請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/1102
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡植慶(Jyr-Ching Hu) | |
dc.contributor.author | Pin-Ju Su | en |
dc.contributor.author | 蘇品如 | zh_TW |
dc.date.accessioned | 2021-05-12T09:32:35Z | - |
dc.date.available | 2018-08-16 | |
dc.date.available | 2021-05-12T09:32:35Z | - |
dc.date.copyright | 2018-08-16 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-10 | |
dc.identifier.citation | Abrahim, G.M.S., Nichol, S.L., Parker, R.J., Gregory, M.R., 2008. Facies depositional setting, mineral maturity and sequence stratigraphy of a Holocene drowned valley, Tamaki Estuary, New Zealand. Estuarine, Coastal and Shelf Science 79 (1), 133-142.
Amato, V., Aucelli, P.P.C., Ciampo, G., Cinque, A., Di Donato, V., Pappone, G., Petrosino, P., Romano, P., Rosskopf, C.M., Russo Ermolli, E., 2013. Relative sea level changes and paleogeographical evolution of the southern Sele plain (Italy) during the Holocene. Quaternary International 288, 112-128. Amorosi, A., Colalongo, M.L., Pasini, G., Preti, D., 1999. Sedimentary response to Late Quaternary sea-level changes in the Romagna coastal plain (northern Italy). Sedimentology 46, 99-121. Amorosi, A., Dinelli, E., Rossi, V., Vaiani, S.C., Sacchetto, M., 2008. Late Quaternary palaeoenvironmental evolution of the Adriatic coastal plain and the onset of Po River Delta. Palaeogeography, Palaeoclimatology, Palaeoecology 268 (1-2), 80-90. Anthony, E.J., Lang, J., Oyede, L.M., 1996. Sedimentation in a tropical, microtidal, wave-dominated coastal-plain estuary. Sedimentology 43, 665-675. Anthony, E.J., Oyede, L.M., Lang, J., 2002. Sedimentation in a fluvially infilling, barrier-bound estuary on a wave-dominated, microtidal coast: the Oueme River estuary,Benin, west Africa. Sedimentology 49, 1095-1112. Bard, E., Hamelin, B., Delanghe-Sabatier, D., 2010. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327, 1235-1237. Bartlein, P.J., Edwards, M.D., Shafer, S.L., Barker, E.D., 1995. Calibration of radiocarbon ages and the interpretation of paleoenvironmental records. Quaternary Research 44, 417-424. Bastos, A.C., Vilela, C.G., Quaresma, V.S., Almeida, F.K., 2010. Mid- to Late-Holocene estuarine infilling processes studied by radiocarbon dates, high resolution seismic and biofacies at Vitoria Bay, Espirito Santo, Southeastern Brazil. Anais Da Academia Brasileira De Ciencias 82, 761-770. Bennett, K.D., 1994. Confidence intervals for age estimates and deposition times in Late-Quaternary sediment sequences: The Holocene, 4, 4, 337-348. Bhandari, S., Maurya, D.M., Chamyal, L.S., 2005. Late Pleistocene alluvial plain sedimentation in Lower Narmada Valley, Western India: Palaeoenvironmental implications. Journal of Asian Earth Sciences 24 (4), 433-444. Bird, M.I., Fifield, L.K., Teh, T.S., Chang, C.H., Shirlaw, N., Lambeck, K., 2007. An inflection in the rate of early mid-Holocene eustatic sea-level rise: a new sea-level curve from Singapore. Estuarine, Coastal and Shelf Science 71 (3-4), 523-536. Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences: Quaternary Geochronology, 5, 5, 512-518. Blum, M.D., Guccione, M.J., Wysocki, D.A., Robnett, P.C., Rutledge, E.M., 2000. Late Pleistocene evolution of the lower Mississippi River valley, southern Missouri to Arkansas. Geological Society of America Bulletin 112 (2), 221-235. Blum, M.D., Törnqvist, T.E., 2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47, 2-48. Bos, I.J., 2010. Architecture and Facies Distribution of Organic-Clastic Lake Fills in the Fluvio-Deltaic Rhine–Meuse System, The Netherlands. Journal of Sedimentary Research 80 (4), 339-356. Bosence, D.W.J., 1998. Stratigraphic and sedimentological models of rift basins, in: Purser, B.H., Bosence, D.W.J. (Eds.), Sedimentation and Tectonics in Rift Basins Red Sea:- Gulf of Aden. Springer Netherlands, Dordrecht, pp. 9-25. Boski, T., Moura, D., Veiga-Pires, C., Camacho, S., Duarte, D., Scott, D.B., Fernandes, S.G., 2002. Postglacial sea-level rise and sedimentary response in the Guadiana Estuary, Portugal/Spain border. Sedimentary Geology 150, 103-122. Bruno, L., Bohacs, K.M., Campo, B., Drexler, T.M., Rossi, V., Sammartino, I., Scarponi, D., Hong, W., Amorosi, A., 2017. Early Holocene transgressive palaeogeography in the Po coastal plain (northern Italy). Sedimentology 64 (7), 1792-1816. Chen, C.-H., Lin, S.-B., 2000. Distribution and significqnce of volcanic materiams in sediments of the Taipei Basin. Journal of the Geological Society of China 43 (2), 287-310. Chen, C.-T., Lee, J.-C., Chan, Y.-C., Lu, C.-Y., 2010a. Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 21 (3), 409-428. Chen, C.-T., Lee, J.-C., Chan, Y.-C., Lu, C.-Y., Teng, L.S.-Y., 2014. Elucidating the geometry of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan, and the reactivation relationship with preexisting orogen structures. Tectonics 33 (12), 2400-2418. Chen, H.-W., Lee, T.-Y., Wu, L.-C., 2010b. High-resolution sequence stratigraphic analysis of Late Quaternary deposits of the Changhua Coastal Plain in the frontal arc-continent collision belt of Central Taiwan. Journal of Asian Earth Sciences 39 (3), 192-213. Chen, Y.-G., Liu, T.-K., 1996. Sea Level Changes in the Last Several Thousand Years, Penghu Islands, Taiwan Strait. Quaternary Research 45 (3), 254-262. Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., Woodworth, P.L., 2001. Changes in Sea Level, pp. 639-694. Dabrio, C.J., Zazo, C., Goy, J.L., Sierro, F.J., Borja, F., Lario, J., Gonz´alez, J.A., Flores, J.A., 2000. Depositional history of estuarine infill during the last postglacial transgressionGulf of Cadiz, Southern Spain. Marine Geology 162, 381-404. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C.P., Lague, D., Lin, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426 (6967), 648-651. Dalrymple, R.W., Zaitlin, B.A., Boyd, R., 1992. Estuarine Facies Models: Conceptual Basis and Stratigraphic Implications. SEPM Journal of Sedimentary Research 62 (6), 1130-1146. Davis, R.A.J., 1983. Depositional systems: a genetic approach to sedimentary geology. Prentice Hall College Div, New York. Doglioni, C., Dagostino, N., Mariotti, G., 1998. Normal faulting vs regional subsidence and sedimentation rate. Marine and Petroleum Geology 15 (8), 737-750. Donselaar, M.E., Geel, C.R., 2007. Facies architecture of heterolithic tidal deposits: the Holocene Holland Tidal Basin. Netherlands Journal of Geosciences 86 (4), 389 - 402. Fagel, N., Alleman, L.Y., Granina, L., Hatert, F., Thamo-Bozso, E., Cloots, R., André, L., 2005. Vivianite formation and distribution in Lake Baikal sediments. Global and Planetary Change 46 (1-4), 315-336. Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637. Fornari, M., Giannini, P.C.F., Nascimento, D.R., 2012. Facies associations and controls on the evolution from a coastal bay to a lagoon system, Santa Catarina Coast, Brazil. Marine Geology 323-325, 56-68. Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.G., Wintle, A.G., 1998. River response to high-frequency climate oscillations in southern Europe over the past 200 k.y. Geology 26 (3), 275-278. Gobo, K., Ghinassi, M., Nemec, W., Sjursen, E., Hampson, G., 2014. Development of an incised valley‐fill at an evolving rift margin: Pleistocene eustasy and tectonics on the southern side of the Gulf of Corinth, Greece. Sedimentology 61 (4), 1086-1119. Goodbred Jr, S.L., Kuehl, S.A., 2000. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sedimentary Geology 133 (3–4), 227-248. Gould, J.M., 1900. A treatise on the law of waters : including riparian rights, and public and private rights in waters tidal and inland. Cornell University Library, Chicago. Granja, H., Rocha, F., Matias, M., Moura, R., Caldas, F., Marques, J., Tareco, H., 2010. Lagoa da Apúlia: A residual lagoon from the Late Holocene (NW coastal zone of Portugal). Quaternary International 221 (1-2), 46-57. Hanebuth, T., Stattegger, K., Grootes, P.M., 2000. Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record. Science 288 (5468), 1033-1035. Heap, A.D., Nichol, S.L., 1997. The influence of limited accommodation space on the stratigraphy of an incised-valley succession: Weiti River estuary, New Zealand. Marine Geology 144 (1-3), 229-252. Hijma, M.P., Cohen, K.M., Hoffmann, G., van der Spek, A.J.F., Stouthamer, E., 2009. From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta). Netherlands Journal of Geosciences 88 (1), 13-53. Holz, M., 2003. Sequence stratigraphy of a lagoonal estuarine system—an example from the lower Permian Rio Bonito Formation, Paraná Basin, Brazil. Sedimentary Geology 162 (3-4), 305-331. Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y., Li, C., 2001. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology 177, 331-351. Hsieh, M.-L., Lai, T.-H., Wu, L.-C., Lu, W.-C., Liu, H.-T., Liew, P.-M., 2006. Eustatic sea-level change of 11 - 5 ka in western taiwan, constrained by radiocarbon dates of core sediments. Terrestrial, Atmospheric and Oceanic Sciences 17 (2), 353-370. Huang, S.-Y., Rubin, C.M., Chen, Y.-G., Liu, H.-C., 2007. Prehistoric earthquakes along the Shanchiao fault, Taipei Basin, northern Taiwan. Journal of Asian Earth Sciences 31 (3), 265-276. Huang, T.-C., 1962. The Sungshan Formation in the Taipei Basin. Memoir of the Geological Society of China 1, 133-151. Jackson, J.A., 1997. Glossary of Geology, 4th ed. American Geological Institute Alexandria. Kitazawa, T., 2007. Pleistocene macrotidal tide-dominated estuary–delta succession, along the Dong Nai River, southern Vietnam. Sedimentary Geology 194 (1-2), 115-140. Kontopoulos, N., Koutsios, A., 2010. A late Holocene record of environmental changes from Kotihi lagoon, Elis, Northwest Peloponnesus, Greece. Quaternary International 225 (2), 191-198. Leorri, E., Fatela, F., Drago, T., Bradley, S.L., Moreno, J., Cearreta, A., 2013. Lateglacial and Holocene coastal evolution in the Minho estuary (N Portugal): Implications for understanding sea-level changes in Atlantic Iberia. The Holocene 23 (3), 353-363. Lessa, G.C., Angulo, R.J., Giannini, P.C., Araújo, A.D., 2000. Stratigraphy and Holocene evolution of a regressive barrier in south Brazil. Marine Geology 165 (1–4), 87-108. Liew, P.-m., Huang, C.-y., Tseng, M.-h., 1997. Preliminary Study On The Late Quaternary Climatic Environment Of The Taipei Basin And Its Possible Relation To Basin Sediments. Journal of the Geological Society of China 40 (1), 17-30. Liu, J.P., Milliman, J.D., 2004. Reconsidering Melt-water Pulses lA and lB: global impacts of rapid sea-level rise. Journal of Ocean University of China 3, 183-190. Maddy, D., Bridgland, D., Westaway, R., 2001. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quaternary International 79 (1), 23-36. Miall, A.D., Arush, M., 2001. Cryptic sequence boundaries in braided fluvial successions. Sedimentology 48, 971-985. Milli, S., D'Ambrogi, C., Bellotti, P., Calderoni, G., Carboni, M.G., Celant, A., Di Bella, L., Di Rita, F., Frezza, V., Magri, D., Pichezzi, R.M., Ricci, V., 2013. The transition from wave-dominated estuary to wave-dominated delta: The Late Quaternary stratigraphic architecture of Tiber River deltaic succession (Italy). Sedimentary Geology 284-285, 159-180. Muto, T., Steel, R.J., 1997. Principles of regression and transgression; the nature of the interplay between accommodation and sediment supply. Journal of Sedimentary Research 67 (6), 994-1000. Muto, T., Steel, R.J., 2002. In Defense of Shelf-Edge Delta Development during Falling and Lowstand of Relative Sea Level. The Journal of Geology 110 (4), 421-436. Nanson, G.C., Croke, J.C., 1992. A genetic classification of floodplains. Geomorphology 4 (6), 459-486. Nichol, S.L., Zaitlin, B.A., Thom, B.G., 1997. The upper Hawkesbury River, New South Wales, Australia: a Holocene example of an estuarine bayhead delta. Sedimentology 44 (2), 263-286. Nichols, G.J. and Fisher, J.A., 2007. Processes, facies and architecture of fluvial distributary system deposits: Sedimentary Geology, vol. 195, no. 1-2, p. 75-90. Nichols, M.M., Johnson, G.H., Peebles, P.C., 1991. Modern sediments and facies model for a microtidal coastal plain estuary, the James Estuary, Virginia. SEPM Journal of Sedimentary Research 61 (6), 883-899. Nriagu, J.O., 1972. Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4H3PO4-H2O. Geochimica Et Cosmochimica Acta 36 (4), 459-470. Pritchard, D.W., 1967. What is an estuary: physical viewpoint, in: Lauf, G.H. (Ed.), Estuaries. American Association for Advancement of Science, Washington, DC, pp. 3-5. Reading, H.G., Levell, B.K., 1996. Controls on the sedimentary rock record, in: Reading, H.G. (Ed.), Sedimentary Environment: Processes, Facies and Stratigraphy. Wiley-Blackwell, Oxford, pp. 5-35. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55 (4), 1869–1887. Ricci Lucchi, M., Fiorini, F., Luisa Colalongo, M., Vittorio Curzi, P., 2006. Late-Quaternary paleoenvironmental evolution of Lesina lagoon (southern Italy) from subsurface data. Sedimentary Geology 183 (1-2), 1-13. Roberts, H.H., 1998. Delta Switching: Early Responses to the Atchafalaya River Diversion. Journal of Coastal Research 14 (3), 882-899. Rosenquist, I.T., 1970. Formation of vivianite in Holocene clay sediments. Lithos 3, 327-334. Rossetti, D.F., Santos Júnior, A.E., 2004. Facies architecture in a tectonically influenced estuarine incised valley fill of Miocene age, northern Brazil. Journal of South American Earth Sciences 17 (4), 267-284. Roy, P.S., 1984. New South Wales estuaries - their origin and evolution, in: Thom, B.G. (Ed.), Developments in Coastal geomorphology in Australia. Academic Press, Sydney, pp. 99-121. Sabatier, P., Dezileau, L., Barbier, M., Raynal, O., Lofi, J., Briqueu, L., Condomines, M., Bouchette, F., Certain, R., van Grafenstein, U., Jorda, C., Blanchemanche, P., 2010. Late-Holocene evolution of a coastal lagoon in the Gulf of Lions (South of France). Bulletin de la Societe Geologique de France 181 (1), 27-36. Schlische, R.W., 1991. Half‐graben basin filling models: new constraints on continental extensional basin development. Basin Research 3 (3), 123-141. Séguret, M., Séranne, M., Chauvet, A., Brunel, A., 1989. Collapse basin: A new type of extensional sedimentary basin from the Devonian of Norway. Geology 17 (2), 127-130. Sloss, C.R., Jones, B.G., Switzer, A.D., Nichol, S., Clement, A.J.H., Nicholas, A.W., 2010. The Holocene infill of Lake Conjola, a narrow incised valley system on the southeast coast of Australia. Quaternary International 221 (1-2), 23-35. Song, S.-R., Chen, T.-M., Tsao, S., Chen, H.-F., Liu, H.-C., 2007. Lahars in and around the Taipei basin: Implications for the activity of the Shanchiao fault. Journal of Asian Earth Sciences 31 (3), 277-286. Stuiver, M., Reimer, P.J., Reimer, R.W., 2016. CALIB Radiocarbon Calibration, 7.0.4 ed, Northern Ireland, UK. Tanabe, S., Nakanishi, T., Ishihara, Y., Nakashima, R., 2015. Millennial-scale stratigraphy of a tide-dominated incised valley during the last 14 kyr: Spatial and quantitative reconstruction in the Tokyo Lowland, central Japan. Sedimentology 62 (7), 1837-1872. Tanabe, S., Nakanishi, T., Matsushima, H., Hong, W., 2013. Sediment accumulation patterns in a tectonically subsiding incised valley: Insight from the Echigo Plain, central Japan. Marine Geology 336, 33-43. Teng, L.S., Lee, C.-T., 1996. Geomechanical appraisal of seismogenic faults in Northeast Taiwan. Journal of the Geological Society of China 39, 125-142. Teng, L.S., Lee, C.-T., Peng, C.-H., Chen, W.-F., Chu, C.-J., 2001. Origin and Geological Evoltion of the Taipei Basin, Nothern Taiwan Western Pacific Earth Science 1 (2), 115-142. Teng, L.S., Yuan, P.B., Yu, N.-T., Peng, C.-H., 2000. Sequence stratigraphy of the Taipei Basin deposits: a preliminary study. Journal of the Geological Society of China 43 (3), 497-520. Tessier, B., Billeaud, I., Sorrel, P., Delsinne, N., Lesueur, P., 2011. Infilling stratigraphy of macrotidal tide-dominated estuaries. Controlling mechanisms: Sea-level fluctuations, bedrock morphology, sediment supply and climate changes (The examples of the Seine estuary and the Mont-Saint-Michel Bay, English Channel, NW France). Sedimentary Geology. Tesson, M., Labaune, C., Gensous, B., Suc, J.P., Melinte-Dobrinescu, M., Parize, O., Imbert, P., Delhaye-Prat, V., 2011. Quaternary 'Compound' Incised Valley In A Microtidal Environment, Roussillon Continental Shelf, Western Gulf of Lions, France. Journal of Sedimentary Research 81 (10), 708-729. Törnqvist, T.E., 1993. Holocene alternation of meandering and anastomosing fluvial systems in the Rhine-Meuse Delta (central Netherlands) controlled by sea-level rise and subsoil erodibility. Journal of Sedimentary Research 63 (4), 683-693. Traini, C., Menier, D., Proust, J.N., Sorrel, P., 2013. Transgressive systems tract of a ria-type estuary: The Late Holocene Vilaine River drowned valley (France). Marine Geology 337, 140-155. Tsao, S.-J., Song, S.-R., Lee, C.-Y., 2001. Geological implications of lahar deposits in the Taipei Basin. Western Pacific Earth Science 1 (2), 199-212. Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21 (1–3), 295-305. Wei, K., Chen, Y.-g., Liu, T.-k., 1998. Sedimentary History Of The Taipei Basin With Constraints From Thermoluminescence Dates Journal of the Geological Society of China 41 (1), 190-125. Wescott, W.A., Ethridge, F.G., 1983. Eocene Fan Delta‐Submarine Deposition in the Wagwater Trough, East‐Central Jamaica. Sedimentology 30, 235-247. Willis, A., 2000. Tectonic control of nested sequence architecture in the Sego Sandstone, Neslen Formation and Upper Castlegate Sandstone (Upper Cretaceous), Sevier Foreland Basin, Utah, USA. Sedimentary Geology 136 (3-4), 277-317. Wilson, K., Berryman, K., Cochran, U., Little, T., 2007. A Holocene incised valley infill sequence developed on a tectonically active coast: Pakarae River, New Zealand. Sedimentary Geology 197 (3), 333-354. Wright, C.I., Mason, T.R., 1990. Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa. Journal of African Earth Sciences (and the Middle East) 11 (3–4), 411-420. Wu, F.-T., 1965. Subsidence geology of Hsinchuang structure in the Taipei Basin. Petroleum Geology of Taiwan 4, 271-282. Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T., Suzuki, A., Kawahata, H., 2007. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259 (1), 432-437. 王乾盈,孫志財,1999,臺北盆地震測地層解釋,經濟部中央地質調查所特刊,第11號,第273-292頁。 王執明,鄭穎敏,王源,1978,台北盆地之地質及沉積物之研究,臺灣鑛業,第30期,第4卷,第350-380頁。 石再添,張瑞津,鄧國雄,黃朝恩,1996,地形 (土地志‧地理篇),台灣省通志稿,卷一,臺灣省文獻委員會,957頁。 林啟文,盧詩丁,石同生,陳致言,林燕慧,2007,山腳斷層,中央地質調查所特刊,第17號,第7-31頁。 林朝宗,賴典章,費立沅,劉桓吉,紀宗吉,蘇泰維,1999,臺北盆地八十一至八十五年度地質深井鑽探取樣成果,經濟部中央地質調查所特刊,第11號,第7-39頁。 林朝棨,1954,「松山層」--臺北盆地沉積層,臺北文物,第3期,第1卷,第43-48頁。 洪奕星,彭慧蘭,劉桓吉,賴慈華,黃智昭,費立沅,2006,臺北盆地沉積相和沉積環境的分析,西太平洋地質科學,第6期,第59-86頁。 洪如江,1966,台北盆地各土層土壤之物理性質,台大工程期刊,第1-24頁。 張瑞津,石再添,曾正雄,陳美鈴,高鵬飛,1989,淡水河下游感潮的研究,地理學研究,第13期,第1-55頁。 許誠,1992,台北盆地全新世松山層之層序地層初探,地質科學研究所碩士論文,國立臺灣大學,臺北市,59頁。 陳文山,林朝宗,楊志成,費立沅,謝凱旋,鞏慧敏,林佩儀,楊小青,2008,晚更新世以來台北盆地沉積層序架構與構造的時空演變,經紀部中央地質調查所彙刊,第21號,第61-106頁。 彭志雄,鄧屬予,袁彼得,1999,台北盆地的岩相特徵,經濟部中央地質調查所特刊,第11號,第67-99頁。 曾美惠,劉平妹,1999,臺北盆地二萬年來孢粉組合與古環境初探,經濟部中央地質調查所特刊,第11號,第159-179頁。 黃奇瑜,1993,古生物研究(II)有孔蟲研究,臺北盆地地下地質與工程環境綜合調查研究,21頁。 黃奇瑜,2006,台北盆地有孔蟲化石研究,西太平洋地質科學,第6期,第29-58頁。 黃奇瑜,1995,古生物研究(II)有孔蟲研究,臺北盆地地下地質與工程環境綜合調查研究,56頁。 黃奇瑜,1994,古生物研究(II)有孔蟲研究,臺北盆地地下地質與工程環境綜合調查研究,23頁。 黃鑑水,2005,五萬分之一臺灣地質圖說明書--臺北,3版,經濟部中央地質調查所。 劉平妹,1994,古生物研究(I)花粉化石研究,臺北盆地地下地質與工程環境綜合調查研究,29頁。 劉平妹,1995,古生物研究(I)花粉化石研究,臺北盆地地下地質與工程環境綜合調查研究,23頁。 劉平妹,1993,古生物研究(I)花粉化石研究,臺北盆地地下地質與工程環境綜合調查研究,19頁。 劉平妹,郭兆敏,曾美惠,蕭承龍,2006,台北盆地的孢粉層序及古氣候,西太平洋地質科學,第6期,第87-114。 劉平妹,黃奇瑜,1993,古生物研究計畫,臺北盆地地下地質與工程環境綜合調查研究,37頁。 劉聰桂,1992,碳十四年代與地下水水質研究,台北盆地地下地質與工程環境粽合調查研究,35頁。 劉聰桂,1994,碳十四年代與地下水水質研究,台北盆地地下地質與工程環境粽合調查研究,50頁。 劉聰桂,1995,碳十四定年研究,台北盆地地下地質與工程環境粽合調查研究,中央地質調查所,51頁。 劉聰桂,1993,碳十四年代與地下水水質研究,台北盆地地下地質與工程環境粽合調查研究,32頁。 鄧屬予,2007,臺灣第四紀大地構造,經濟部中央地質調查所特刊,第18號,第1-24頁。 鄧屬予,劉聰桂,陳于高,劉平妹,李錫堤,劉桓吉,彭志雄,2004,大漢溪襲奪對台北盆地的影響,師大地理研究報告,第41期,第61-78頁。 鄧屬予,王世忠,張致斌,許誠,袁彼得,陳培源,1994,臺北盆地第四系地層架構,臺灣之第四紀第五次研討會暨臺北盆地地下地質與工程環境綜合調查研究成果發表會,第192-135頁。 鄧屬予,袁彼得,陳培源,彭志雄,賴典章,費立沅,劉桓吉,1999,臺北盆地堆積層的岩性地層,經濟部中央地質調查所特刊,第11號,第41-66頁。 謝孟龍,李慶堯,王秋美,陳炳誠,蘇品如,2016,台北盆地全新世最高海漫面的證據:新店溪福和橋上游的古紅樹林,2016年臺灣地球科學聯合學術研討會,臺北市,第ST2-3A-05頁。 謝英宗,1998,古生物研究(II)有孔蟲研究,臺北盆地地下地質與工程環境綜合調查研究,經濟部中央地質調查所,新北市,54頁。 謝英宗,1999,古生物研究(II)有孔蟲研究,臺北盆地地下地質與工程環境綜合調查研究,經濟部中央地質調查所,新北市,60頁。 謝英宗,2004,超微及有孔蟲化石分析及地層對比,臺灣地區地下水觀測網第三期九十三年度水文地質調查研究計畫,經濟部中央地質調查所,新北市,100頁。 謝英宗,2005,超微及有孔蟲化石分析及地層對比,臺灣地區地下水觀測網第三期九十三年度水文地質調查研究計畫,經濟部中央地質調查所,新北市,180頁。 謝英宗,郭兆敏,1999,地下地質-古生物之花粉及有孔蟲化石研究,臺北盆地地下地質與工程環境綜合調查研究,經濟部中央地質調查所,新北市,97頁。 蕭承龍,1997,古生物研究(I)花粉化石研究,臺北盆地地下地質與工程環境綜合調查研究,47頁。 蕭承龍,1998,古生物研究(I)花粉化石研究,臺北盆地地下地質與工程環境綜合調查研究,中央地質調查所,43頁。 蕭承龍,1999,古生物之花粉化石研究,臺北盆地地下地質與工程環境綜合調查研究,51頁。 蘇品如,紀宗吉,費立沅,蘇泰維,鄧屬予,尚未出版。臺北盆地松山層岩相特徵與沉積環境演化,西太平洋地質科學。 蘇泰維 (1999) 臺北盆地岩芯紀錄,中央地質調查所。未發表資料。 丹桂之助,1939,臺北盆地的地質學考察,矢部教授還曆紀念文集,第371-380頁。 出口雄三,1911,臺北附近の鑽井,地質學雜誌,第18期,第216卷,第260-262頁。 齊藤齊,1942,臺北盆地の泥炭層に就いて,臺灣礦業會報,第206期,第9-15頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/1102 | - |
dc.description.abstract | 本研究基於54口探井岩芯的岩相分析所解釋沉積環境以及153筆定年數據的分析,重整了臺北盆地松山層與景美層之地層架構,並重建過去5萬年來的盆地時空環境與地層演育過程。此外又根據年代資料、定年樣品之取樣深度和所在環境沉積相,對比全球海水面變動曲線,推算盆地不同時期的盆地下陷速率,並探討海水面變動、盆地下陷速率與沉積物供應速率之互制關係如何影響盆地的地層發育。
本研究發現在全球海水面下降期間 (50-20 ka),早期氣候潮濕時盆地廣布礫質辮狀河,而後氣候轉乾,約在35-20 ka,乾燥氣候下較低的沉積物供應速率和/或快速盆地下陷主導盆地內的沉積環境變化,粗顆粒的沉積物供應不足使近斷層的相對下游地區沉積環境呈現相對海水面上升的變化特徵,從礫質辮狀河轉變到砂質辮狀再轉為曲流河相,遠離斷層的相對上游側可能因為地形坡度較陡和近沉積物來源,而還能堆積礫質辮狀河相。 在全球海水面上升的階段 (20-6 ka),使環境變淺的沉積物供應速率和使環境加深的盆地下陷速率達到平衡,因此盆地長時間維持在曲流環境,臺北盆地西側於20-10.2 ka因此堆積了厚達40公尺的曲流相沉積物。而此時期遠離斷層的盆地南側和東南側受盆地下陷影響有限,並無足夠的納積空間,以致無法保存沉積物,也造成景美層與松山層之間長達約1萬年的沉積中斷。約11-8.8 ka的融冰脈衝MWP 1B造成全球海水面快速上升,促使河口灣相於約10.2 ka首次出現於位處內陸的臺北盆地,較世界其他地區的海岸河口灣還要早了2-3千年,可能係受到10.6-10.2 ka盆地快速下陷的影響。海水面持續的快速上升也逐步擴大了河口灣環境的分布,河口灣環境的擴展約略與隨後的兩次盆地快速下陷期 (9.4-9.0 ka和8.9-8.5 ka) 同時發生,可見盆地快速下陷對河口灣環境的出現和擴展有一定程度的幫助。 全球海水面雖然到6 ka後才趨於穩定,但7 ka後以減緩上升速度,此時盆地下陷速率也保持相對穩定,充足的沉積物供應隧逐漸填滿了河口灣,使得臺北盆地逐漸演變到現今的曲流河相環境。 本研究所建立的地層演育特徵,為具有高沉積物供應速率的連海內陸半地塹盆地的地層發育提供了新的見解,尤其在盆地下陷速率與全球海水面變動之間的相互作用上提供新的認識。 | zh_TW |
dc.description.abstract | This study establishes the stratigraphic architecture of the Taipei Basin and its temporal and spatial paleoenvironmental development during the past 50 kyr based on analyses of 54 borehole cores and 153 age data. We calculate the rates of basin subsidence from the borehole data at depths where radiocarbon age dates are available. Our results indicate that, during the eustatic sea level falling period (50–20 ka), the basin was covered by gravelly braided river deposits in the cold but wet climate. However, during 35-20 ka, the climate changed to cold and dry, low rates of sediment supply and/or rapid basin subsidence controlled the development of sedimentary environments, leading to a change in the depositional environment from gravelly braided rivers, through sandy braided rivers, to meandering rivers with falling eustatic sea level.
During the early stage of eustatic sea level rise (~20–10.2 ka), balanced rates of sediment supply and basin subsidence maintained the meandering river environment, and the meandering river deposits accumulated up to 40 m thick. On the other hand, in the relative upstream area, the far-fault area, lack of accommodation space created by the basin subsidence led to the lack of sediment preservation. Thus there is a 10-kyr gap between Sungshan Fm and Jingmei Fm. Rapid sea level rise caused by melt water pulse 1B took place during 11–8.8 ka led to the initial appearance of estuarine facies at ~10.2 ka and widened the distribution of the estuarine environment after 9.4 ka; however, the coeval phases of rapid basin subsidence ~10.6–10.2 ka, 9.4–9.0 ka and 8.9–8.5 ka promoted the first appearance and widening of the estuary, respectively. After 7 ka, when the eustatic sea level and rate of basin subsidence remained relatively stable, sufficient sediment supply gradually infilled the estuary although the eustatic sea level went stable after 6 ka. The established stratigraphy improves our understanding of the factors controlling stratigraphic development in marine-influenced inland half grabens, specifically in the Taipei Basin with high rates of sediment supply. Accommodation space in the Taipei Basin was governed by eustatic fluctuations with modulations by basin subsidence and sediment supply since the last glacial period. | en |
dc.description.provenance | Made available in DSpace on 2021-05-12T09:32:35Z (GMT). No. of bitstreams: 1 ntu-107-D99224001-1.pdf: 20506416 bytes, checksum: a5545a289733c9ac1f30908d832af5db (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 ix 第 1 章 緒論 1 第 2 章 區域地質架構 4 2.1 臺灣大地構造 4 2.2 臺北盆地周緣地質背景 5 2.3 臺北盆地沉積地層 7 2.3.1 景美層 9 2.3.2 松山層 10 2.3.3 層序地層 10 第 3 章 研究材料與方法 12 3.1 岩芯來源與岩芯描述 12 3.2 岩相分析 19 3.3 年代 19 3.4 化石 32 3.4.1 有孔蟲 32 3.4.2 花粉 33 3.5 盆地下陷量計算 34 第 4 章 岩相分析 36 4.1 景美層與松山層沉積體系 36 4.2 礫質辮狀河岩相組合 37 4.3 砂質辮狀河岩相組合 40 4.4 曲流河道岩相組合 40 4.5 泛濫平原-沼澤岩相組合 41 4.6 潮坪岩相組合 42 4.7 灣頭三角洲岩相組合 42 4.8 河口灣中央盆地岩相組合 43 4.9 景美層與松山層沉積架構特徵 44 第 5 章 地層年代 48 5.1 景美層底部年代 48 5.2 景美層頂部與松山層底部年代 50 5.3 松山層年代 53 第 6 章 盆地下陷 55 6.1 古水深反推與校正 55 6.2 盆地快速下陷期 60 第 7 章 盆地下陷、海水面變動與沉積環境演育 65 7.1 海水面下降期 (50-20 ka) 65 7.2 海水面快速上升期 (20-6 ka) 68 7.3 海水面相對穩定期 (6 ka-現代) 70 第 8 章 結論 71 參考文獻 73 附錄 臺北盆地探井岩芯柱狀圖 88 | |
dc.language.iso | zh-TW | |
dc.title | 臺北盆地五萬年來之沉積體系與盆地下陷演育研究 | zh_TW |
dc.title | Developments of the Depositional Systems and Basin Subsidence since 50 ka of the Taipei Basin | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 林殿順(Andrew T. Lin) | |
dc.contributor.oralexamcommittee | 吳樂群(Leh-Chun Wu),朱傚祖(Hao-Tsu Chu),謝孟龍(Meng-Long Hsieh),林淑芬(Shu-Fen Lin) | |
dc.subject.keyword | 臺北盆地,張裂盆地,地層發育,構造下陷,海水面變動, | zh_TW |
dc.subject.keyword | basin subsidence,rift basin,stratigraphic development,eustatic fluctuation,sediment supply,Taipei Basin, | en |
dc.relation.page | 135 | |
dc.identifier.doi | 10.6342/NTU201802575 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 20.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。