Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1123
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許秉寧(Ping-Ning Hsu)
dc.contributor.authorYi-Tzu Linen
dc.contributor.author林怡孜zh_TW
dc.date.accessioned2021-05-12T09:32:54Z-
dc.date.available2018-08-30
dc.date.available2021-05-12T09:32:54Z-
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citationAshktorab, H., Dashwood, R.H., Dashwood, M.M., Zaidi, S.I., Hewitt, S.M., Green, W.R., Lee, E.L., Daremipouran, M., Nouraie, M., Malekzadeh, R., et al. (2008). H. pylori-induced apoptosis in human gastric cancer cells mediated via the release of apoptosis-inducing factor from mitochondria. Helicobacter 13, 506-517.
Auger, K.R., Serunian, L.A., Soltoff, S.P., Libby, P., and Cantley, L.C. (1989). PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57, 167-175.
Aziz, R.K., Khalifa, M.M., and Sharaf, R.R. (2015). Contaminated water as a source of Helicobacter pylori infection: A review. J Adv Res 6, 539-547.
Backert, S., Neddermann, M., Maubach, G., and Naumann, M. (2016). Pathogenesis of Helicobacter pylori infection. Helicobacter 21 Suppl 1, 19-25.
Bagnoli, M., Canevari, S., and Mezzanzanica, D. (2010). Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol 42, 210-213.
Bamford, K.B., Fan, X., Crowe, S.E., Leary, J.F., Gourley, W.K., Luthra, G.K., Brooks, E.G., Graham, D.Y., Reyes, V.E., and Ernst, P.B. (1998). Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 114, 482-492.
Bellacosa, A., Testa, J.R., Staal, S.P., and Tsichlis, P.N. (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254, 274-277.
Bhattacharya, K., Maiti, S., and Mandal, C. (2016). PTEN negatively regulates mTORC2 formation and signaling in grade IV glioma via Rictor hyperphosphorylation at Thr1135 and direct the mode of action of an mTORC1/2 inhibitor. Oncogenesis 5, e227.
Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S., and Schreiber, S.L. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756-758.
Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.
Budd, R.C., Yeh, W.C., and Tschopp, J. (2006). cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 6, 196-204.
Cave, D.R. (1997). How is Helicobacter pylori transmitted? Gastroenterology 113, S9-14.
Chen, X., Thakkar, H., Tyan, F., Gim, S., Robinson, H., Lee, C., Pandey, S.K., Nwokorie, C., Onwudiwe, N., and Srivastava, R.K. (2001). Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20, 6073-6083.
Copp, J., Manning, G., and Hunter, T. (2009). TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 69, 1821-1827.
Diaz, P., Valenzuela Valderrama, M., Bravo, J., and Quest, A.F.G. (2018). Helicobacter pylori and Gastric Cancer: Adaptive Cellular Mechanisms Involved in Disease Progression. Front Microbiol 9, 5.
Ebner, M., Sinkovics, B., Szczygiel, M., Ribeiro, D.W., and Yudushkin, I. (2017). Localization of mTORC2 activity inside cells. J Cell Biol 216, 343-353.
Fruman, D.A., Snapper, S.B., Yballe, C.M., Davidson, L., Yu, J.Y., Alt, F.W., and Cantley, L.C. (1999). Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science 283, 393-397.
Garza-Gonzalez, E., Perez-Perez, G.I., Maldonado-Garza, H.J., and Bosques-Padilla, F.J. (2014). A review of Helicobacter pylori diagnosis, treatment, and methods to detect eradication. World J Gastroenterol 20, 1438-1449.
Goh, K.L., Chan, W.K., Shiota, S., and Yamaoka, Y. (2011). Epidemiology of Helicobacter pylori infection and public health implications. Helicobacter 16 Suppl 1, 1-9.
Hersey, P., and Zhang, X.D. (2001). How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer 1, 142-150.
Hsu, P.P., Kang, S.A., Rameseder, J., Zhang, Y., Ottina, K.A., Lim, D., Peterson, T.R., Choi, Y., Gray, N.S., Yaffe, M.B., et al. (2011). The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-1322.
Hsu, T.S., Mo, S.T., Hsu, P.N., and Lai, M.Z. (2018). c-FLIP is a target of the E3 ligase deltex1 in gastric cancer. Cell Death Dis 9, 135.
IARC (1994). Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61, 1-241.
Jones, N.L., Day, A.S., Jennings, H.A., and Sherman, P.M. (1999). Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect Immun 67, 4237-4242.
Jones, N.L., Shannon, P.T., Cutz, E., Yeger, H., and Sherman, P.M. (1997). Increase in proliferation and apoptosis of gastric epithelial cells early in the natural history of Helicobacter pylori infection. Am J Pathol 151, 1695-1703.
Julien, L.A., Carriere, A., Moreau, J., and Roux, P.P. (2010). mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30, 908-921.
Karttunen, R., Karttunen, T., Ekre, H.P., and MacDonald, T.T. (1995). Interferon gamma and interleukin 4 secreting cells in the gastric antrum in Helicobacter pylori positive and negative gastritis. Gut 36, 341-345.
Keilberg, D., and Ottemann, K.M. (2016). How Helicobacter pylori senses, targets and interacts with the gastric epithelium. Environ Microbiol 18, 791-806.
Khalifa, M.M., Sharaf, R.R., and Aziz, R.K. (2010). Helicobacter pylori: a poor man's gut pathogen? Gut Pathog 2, 2.
Kim, L.C., Cook, R.S., and Chen, J. (2017). mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36, 2191-2201.
Kodaki, T., Woscholski, R., Hallberg, B., Rodriguez-Viciana, P., Downward, J., and Parker, P.J. (1994). The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4, 798-806.
Kusters, J.G., van Vliet, A.H., and Kuipers, E.J. (2006). Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19, 449-490.
Laugier, F., Finet-Benyair, A., Andre, J., Rachakonda, P.S., Kumar, R., Bensussan, A., and Dumaz, N. (2015). RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma. Oncotarget 6, 28120-28131.
Li, F.Y., Jeffrey, P.D., Yu, J.W., and Shi, Y. (2006). Crystal structure of a viral FLIP: insights into FLIP-mediated inhibition of death receptor signaling. J Biol Chem 281, 2960-2968.
Liao, Y., and Hung, M.C. (2004). A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer drug-induced apoptosis in human breast cancer cells. Cancer Res 64, 5938-5942.
Lin, W.C., Tsai, H.F., Liao, H.J., Tang, C.H., Wu, Y.Y., Hsu, P.I., Cheng, A.L., and Hsu, P.N. (2014). Helicobacter pylori sensitizes TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human gastric epithelial cells through regulation of FLIP. Cell Death Dis 5, e1109.
Liu, P., Gan, W., Chin, Y.R., Ogura, K., Guo, J., Zhang, J., Wang, B., Blenis, J., Cantley, L.C., Toker, A., et al. (2015). PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discov 5, 1194-1209.
Lu, B., Wang, L., Stehlik, C., Medan, D., Huang, C., Hu, S., Chen, F., Shi, X., and Rojanasakul, Y. (2006). Phosphatidylinositol 3-kinase/Akt positively regulates Fas (CD95)-mediated apoptosis in epidermal Cl41 cells. J Immunol 176, 6785-6793.
Maehama, T., and Dixon, J.E. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273, 13375-13378.
Magalhaes, A., Marcos, N.T., Carvalho, A.S., David, L., Figueiredo, C., Bastos, J., David, G., and Reis, C.A. (2009). Helicobacter pylori cag pathogenicity island-positive strains induce syndecan-4 expression in gastric epithelial cells. FEMS Immunol Med Microbiol 56, 223-232.
Manning, B.D., and Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. Cell 169, 381-405.
Marshall, B.J., and Warren, J.R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315.
Masri, J., Bernath, A., Martin, J., Jo, O.D., Vartanian, R., Funk, A., and Gera, J. (2007). mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 67, 11712-11720.
Megraud, F. (2004). H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut 53, 1374-1384.
Megraud, F. (2007). Helicobacter pylori and antibiotic resistance. Gut 56, 1502.
Micheau, O. (2003). Cellular FLICE-inhibitory protein: an attractive therapeutic target? Expert Opin Ther Targets 7, 559-573.
Moss, S.F., Calam, J., Agarwal, B., Wang, S., and Holt, P.R. (1996). Induction of gastric epithelial apoptosis by Helicobacter pylori. Gut 38, 498-501.
Nam, S.Y., Jung, G.A., Hur, G.C., Chung, H.Y., Kim, W.H., Seol, D.W., and Lee, B.L. (2003). Upregulation of FLIP(S) by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci 94, 1066-1073.
Ozoren, N., and El-Deiry, W.S. (2002). Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551-557.
Palframan, S.L., Kwok, T., and Gabriel, K. (2012). Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol 2, 92.
Panka, D.J., Mano, T., Suhara, T., Walsh, K., and Mier, J.W. (2001). Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem 276, 6893-6896.
Panner, A., Crane, C.A., Weng, C., Feletti, A., Fang, S., Parsa, A.T., and Pieper, R.O. (2010). Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res 70, 5046-5053.
Panner, A., Crane, C.A., Weng, C., Feletti, A., Parsa, A.T., and Pieper, R.O. (2009). A novel PTEN-dependent link to ubiquitination controls FLIPS stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res 69, 7911-7916.
Panner, A., James, C.D., Berger, M.S., and Pieper, R.O. (2005). mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 25, 8809-8823.
Partovian, C., Ju, R., Zhuang, Z.W., Martin, K.A., and Simons, M. (2008). Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. Mol Cell 32, 140-149.
Peek, R.M., Jr., and Blaser, M.J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2, 28-37.
Peek, R.M., Jr., and Crabtree, J.E. (2006). Helicobacter infection and gastric neoplasia. J Pathol 208, 233-248.
Polk, D.B., and Peek, R.M., Jr. (2010). Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10, 403-414.
Poukkula, M., Kaunisto, A., Hietakangas, V., Denessiouk, K., Katajamaki, T., Johnson, M.S., Sistonen, L., and Eriksson, J.E. (2005). Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem 280, 27345-27355.
Raju, D., Hussey, S., Ang, M., Terebiznik, M.R., Sibony, M., Galindo-Mata, E., Gupta, V., Blanke, S.R., Delgado, A., Romero-Gallo, J., et al. (2012). Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142, 1160-1171.
Rudi, J., Kuck, D., Strand, S., von Herbay, A., Mariani, S.M., Krammer, P.H., Galle, P.R., and Stremmel, W. (1998). Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J Clin Invest 102, 1506-1514.
Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P., and Snyder, S.H. (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35-43.
Sabers, C.J., Martin, M.M., Brunn, G.J., Williams, J.M., Dumont, F.J., Wiederrecht, G., and Abraham, R.T. (1995). Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270, 815-822.
Safa, A.R., Day, T.W., and Wu, C.H. (2008). Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Curr Cancer Drug Targets 8, 37-46.
Safa, A.R., and Pollok, K.E. (2011). Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers (Basel) 3, 1639-1671.
Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101.
Saxton, R.A., and Sabatini, D.M. (2017). mTOR Signaling in Growth, Metabolism, and Disease. Cell 169, 361-371.
Song, M.S., Salmena, L., and Pandolfi, P.P. (2012). The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13, 283-296.
Staal, S.P. (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A 84, 5034-5037.
Terebiznik, M.R., Raju, D., Vazquez, C.L., Torbricki, K., Kulkarni, R., Blanke, S.R., Yoshimori, T., Colombo, M.I., and Jones, N.L. (2009). Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 5, 370-379.
Teymournejad, O., Mobarez, A.M., Hassan, Z.M., and Talebi Bezmin Abadi, A. (2017). Binding of the Helicobacter pylori OipA causes apoptosis of host cells via modulation of Bax/Bcl-2 levels. Sci Rep 7, 8036.
Toker, A. (2012). Phosphoinositide 3-kinases-a historical perspective. Subcell Biochem 58, 95-110.
Toker, A., and Cantley, L.C. (1997). Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673-676.
Tsai, H.F., and Hsu, P.N. (2017). Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage. J Microbiol Immunol Infect 50, 4-9.
Valenzuela, M., Bravo, D., Canales, J., Sanhueza, C., Diaz, N., Almarza, O., Toledo, H., and Quest, A.F. (2013). Helicobacter pylori-induced loss of survivin and gastric cell viability is attributable to secreted bacterial gamma-glutamyl transpeptidase activity. J Infect Dis 208, 1131-1141.
Vanhaesebroeck, B., and Waterfield, M.D. (1999). Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 253, 239-254.
von Karstedt, S., Montinaro, A., and Walczak, H. (2017). Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 17, 352-366.
Wang, J., Fan, X., Lindholm, C., Bennett, M., O'Connoll, J., Shanahan, F., Brooks, E.G., Reyes, V.E., and Ernst, P.B. (2000). Helicobacter pylori modulates lymphoepithelial cell interactions leading to epithelial cell damage through Fas/Fas ligand interactions. Infect Immun 68, 4303-4311.
Whitman, M., Downes, C.P., Keeler, M., Keller, T., and Cantley, L. (1988). Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644-646.
Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673-682.
Wu, Y.Y., Tsai, H.F., Lin, W.C., Chou, A.H., Chen, H.T., Yang, J.C., Hsu, P.I., and Hsu, P.N. (2004). Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells. World J Gastroenterol 10, 2334-2339.
Xia, H.H., and Talley, N.J. (2001). Apoptosis in gastric epithelium induced by Helicobacter pylori infection: implications in gastric carcinogenesis. Am J Gastroenterol 96, 16-26.
Xu, J., Xu, X., Shi, S., Wang, Q., Saxton, B., He, W., Gou, X., Jang, J.H., Nyunoya, T., Wang, X., et al. (2016). Autophagy-Mediated Degradation of IAPs and c-FLIP(L) Potentiates Apoptosis Induced by Combination of TRAIL and Chal-24. J Cell Biochem 117, 1136-1144.
Yang, G., Murashige, D.S., Humphrey, S.J., and James, D.E. (2015). A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. Cell Rep 12, 937-943.
Yu, J.W., and Shi, Y. (2008). FLIP and the death effector domain family. Oncogene 27, 6216-6227.
Yu, Y., Yoon, S.O., Poulogiannis, G., Yang, Q., Ma, X.M., Villen, J., Kubica, N., Hoffman, G.R., Cantley, L.C., Gygi, S.P., et al. (2011). Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-1326.
Zhang, T., Wang, X., He, D., Jin, X., and Guo, P. (2014). Metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through mTOR/S6K1-mediated downregulation of c-FLIP. Anticancer Drugs 25, 887-897.
Zhao, L., Yue, P., Khuri, F.R., and Sun, S.Y. (2013). mTOR complex 2 is involved in regulation of Cbl-dependent c-FLIP degradation and sensitivity of TRAIL-induced apoptosis. Cancer Res 73, 1946-1957.
Zinzalla, V., Stracka, D., Oppliger, W., and Hall, M.N. (2011). Activation of mTORC2 by association with the ribosome. Cell 144, 757-768.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/1123-
dc.description.abstract胃幽門螺旋桿菌(Helicobacter pylori)是一種世界上常見的細菌感染源之一,主要棲息在人體胃部,並且已被發現與許多胃部疾病的發生有關,例如胃炎、胃潰瘍、黏膜層淋巴瘤、胃癌。其中,過去研究發現感染胃幽門螺旋桿菌的表皮細胞其細胞凋亡的程度增加與胃幽門螺旋桿菌所導致的胃部病變有關。先前實驗室的研究顯示,TRAIL能誘導感染胃幽門螺旋桿菌的胃上皮細胞進行大量細胞凋亡,進一步我們發現胃幽門螺旋桿菌透過負調控Akt的磷酸化程度使得AIP4蛋白活性增加,導致重要的調控蛋白FILPs進行泛素化降解,進而細胞無法阻礙TRAIL receptor下游死亡複合物的形成,導致胃上皮細胞容易被TRAIL誘導細胞凋亡。於此篇我們更利用AIP4基因剃除後發現AIP4分子的確參與在調控胃幽門螺旋桿菌誘導之TRAIL細胞凋亡之訊息傳導途徑中。此外,在此篇研究中我們也探討了胃幽門螺旋桿菌如何調控Akt的磷酸化,我們發現胃幽門螺旋桿菌會降低Akt的上游分子mTOR的表現量,並且我們發現隨著感染時間增長,mTOR的表現量降低與Akt去磷酸化程度、FLIPs的表現量降低呈現正相關,因此我們推測mTOR可能也參與在胃幽門螺旋桿菌所誘發的胃上皮細胞TRAIL敏感性提高。我們同時也利用mTOR抑制劑與mTOR siRNA轉染證明若於胃上皮細胞抑制mTOR活性則會導致細胞內FLIPs表現量下降且同時誘導細胞對TRAIL敏感度提升,此現象如同模擬胃幽門螺旋桿菌感染的情況。再者,我們過度表現mTORC2於人類胃上皮細胞後發現藉由於細胞內增強mTOR-Akt-FLIP訊號傳遞路徑可以使人類胃上皮細胞抵禦胃幽門螺旋桿菌所誘發之TRAIL引起的細胞凋亡。在此篇研究中我們定義出mTOR分子於胃幽門螺旋桿菌的致病機制中扮演重要角色,並且提供其成為將來治療感染胃幽門螺旋桿菌的分子標的之可能性。zh_TW
dc.description.abstractHelicobacter pylori (H. pylori) is one of the most common pathogens that inhabits in human stomach, which has been known for being related to amounts of gastric disease such as gastritis, peptic ulcers, gastric MALT lymphomas and gastric cancer. It has been reported that the etiology of H. pylori is associated with the enhancement of cell apoptosis in gastric epithelial cells. Previous study in our laboratory has shown that H. pylori confers susceptibility to TRAIL-mediated apoptosis in human gastric epithelial cells through decreased Akt phosphorylation, which results in activating the AIP4 and leads to FLIPs degradation sequentially. In this study, we have further demonstrated that knockout of AIP4 in AGS cells mitigated H. pylori-induced TRAIL-mediated apoptosis, which has clarified that Akt-AIP4-FLIPs pathway participated in H. pylori-induced TRAIL apoptosis signaling. Besides, in order to investigate how H. pylori regulates Akt phosphorylation state, we have searched for the upstream molecular of Akt and found mTOR expression decreased while H. pylori co-cultured with gastric epithelial cells. Moreover, we found that the augmentation of mTOR-Akt pathway by overexpressing mTORC2 in gastric epithelial cells reduced H.pylori-induced TRAIL-apoptosis signaling. In this study, we address the role of mTOR in H. pylori-induced TRAIL apoptosis signaling and provide a new insight for the pathogenesis of H. pylori.en
dc.description.provenanceMade available in DSpace on 2021-05-12T09:32:54Z (GMT). No. of bitstreams: 1
ntu-107-R05449002-1.pdf: 2466977 bytes, checksum: 22fe0170077fed6daf135061f32e1d9c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Introduction 1
1. Helicobacter pylori (H. pylori) 1
2. Pathogenesis of H. pylori 2
3. TRAIL-mediated apoptosis 4
4. H. pylori enhances TRAIL-induced apoptosis signaling in gastric epithelial cells 6
5. The Akt pathway in regulation of FLIPs expression 6
6. mTOR signaling in regulation of FLIPs expression 8
Rationales 10
Materials and Methods 11
Results 25
I. H. pylori enhanced the apoptosis of AGS cells while treat with TRAIL, and phosphorylation of Akt as well as FLIPs expression in AGS cells decreased concurrently. 25
II. The expression of FLIPs was decreased and enhanced TRAIL-mediated apoptosis in AGS cells after knockdown of Akt. 26
III. Knockout of AIP4 reduced H. pylori-induced TRAIL-mediated caspase-8 activation. 27
IV. mTOR expression was decreased after H. pylori co-cultured. 28
V. Inhibition of mTOR reduced the expression of FLIPs and induced TRAIL-mediated apoptosis in AGS cells. 29
VI. Enhancement of mTOR-Akt signaling pathway reduced H. pylori-induced TRAIL-mediated apoptosis signaling. 30
VII. H. pylori-induced autophagy could be attenuated while enhanced mTOR-Akt signaling pathway in AGS cells. 31
Discussion 33
I. H. pylori-induced TRAIL-mediated apoptosis through inhibiting the intracellular mTOR-Akt signaling pathway. 33
II. H. pylori downregulated FLIPs expression through reducing Akt phosphorylation. 36
III. H. pylori downregulated FLIPs expression through Akt-independent mechanisms. 40
IV. The upstream regulation of mTORC2 activity and the possible pathway for H. pylori to disrupt the mTORC2 activity in AGS cell lines. 41
Conclusion 44
References 45
Figures 55
dc.language.isoen
dc.subjectmTORzh_TW
dc.subject胃幽門螺旋桿菌zh_TW
dc.subject細胞凋亡zh_TW
dc.subjectTRAILzh_TW
dc.subjectmTORen
dc.subjectTRAILen
dc.subjectapoptosisen
dc.subjectHelicobacter pylorien
dc.title研究mTOR分子於胃幽門螺旋桿菌調控胃上皮細胞對TRAIL細胞凋亡訊息傳導所扮演之角色zh_TW
dc.titleStudy the role of mTOR in regulation of Helicobacter pylori-induced TRAIL apoptosis signaling in Human gastric epithelial cellsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱清良(Ching-Liang chu),謝世良(Shie-Liang Hsieh),吳明賢(Ming-Shiang Wu)
dc.subject.keyword胃幽門螺旋桿菌,細胞凋亡,TRAIL,mTOR,zh_TW
dc.subject.keywordHelicobacter pylori,apoptosis,TRAIL,mTOR,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201802646
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf2.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved