(-). These results suggest that palmitate enhances LDL(-)-induced IL- 1β production was not through activation of signal one (NF-κB signaling) or increase levels of LOX-1.
Cells treated with LDL(-) under a potassium free medium, and the level of IL-1β in the medium is close to that of LDL(-) and palmitate co-treated cells. Treated potassium channel blockers significantly lower LDL(-) and palmitate-induced levels of IL-1β. The results suggest that palmitate enhances LDL(-)-induced IL-1βproduction is likely through increase potassium efflux.
In conclusion, our study show that palmitate enhances LDL(-)-induced IL-1β production, the results is physiological relevant since the concentrations of LDL(-) and palmitate used in this study are under physiological ranges in plasma of patients with AMI and diabetes. However, we do not know which potassium channel is activated by palmitate. The mechanism underlie deserved further investigation.
en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:33:29Z (GMT). No. of bitstreams: 1
ntu-107-R05442021-1.pdf: 2828356 bytes, checksum: 8671d9a095c2735bfdf9a1001ba77eb5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
摘要 ii
Abstract iv
第一章 緒論 1
第一節 文獻回顧 2
(一) IL-1b 和發炎反應的關係 2
(二) IL-1b 的產生 3
(三) Oxidized LDL/陰電性低密度脂蛋白 (LDL(-)) 和巨噬細胞的關係 5
(四) LDL(-) 的特性 7
(五) 游離脂肪酸在發炎反應扮演的角色 8
(六) 循環中的游離脂肪酸 9
(七) LOX-1 對於 LDL(-) 誘導發炎反應的重要性 10
第二節 研究動機與實驗目的 11
(一) 研究動機 11
(二) 實驗目的 12
第二章 材料與方法 13
第一節 實驗材料 14
第二節 細胞培養 17
第三節 分離脂蛋白 17
第四節 游離脂肪酸牛血清蛋白複合物製備 18
第五節 酵素結合免疫吸附法 (Enzyme-Linked ImmunoSorbent Assay, ELISA) 18
第六節 細胞存活率分析 19
第七節 細胞 mRNA 表現分析 19
(一) 細胞 RNA 抽取 20
(二) 合成First strand cDNA 20
(三) 即時定量聚合酶連鎖反應 (Real-time quantitative PCR) 20
(四) 引子資訊 21
第八節 西方點墨分析法 21
(一) 細胞蛋白抽取 21
(二) 樣品前處理 22
(三) 膠體配方 22
(四) SDS-PAGE 22
(五) 半濕式蛋白質轉印 23
(六) 抗體結合免疫分析 23
(七) Enhanced Chemiluminescence (ECL) 系統偵測冷光訊號 23
第九節 Knockdown細胞中標靶基因透過RNA干擾 24
(一) 慢病毒 Clone 資訊 24
(二) 慢病毒感染 25
第十節 Potassium-free 溶液配製 25
(一) 溶液配方 25
第十一節 統計分析 26
第三章 結果 27
第一節 人類 LDL(-) 會誘導巨噬細胞產生 IL-1b,而 native LDL 不會 28
第二節 兔子 LDL(-) 單獨在巨噬細胞引起小幅度 IL-1b 產生 28
第三節 Palmitic acid在巨噬細胞對 IL-1 的產生沒有影響 29
第四節 兔子 LDL(-) 和 palmitic acid、stearic acid在巨噬細胞對 IL-1b 的產生之影響有協同作用,其他測試的脂肪酸則無影響 29
第五節 LDL(-) 在巨噬細胞引起 IL-1b 產生經由 LOX-1 30
第六節 Palmitic acid 不會促進 LDL(-) 進一步引起 NF-kB 活化 31
第七節 Palmitic acid 不會促進 NF-kB 下游基因 IL-1b、TNF-a 和 IL-6 的 mRNA 和蛋白質表現 32
第八節 Palmitic acid 促進LDL(-) 誘導 IL-1b 產生不是經由 phagocytosis 和 lysosomal degradation 33
第九節 Palmitic acid 促進LDL(-) 誘導 IL-1b 產生可能經由 potassium efflux 34
第四章 討論 36
第一節 Palmitic acid 促進 LDL(-) 誘導之 IL-1b 產生增加 37
第二節 LDL(-) 透過 LOX-1 可能不是經由胞吞作用引起下游訊號 38
第三節 PA 不是藉由 LOX-1 促進 LDL(-) 在巨噬細胞誘導 IL-1b 產生增加 39
第四節 游離脂肪酸和 IL-1b 產生的關係 40
第五節 PA 在巨噬細胞不活化 NF-kB 路徑 41
第六節 PA在巨噬細胞透過 potassium efflux 促進NLRP3 inflammasome /caspase-1 活化 42
第七節 總結 43
第五章 圖表 45
第六章 參考文獻 62
dc.language.isozh-TW
dc.subject第二型糖尿病zh_TW
dc.subject棕櫚酸zh_TW
dc.subjectNLRP3 發炎小體zh_TW
dc.subjectNF-κBzh_TW
dc.subject介白激素 1βzh_TW
dc.subject游離脂肪酸zh_TW
dc.subject陰電性低密度脂蛋白zh_TW
dc.subject發炎反應zh_TW
dc.subject巨噬細胞zh_TW
dc.subjectinflammationen
dc.subjectmacrophagesen
dc.subjectelectronegative LDLen
dc.subjectfree fatty acidsen
dc.subjectInterleukin-1βen
dc.subjectNF-κBen
dc.subjectNLRP3 inflammationen
dc.subjectpalmitateen
dc.subjecttype 2 diabetesen
dc.title棕櫚酸促進陰電性低密度脂蛋白在巨噬細胞中引起 IL-1β 產生透過增加鉀離子流出zh_TW
dc.titlePalmitic acid enhances electronegative LDL-induced production of IL-1β by increasing potassium efflux in macrophagesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇慧敏,林甫容,張博淵,黃青真
dc.subject.keyword第二型糖尿病,巨噬細胞,發炎反應,陰電性低密度脂蛋白,游離脂肪酸,介白激素 1β,NF-κB,NLRP3 發炎小體,棕櫚酸,zh_TW
dc.subject.keywordtype 2 diabetes,macrophages,inflammation,electronegative LDL,free fatty acids,Interleukin-1β,NF-κB,NLRP3 inflammation,palmitate,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201801207
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf2.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved