請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1132
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳秀熙(Hsiu-Hsi Chen) | |
dc.contributor.author | Ying-Hsuan Tai | en |
dc.contributor.author | 戴英軒 | zh_TW |
dc.date.accessioned | 2021-05-12T09:33:03Z | - |
dc.date.available | 2018-08-30 | |
dc.date.available | 2021-05-12T09:33:03Z | - |
dc.date.copyright | 2018-08-30 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-03 | |
dc.identifier.citation | Armitage P, Matthews JNS, Berry G. Statistical methods in medical research. 4th ed. Oxford, Malden, MA: Blackwell Science, 2002.
Blyth CR. On Simpson's paradox and the sure-thing principle. J. Am. Statist. Assoc. 1972;67:364-366. Breslow NE. Covariance analysis of censored survival data. Biometrics. 1974;30:89-99. Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B. 1972;34:187-220. Dawid AP. Conditional independence in statistical theory. J. Roy. Stat. Soc. Ser. B (Methodol.). 1979;41:1-31. Day NE. Cumulative Rate and Cumulative Risk. In: Waterhouse JAH, Muir CS, Shanmugaratnam K, Powell J (eds.). Cancer incidence in Five Continents, Vol. IV (IARC Scientific Publications No. 42), Lyon, International Agency for Research on Cancer, 1982. pp.668-70. Di Serio C, Rinott Y, and Scarsini M. Simpson’s paradox in survival model. Scand J Stat 2009;36:463-480. Fleiss JL. Statistical methods for rates and proportions. John Wiley and Sons, New York. 1973. Hill AB. A short textbook of medical statistics. 9th ed. London: Hodder and Stoughton. 1977. Kertai MD, White WD, Gan TJ. Cumulative duration of 'triple low' state of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia is not associated with increased mortality. Anesthesiology. 2014;121:18-28. Kitagawa EM. Theoretical considerations in the selection of a mortality index and some empirical comparison. Human Biology. 1966;38:293-308. Kleinman JC. Age-adjusted mortality indices for small areas: Applications to health planning. American Journal of Public Health. 1977;67:834-40. Leslie K, Myles PS, Forbes A, Chan MT. The effect of bispectral index monitoring on long-term survival in the B-aware trial. Anesth Analg. 2010;110:816-22. Lord FM. A paradox in the interpretation of group comparisons. Psychol Bull. 1967, 68:304-5. Mantel N, Haenszel MW. Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst. 1959;22:719-48. Muscat JE, Richie JP Jr, Thompson S, Wynder EL. Gender differences in smoking and risk for oral cancer. Cancer Res. 1996;56:5192-7. Page GG, Blakely WP, Ben-Eliyahu S. Evidence that postoperative pain is a mediator of the tumor-promoting effects of surgery in rats. Pain. 2001;90:191-9. Pearson K, Lee A, Bramley-Moore L. Genetic (reproductive) selection: Inheritance of fertility in man, and of fecundity in thoroughbred racehorses. Philosophical Transactions of the Royal Society A. 1899;192:257-330. Robinson WS. Ecological Correlations and the Behavior of Individuals. American Sociological Review. 1950;15:351-7. Samuels ML. Simpson's Paradox and Related Phenomena. J. Am. Statist. Assoc. 1993;88:81-88. Sessler DI, Sigl JC, Kelley SD, Chamoun NG, Manberg PJ, Saager L, Kurz A, Greenwald S. Hospital stay and mortality are increased in patients having a 'triple low' of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012;116:1195-203. Simpson EH. The interpretation of interaction in contingency tables. J R Statist Soc B. 1951;2:238-41. Wolfenden HH. On the methods of comparing the mortalities of two or more communities and the standardization of death rates. Journal of the Royal Statistical Society. 1923;86:399-411. Yule GU. Notes on the Theory of Association of Attributes in Statistics. Biometrika. 1903;2: 121-34. Zidek J. Maximal Simpson-disaggregations of 2×2 tables. Biometrika. 1984;71:187-90. Health Promotion Administration, Ministry of Health and Welfare, R.O.C. Oral Cancer: Cancer Incidence Rate in Taiwan in 2015. Available at: https://cris.hpa.gov.tw/pagepub/Home.aspx?itemNo=cr.m.10. Accessed Mar 3, 2018. Department of Household Registration, Ministry of the Interior, R.O.C. The Midyear Population in 2015. Available at: https://www.ris.gov.tw/346. Accessed Mar 3, 2018. Ministry of Health and Welfare, R.O.C. Colorectal Cancer: Cancer Death Rate in Taiwan. Available at: https://iiqs.mohw.gov.tw. Accessed April 23, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1132 | - |
dc.description.abstract | 研究背景:辛普森悖論自1951年被提出後,相關現象已反覆在現實生活被觀察到。其在流行病學被稱之干擾效應,而在統計學被稱為相關性翻轉,此兩者在各學科間之連結卻甚少被探討。
研究目的:本論文目的在提出一個系統性和整合性的方法架構,去統整各種分析方法,用於處理辛普森悖論在科學研究中之相關現象。 研究方法:首先探討流行病學中用於因果推論中處理干擾效應之方法,包括描述流行病學之標準化以及分析流行病學之分層分析和迴歸模型。接著討論統計學之相關性翻轉和流行病學之分析方法間之連結。文中提出一個系統性的檢查列表,用於評估符合辛普森悖論之統計條件。此外,本論文之創新處在於發展出一個分析架構,用於連結流行病學之年齡標準化和分層分析以及統計學存活分析模型之等比例風險假設。此外,我們利用邏輯迴歸模型和Cox等比例風險迴歸模型發展出符合辛 普森悖論之統計條件。此一整合性方法提供一個系統性檢查辛普森悖 論現象的分析架構。 研究結果:文中利用口腔癌發生率和大腸直腸癌死亡率之實際數據,以年齡標準化之方法分析描述性統計中之干擾效應和相關性翻轉之程度。接著使用分層分析和邏輯迴歸分析去比較分層分析各分層之罹癌風險勝算比及多變數迴歸模型和馬可夫蒙地卡羅模擬之貝氏分析之斜率值,進一步檢查干擾效應和相關性翻轉之程度。透過比較各種方法之分析結果,進一步發展出符合辛普森悖論之統計條件。同時也應用Cox等比 例風險迴歸模型去評估和其他方法分析結果之差異。 結論:本論文提出一個整合性的分析架構和檢查條件用於量化及處理流行病學和統計學研究中可能存在的辛普森悖論現象。 | zh_TW |
dc.description.abstract | Background: Simpson’s paradox proposed since 1951 has been often seen in real life but its link between epidemiology in terms of confounding effect and statistics in terms of association reversal has been rarely explored.
Aims: This thesis aims to propose a systematic and integrative approach to consolidate various solutions into a unified framework for dealing with the phenomenon in relation to Simpson’s paradox. Methods: Epidemiological approaches pertaining to Simpson’s paradox were first proposed to deal with causal effects perturbed by confounding factors. They include covariate-specific standardization on descriptive epidemiology and stratification or regression models on analytical epidemiology. Integrative aspects of Simpson Paradox are then proposed to link these epidemiological methods to the corresponding phenomenon often called association reversal in the language of statistics. A systematic check-up list is developed to assess the criteria for meeting Simpson’s paradox beginning with probability area method. The novelty here is to develop a common structure with Simpson’s paradox underpinning that renders epidemiological approaches such as age-standardization or stratification commensurate with statistical proportional hazards premise or constant intercept used in survival models. The logistic regression and Cox proportional hazards regression models are further used to develop the criteria for meeting Simpson’s paradox. This integrative statistical approach provides a systematic check for an instance of Simpson’s paradox. Results: Age-standardization supported by empirical data is first demonstrated to show confounding and association reversal for descriptive epidemiology by using the empirical data of oral cancer and colorectal cancer. Risk stratification and logistic regression models are further applied to examine the degree of confounding effect and reversal association by comparing the crude with stratum-specific odds ratio or comparing common slope with adjusted slopes after considering confounding factors. We compared these results with our developed criteria for meeting Simpson’s paradox. We also applied Cox proportional hazards regression models and Bayesian analysis with Markov Chain Monte Carlo simulations to estimate the results in comparison with those in age-standardization, risk stratification, and logistic regression models. The results of the developed check criteria for Simpson’s paradox is also compared with those estimated from Cox proportional hazards regression model. Conclusion: An integrative framework and checklist criteria for both epidemiology and statistics is developed to quantitatively assess the criteria of Simpson’s paradox. | en |
dc.description.provenance | Made available in DSpace on 2021-05-12T09:33:03Z (GMT). No. of bitstreams: 1 ntu-107-P05849001-1.pdf: 3109165 bytes, checksum: 585cc46d3a8b415514e858fffae85c85 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iv Contents vi List of Tables xii List of Figures xvi Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Simpson's Paradox 4 2.1.1 Definition of Simpson's Paradox 4 2.1.2 Simpson's Paradox in 2 × 2 × k Contingency Tables 5 2.1.3 Simpson's Paradox in Continuous Outcome Variables 7 2.1.4 Simpson's Paradox in Survival Analysis 7 2.1.5 Examples of Simpson's Paradox in Medical Science 9 2.2 Age-standardized Rate 13 2.2.1 Definition of Age-standardized Rate 13 2.2.2 Limitations of Age-standardized Rate 15 2.3 Mantel-Haenszel Method 16 2.3.1 Definition of Mantel-Haenszel Method 16 2.3.2 Limitations of Mantel-Haenszel Method 19 2-4 Proportional Hazards Assumption 20 2.4.1 Graphical Method of Log-Log Plots 21 2.4.2 Time-dependent Interaction Term 21 Chapter 3 Diagnosis of Simpson’s Paradox 22 3.1 Data Visualization 22 3.2 Probability Area Method 23 3.2.1 Simpson’s Paradox in 2 x 2 x 2 Contingency Tables 23 3.2.2 Partial Simpson’s Paradox in 2 x 2 x 2 Contingency Tables 25 3.2.3 Complete Independence in 2 x 2 x k Contingency Tables 26 3.2.4 Study Designs and Second Order Interaction 28 3.3 Tests of Conditional Independence 29 Chapter 4 Assessment and Treatment for Simpson’s Paradox: Semi-parametric and Parametric Approaches 31 4.1 Semi-parametric Approach for Simpson’s Paradox 31 4.1.1 Cox Regression in the Evaluation of Relative Risks 31 4.1.2 Time-dependent Cox Regression Model 32 4.2 Parametric Approach for Simpson’s Paradox: Heterogeneity and Random Effect Model 33 4.2.1 Generalized Linear Model for Binary and Count Data with Simpson’s Paradox 34 Chapter 5 Constant Association, Homogeneity, and Proportional Hazards 37 Chapter 6 Empirical Data 40 6.1 Oral Cancer 40 6.2 Colorectal Cancer 40 Chapter 7 Results 42 7.1 Postoperative Acute Pain and Cancer Progression 42 7.2 Oral Cancer 43 7.2.1 Characteristics of Oral Cancer Incidence in Taiwan 43 7.2.2 Probability Area Method for Assessing Simpson’s Paradox in Oral Cancer Incidence Data 43 7.2.3 Simpson’s Paradox, Heterogeneity and Proportional Hazards 47 7.2.4 Test for Homogeneity across the Strata of Age Groups 52 7.2.5 Mantel-Haenszel Method for the Derivation of Pooled Estimated on Odds Ratio of Oral Cancer Risk 52 7.2.6 Direct Age Standardization 52 7.2.7 Assessing the Existence of Simpson’s Paradox Across Age Group in Oral Cancer Incidence Data Using Proportional Hazards Approach 56 7.2.7.1 Graphical Method of Log-Log Plots 56 7.2.7.2 Time-dependent Interaction Term 56 7.2.7.3 Cox's Regression Model for the Assessment of Association 56 7.2.8 Logistic Regression Model for the Assessment of Association 60 7.2.9 Bayesian Logistic Regression model with Random Effect 63 7.2.9.1 Fixed Effect Models 63 7.2.9.2 Random Effect Models 63 7.3 Colorectal Cancer 67 7.3.1 Characteristics of Colorectal Cancer Mortality in Taiwan 67 7.3.2 Assessing Simpson’s Paradox in Colorectal Cancer Mortality between Periods across Three Age Groups using Probability Area Method 75 7.3.3 Homogeneity Test 77 7.3.4 Mantel-Haenszel Method 77 7.3.5 Direct Age Standardization 78 7.3.6 Assess the Simpson’s Paradox using Cox Regression Model 80 7.3.6.1 Graphical Method for the Proportional Hazards Assumption 80 7.3.6.2 Time-dependent Interaction Term 80 7.3.6.3 Cox's Proportional Hazards Regression Model 80 7.3.7 Poisson Regression Model 84 7.3.8 Bayesian Poisson Regression model with Random effects for Simpson’s Paradox 86 7.3.8.1 Fixed Effect Models 86 7.3.8.2 Random Effect Models 86 Chapter 8 Discussion 91 8.1 The Framework for the identification and the treatment of Simpson’s paradox 91 8.2 Major Results of the Analysis 92 8.3 The Integration of Epidemiology and Statistics in Confounding Effect 93 8.4 The Implications for Epidemiological Study 97 8.5 Limitations 98 8.6 Conclusions 99 Reference 100 | |
dc.language.iso | zh-TW | |
dc.title | 辛普森悖論於流行病學與統計學層面之整合性探討 | zh_TW |
dc.title | Simpson’s Paradox with Integrative Epidemiological and Statistical Aspects | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧子彬,潘信良 | |
dc.subject.keyword | 年齡標準化,干擾因子,等比例風險假設,時間相依共變數存活分析模型, | zh_TW |
dc.subject.keyword | age-standardized rate,Bayesian random effect model,generalized linear model,Simpson’s paradox,time-dependent Cox regression model, | en |
dc.relation.page | 102 | |
dc.identifier.doi | 10.6342/NTU201802439 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-06 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 3.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。