Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10808
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧(Linda C.H. Yu)
dc.contributor.authorTzu-Ling Chenen
dc.contributor.author陳姿伶zh_TW
dc.date.accessioned2021-05-20T22:00:40Z-
dc.date.available2012-09-09
dc.date.available2021-05-20T22:00:40Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-15
dc.identifier.citation1. Fontaine N, Meslin JC, Lory S and Andrieux C. Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. Br J Nutr 1996; 75: 881-892.
2. Robertson AM and Wright DP. Bacterial glycosulphatases and sulphomucin degradation. Can J Gastroenterol 1997; 11: 361-366.
3. Farquhar MG and Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17: 375-412.
4. Blikslager AT, Moeser AJ, Gookin JL, Jones SL and Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev 2007; 87: 545-564.
5. Hollander D. The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn's disease. Scand J Gastroenterol 1992; 27: 721-726.
6. Heyman M, Crain-Denoyelle AM and Desjeux JF. Endocytosis and processing of protein by isolated villus and crypt cells of the mouse small intestine. J Pediatr Gastroenterol Nutr 1989; 9: 238-245.
7. Diamond G, Beckloff N, Weinberg A and Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15: 2377-2392.
8. Ouellette AJ, Hsieh MM, Nosek MT et al. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun 1994; 62: 5040-5047.
9. Lehrer RI, Lichtenstein AK and Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 1993; 11: 105-128.
10. Smith PD, Ochsenbauer-Jambor C and Smythies LE. Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 2005; 206: 149-159.
11. Smythies LE, Sellers M, Clements RH et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 2005; 115: 66-75.
12. Baumgart DC and Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care 2002; 5: 685-694.
13. Nash S, Stafford J and Madara JL. Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1987; 80: 1104-1113.
14. Babior BM, Lambeth JD and Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys 2002; 397: 342-344.
15. McConnico RS, Weinstock D, Poston ME and Roberts MC. Myeloperoxidase activity of the large intestine in an equine model of acute colitis. Am J Vet Res 1999; 60: 807-813.
16. Krawisz JE, Sharon P and Stenson WF. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 1984; 87: 1344-1350.
17. Marcinkiewicz J. Neutrophil chloramines: missing links between innate and acquired immunity. Immunol Today 1997; 18: 577-580.
18. Stahl PD. The mannose receptor and other macrophage lectins. Curr Opin Immunol 1992; 4: 49-52.
19. Chertov O, Yang D, Howard OM and Oppenheim JJ. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 2000; 177: 68-78.
20. Elsbach P. The bactericidal/permeability-increasing protein (BPI) in antibacterial host defense. J Leukoc Biol 1998; 64: 14-18.
21. Burg ND and Pillinger MH. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol 2001; 99: 7-17.
22. Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L and Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 2005; 174: 4901-4907.
23. Mestecky J, Russell MW and Elson CO. Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 1999; 44: 2-5.
24. O'Hara AM and Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7: 688-693.
25. Hsiao JK, Huang CY, Lu YZ, Yang CY and Yu LC. Magnetic resonance imaging detects intestinal barrier dysfunction in a rat model of acute mesenteric ischemia/reperfusion injury. Invest Radiol 2009; 44: 329-335.
26. Deitch EA, Bridges WM, Ma JW, Ma L, Berg RD and Specian RD. Obstructed intestine as a reservoir for systemic infection. Am J Surg 1990; 159: 394-401.
27. Tani T, Hanasawa K, Endo Y et al. Bacterial translocation as a cause of septic shock in humans: a report of two cases. Surg Today 1997; 27: 447-449.
28. Sagar PM, MacFie J, Sedman P, May J, Mancey-Jones B and Johnstone D. Intestinal obstruction promotes gut translocation of bacteria. Dis Colon Rectum 1995; 38: 640-644.
29. Xu DZ, Lu Q and Deitch EA. Nitric oxide directly impairs intestinal barrier function. Shock 2002; 17: 139-145.
30. Han X, Fink MP, Yang R and Delude RL. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 2004; 21: 261-270.
31. Stark D, van Hal S, Marriott D, Ellis J and Harkness J. Irritable bowel syndrome: a review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int J Parasitol 2007; 37: 11-20.
32. Gwee KA, Lu CL and Ghoshal UC. Epidemiology of irritable bowel syndrome in Asia: something old, something new, something borrowed. J Gastroenterol Hepatol 2009; 24: 1601-1607.
33. Svedlund J and Sjodin I. A psychosomatic approach to treatment in the irritable bowel syndrome and peptic ulcer disease with aspects of the design of clinical trials. Scand J Gastroenterol Suppl 1985; 109: 147-151.
34. Bradesi S, McRoberts JA, Anton PA and Mayer EA. Inflammatory bowel disease and irritable bowel syndrome: separate or unified? Curr Opin Gastroenterol 2003; 19: 336-342.
35. Barbara G, Cremon C, Pallotti F, De Giorgio R, Stanghellini V and Corinaldesi R. Postinfectious irritable bowel syndrome. J Pediatr Gastroenterol Nutr 2009; 48 Suppl 2: S95-97.
36. Barbara G, Wang B, Stanghellini V et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007; 132: 26-37.
37. Lu CL, Hsieh JC, Dun NJ et al. Estrogen rapidly modulates 5-hydroxytrytophan-induced visceral hypersensitivity via GPR30 in rats. Gastroenterology 2009; 137: 1040-1050.
38. Mach T. The brain-gut axis in irritable bowel syndrome--clinical aspects. Med Sci Monit 2004; 10: RA125-131.
39. Lee CT, Chuang TY, Lu CL, Chen CY, Chang FY and Lee SD. Abnormal vagal cholinergic function and psychological behaviors in irritable bowel syndrome patients: a hospital-based Oriental study. Dig Dis Sci 1998; 43: 1794-1799.
40. van der Veek PP, van den Berg M, de Kroon YE, Verspaget HW and Masclee AA. Role of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am J Gastroenterol 2005; 100: 2510-2516.
41. Liebregts T, Adam B, Bredack C et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 2007; 132: 913-920.
42. O'Mahony L, McCarthy J, Kelly P et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 2005; 128: 541-551.
43. Macsharry J, O'Mahony L, Fanning A et al. Mucosal cytokine imbalance in irritable bowel syndrome. Scand J Gastroenterol 2008; 43: 1467-1476.
44. Spiller RC, Jenkins D, Thornley JP et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 2000; 47: 804-811.
45. Thabane M and Marshall JK. Post-infectious irritable bowel syndrome. World J Gastroenterol 2009; 15: 3591-3596.
46. Park JH, Park DI, Kim HJ et al. The Relationship between Small-Intestinal Bacterial Overgrowth and Intestinal Permeability in Patients with Irritable Bowel Syndrome. Gut Liver 2009; 3: 174-179.
47. Pimentel M, Chow EJ and Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 2003; 98: 412-419.
48. Walters B and Vanner SJ. Detection of bacterial overgrowth in IBS using the lactulose H2 breath test: comparison with 14C-D-xylose and healthy controls. Am J Gastroenterol 2005; 100: 1566-1570.
49. Posserud I, Stotzer PO, Bjornsson ES, Abrahamsson H and Simren M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut 2007; 56: 802-808.
50. Wang LH, Fang XC and Pan GZ. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut 2004; 53: 1096-1101.
51. Moss-Morris R and Spence M. To 'lump' or to 'split' the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med 2006; 68: 463-469.
52. Faubert G. Immune response to Giardia duodenalis. Clin Microbiol Rev 2000; 13: 35-54, table of contents.
53. Gardner TB and Hill DR. Treatment of giardiasis. Clin Microbiol Rev 2001; 14: 114-128.
54. Roxstrom-Lindquist K, Palm D, Reiner D, Ringqvist E and Svard SG. Giardia immunity--an update. Trends Parasitol 2006; 22: 26-31.
55. Eckmann L. Mucosal defences against Giardia. Parasite Immunol 2003; 25: 259-270.
56. Li E, Zhou P, Petrin Z and Singer SM. Mast cell-dependent control of Giardia lamblia infections in mice. Infect Immun 2004; 72: 6642-6649.
57. Davids BJ, Palm JE, Housley MP et al. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J Immunol 2006; 177: 6281-6290.
58. Langford TD, Housley MP, Boes M et al. Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun 2002; 70: 11-18.
59. Scott KG, Logan MR, Klammer GM, Teoh DA and Buret AG. Jejunal brush border microvillous alterations in Giardia muris-infected mice: role of T lymphocytes and interleukin-6. Infect Immun 2000; 68: 3412-3418.
60. Scott KG, Yu LC and Buret AG. Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect Immun 2004; 72: 3536-3542.
61. Farthing MJ. Giardiasis. Gastroenterol Clin North Am 1996; 25: 493-515.
62. Tandon BN, Tandon RK, Satpathy BK and Shriniwas. Mechanism of malabsorption in giardiasis: a study of bacterial flora and bile salt deconjugation in upper jejunum. Gut 1977; 18: 176-181.
63. Buret AG, Mitchell K, Muench DG and Scott KG. Giardia lamblia disrupts tight junctional ZO-1 and increases permeability in non-transformed human small intestinal epithelial monolayers: effects of epidermal growth factor. Parasitology 2002; 125: 11-19.
64. Seow F, Katelaris P and Ngu M. The effect of Giardia lamblia trophozoites on trypsin, chymotrypsin and amylase in vitro. Parasitology 1993; 106 ( Pt 3): 233-238.
65. Jimenez JC, Fontaine J, Grzych JM, Dei-Cas E and Capron M. Systemic and mucosal responses to oral administration of excretory and secretory antigens from Giardia intestinalis. Clin Diagn Lab Immunol 2004; 11: 152-160.
66. Roskens H and Erlandsen SL. Inhibition of in vitro attachment of Giardia trophozoites by mucin. J Parasitol 2002; 88: 869-873.
67. Shukla G, Devi P and Sehgal R. Effect of Lactobacillus casei as a probiotic on modulation of giardiasis. Dig Dis Sci 2008; 53: 2671-2679.
68. Aley SB, Zimmerman M, Hetsko M, Selsted ME and Gillin FD. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun 1994; 62: 5397-5403.
69. Fernandes PD and Assreuy J. Role of nitric oxide and superoxide in Giardia lamblia killing. Braz J Med Biol Res 1997; 30: 93-99.
70. Eckmann L, Laurent F, Langford TD et al. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol 2000; 164: 1478-1487.
71. Venkatesan P, Finch RG and Wakelin D. A comparison of mucosal inflammatory responses to Giardia muris in resistant B10 and susceptible BALB/c mice. Parasite Immunol 1997; 19: 137-143.
72. Hill DR and Pearson RD. Ingestion of Giardia lamblia trophozoites by human mononuclear phagocytes. Infect Immun 1987; 55: 3155-3161.
73. Oberhuber G, Kastner N and Stolte M. Giardiasis: a histologic analysis of 567 cases. Scand J Gastroenterol 1997; 32: 48-51.
74. Koudela B and Vitovec J. Experimental giardiasis in goat kids. Vet Parasitol 1998; 74: 9-18.
75. Crouch AA, Seow WK, Whitman LM, Smith SE and Thong YH. Inhibition of adherence of Giardia intestinalis by human neutrophils and monocytes. Trans R Soc Trop Med Hyg 1991; 85: 375-379.
76. Zhou P, Li E, Zhu N, Robertson J, Nash T and Singer SM. Role of interleukin-6 in the control of acute and chronic Giardia lamblia infections in mice. Infect Immun 2003; 71: 1566-1568.
77. Galli SJ, Nakae S and Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005; 6: 135-142.
78. Singer SM and Nash TE. T-cell-dependent control of acute Giardia lamblia infections in mice. Infect Immun 2000; 68: 170-175.
79. Perlmutter DH, Leichtner AM, Goldman H and Winter HS. Chronic diarrhea associated with hypogammaglobulinemia and enteropathy in infants and children. Dig Dis Sci 1985; 30: 1149-1155.
80. Ropolo AS, Saura A, Carranza PG and Lujan HD. Identification of variant-specific surface proteins in Giardia muris trophozoites. Infect Immun 2005; 73: 5208-5211.
81. Ringqvist E, Palm JE, Skarin H et al. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol 2008; 159: 85-91.
82. D'Anchino M, Orlando D and De Feudis L. Giardia lamblia infections become clinically evident by eliciting symptoms of irritable bowel syndrome. J Infect 2002; 45: 169-172.
83. Grazioli B, Matera G, Laratta C et al. Giardia lamblia infection in patients with irritable bowel syndrome and dyspepsia: a prospective study. World J Gastroenterol 2006; 12: 1941-1944.
84. Nygard K, Schimmer B, Sobstad O et al. A large community outbreak of waterborne giardiasis-delayed detection in a non-endemic urban area. BMC Public Health 2006; 6: 141.
85. Hanevik K, Hausken T, Morken MH et al. Persisting symptoms and duodenal inflammation related to Giardia duodenalis infection. J Infect 2007; 55: 524-530.
86. Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 1983; 77: 487-488.
87. Grossmann J, Maxson JM, Whitacre CM et al. New isolation technique to study apoptosis in human intestinal epithelial cells. Am J Pathol 1998; 153: 53-62.
88. Grossmann J, Walther K, Artinger M et al. Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur J Cell Biol 2003; 82: 262-270.
89. Diaz-Granados N, Howe K, Lu J and McKay DM. Dextran sulfate sodium-induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. Am J Pathol 2000; 156: 2169-2177.
90. Muller N and von Allmen N. Recent insights into the mucosal reactions associated with Giardia lamblia infections. Int J Parasitol 2005; 35: 1339-1347.
91. Troeger H, Epple HJ, Schneider T et al. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 2007; 56: 328-335.
92. Williamson AL, O'Donoghue PJ, Upcroft JA and Upcroft P. Immune and pathophysiological responses to different strains of Giardia duodenalis in neonatal mice. Int J Parasitol 2000; 30: 129-136.
93. Tomkins AM, Wright SG, Drasar BS and James WP. Bacterial colonization of jejunal mucosa in giardiasis. Trans R Soc Trop Med Hyg 1978; 72: 33-36.
94. Scott KG, Meddings JB, Kirk DR, Lees-Miller SP and Buret AG. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology 2002; 123: 1179-1190.
95. Chin AC, Teoh DA, Scott KG, Meddings JB, Macnaughton WK and Buret AG. Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 2002; 70: 3673-3680.
96. Youakim A and Ahdieh M. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol 1999; 276: G1279-1288.
97. Ma TY, Iwamoto GK, Hoa NT et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 2004; 286: G367-376.
98. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P and Halbwachs Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80: 617-653.
99. Koot BG, ten Kate FJ, Juffrie M, Rosalina I, Taminiau JJ and Benninga MA. Does Giardia lamblia cause villous atrophy in children?: A retrospective cohort study of the histological abnormalities in giardiasis. J Pediatr Gastroenterol Nutr 2009; 49: 304-308.
100. Yamashiro S, Kamohara H, Wang JM, Yang D, Gong WH and Yoshimura T. Phenotypic and functional change of cytokine-activated neutrophils: inflammatory neutrophils are heterogeneous and enhance adaptive immune responses. J Leukoc Biol 2001; 69: 698-704.
101. Lloyds D, Brindle NP and Hallett MB. Priming of human neutrophils by tumour necrosis factor-alpha and substance P is associated with tyrosine phosphorylation. Immunology 1995; 84: 220-226.
102. Yu L. Protective mechanism against gut barrier dysfunction in mesenteric ischemia/reperfusion. Adaptive medicine 2010; 2: 11-22.
103. Al-Ghoul WM, Khan M, Fazal N and Sayeed MM. Mechanisms of postburn intestinal barrier dysfunction in the rat: roles of epithelial cell renewal, E-cadherin, and neutrophil extravasation. Crit Care Med 2004; 32: 1730-1739.
104. Anand RJ, Dai S, Rippel C et al. Activated macrophages inhibit enterocyte gap junctions via the release of nitric oxide. Am J Physiol Gastrointest Liver Physiol 2008; 294: G109-119.
105. Abreu MT, Palladino AA, Arnold ET, Kwon RS and McRoberts JA. Modulation of barrier function during Fas-mediated apoptosis in human intestinal epithelial cells. Gastroenterology 2000; 119: 1524-1536.
106. Merger M, Viney JL, Borojevic R et al. Defining the roles of perforin, Fas/FasL, and tumour necrosis factor alpha in T cell induced mucosal damage in the mouse intestine. Gut 2002; 51: 155-163.
107. Gitter AH, Bendfeldt K, Schulzke JD and Fromm M. Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. FASEB J 2000; 14: 1749-1753.
108. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT and Turner JR. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 2005; 166: 409-419.
109. Miller LS, Pietras EM, Uricchio LH et al. Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol 2007; 179: 6933-6942.
110. Sato E, Simpson KL, Grisham MB, Koyama S and Robbins RA. Inhibition of MIP-1alpha-induced human neutrophil and monocyte chemotactic activity by reactive oxygen and nitrogen metabolites. J Lab Clin Med 2000; 135: 161-169.
111. Kamda JD and Singer SM. Phosphoinositide 3-kinase-dependent inhibition of dendritic cell interleukin-12 production by Giardia lamblia. Infect Immun 2009; 77: 685-693.
112. Homaidan FR, El-Sabban ME, Chakroun I, El-Sibai M and Dbaibo GS. IL-1 stimulates ceramide accumulation without inducing apoptosis in intestinal epithelial cells. Mediators Inflamm 2002; 11: 39-45.
113. Kristjansson G, Venge P, Wanders A, Loof L and Hallgren R. Clinical and subclinical intestinal inflammation assessed by the mucosal patch technique: studies of mucosal neutrophil and eosinophil activation in inflammatory bowel diseases and irritable bowel syndrome. Gut 2004; 53: 1806-1812.
114. Camilleri M. Probiotics and irritable bowel syndrome: rationale, putative mechanisms, and evidence of clinical efficacy. J Clin Gastroenterol 2006; 40: 264-269.
115. Han X, Fink MP and Delude RL. Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 2003; 19: 229-237.
116. Wu LL. Epithelial iNOS Impairs Tight Junctions Leading to Bacterial Translocation via Pkczeta Activation and Rho-ROCK-Dependent Myosin Light Chain Phosphorylation in Obstructed Guts Gastroenterology 2010; 138: S-4.
117. Inaba T, Alexander JW, Ogle JD and Ogle CK. Nitric oxide promotes the internalization and passage of viable bacteria through cultured Caco-2 intestinal epithelial cells. Shock 1999; 11: 276-282.
118. Suzuki Y, Deitch EA, Mishima S, Lu Q and Xu D. Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia-reperfusion injury. Crit Care Med 2000; 28: 3692-3696.
119. Palasthy Z, Kaszaki J, Lazar G, Nagy S and Boros M. Intestinal nitric oxide synthase activity changes during experimental colon obstruction. Scand J Gastroenterol 2006; 41: 910-918.
120. Hua TC and Moochhala SM. Role of nitric oxide in hemorrhagic shock-induced bacterial translocation. J Surg Res 2000; 93: 247-256.
121. Nadler EP and Ford HR. Regulation of bacterial translocation by nitric oxide. Pediatr Surg Int 2000; 16: 165-168.
122. Demirkiran AE, Balkaya M, Tuncyurek P et al. The effects of nitric oxide supplementation and inhibition on bacterial translocation in bile duct ligated rats. Acta Chir Belg 2006; 106: 202-205.
123. Marion R, Coeffier M, Leplingard A, Favennec L, Ducrotte P and Dechelotte P. Cytokine-stimulated nitric oxide production and inducible NO-synthase mRNA level in human intestinal cells: lack of modulation by glutamine. Clin Nutr 2003; 22: 523-528.
124. Kubes P and McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med 2000; 109: 150-158.
125. Bojarski C, Weiske J, Schoneberg T et al. The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 2004; 117: 2097-2107.
126. Widmaier EP, Raff H, Strang KT and Vander AJ. Vander, Sherman, & Luciano's human physiology : the mechanisms of body function. Boston, McGraw-Hill Higher Education, 2004.
127. http://www.dpd.cdc.gov/dpdx/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10808-
dc.description.abstract腸躁症是一種功能性缺損的腸道疾病,症狀包括腹部疼痛以及排便習慣的改變,然而卻無法偵測到明顯腸道組織病變或病原體之存在。最新研究發現在腸躁症病人身上有低程度腸道組織發炎,黏膜屏障失能和腸腔細菌增生的現象。許多文獻指出感染性急性腸胃炎之後可能會誘發腸躁症,此種類型特稱為「後感染腸躁症」。梨形蟲Giardia lamblia是一種常見以水作傳染媒介之腸道寄生蟲。近年在挪威之流行病學研究發現,高達80 %受梨形蟲感染的病人在受感染後的12-30個月,且在已排除體內之寄生蟲至少6個月之後出現腸躁症的症狀。儘管腸躁症造成了相當嚴重的醫療問題,但苦於無適當之實驗動物模式,消化醫學界對腸躁症之致病機轉及原理仍不清楚。因此本實驗的目的為利用梨形蟲感染小鼠建立「後感染腸躁症」的動物模式,並探討梨形蟲感染期間及後排除期是否會引發腸道屏障失常及發炎現象。本實驗將Balb/c小鼠灌食10e7隻Giardia lamblia GS/M 品系之滋養體,或給予無菌之磷酸鹽緩衝液,並在感染後第0天至第49天每週分別計數小腸中滋養體的數目以建立出感染曲線。由感染曲線得知,梨形蟲寄生於小腸之高峰期約在感染第4天到第7天,本實驗中稱為「感染期」;而在感染第14天則完全無法偵測到寄生蟲,因此本實驗將第21天到第49天視為「後排除期」。本實驗接著分析腸道黏膜層中內吞至細胞內的細菌數作為腸道屏障功能的指標。分析小腸及大腸之黏膜層細菌量發現,在感染第7天(中位數分別為164.2及253.4 CFU/g)及第35天(中位數分別為118.4及98.1 CFU/g)時皆明顯高於感染前即第0天之黏膜細菌量(中位數分別為0.0及0.3 CFU/g)。緩衝液灌食組第35天時,其小腸及大腸黏膜層細菌量與第0天相似。在第7天時,感染組之小腸及大腸總細菌量比起緩衝液組顯著增加 4-10倍,表示腸道細菌在感染期有增生現象; 但第35天,感染組和緩衝液組並無差別。此外,在感染第7和35天時,在小腸之上皮表層細菌量相較於個別之緩衝液組皆有升高,顯示出梨形蟲感染期至後排除期會有持續性腸道細菌附著的現象。而在感染第7天時,黏膜之occludin有片斷化的情形。此外,小腸組織的骨髓過氧化酶活性在第7天及第35天時也提高。在感染第7天時,血液中嗜中性白血球之百分比增加,並在第7天及第35天的小腸組織切片中皆有看到大量嗜中性白血球進到腺窩附近。此外,在感染第35天,小腸中之腫瘤壞死因子α (TNFα),細胞激素-1β(IL-1β) 及巨噬細胞炎性蛋白-1α(MIP-1α)總量增加,並伴隨著誘導型一氧化氮合成酶(iNOS)表現增加的情形。由上述之實驗結果顯示,小鼠在梨形蟲感染之「後排除期」,會有腸道上皮屏障失常引發腸腔細菌持續進入腸組織的現象,並伴隨著腸道發炎及嗜中性白血球的活化情形產生。而此梨形蟲感染「後排除期」之動物模式或許將來可用來探討「後感染腸躁症」之致病機轉。zh_TW
dc.description.abstractIrritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain and changes in bowel habits, for which neither apparent structural lesion nor presence of pathogen could be found. Recent data indicated that low grade intestinal inflammation, impaired mucosal barrier function, and enteric bacterial overgrowth were identified in IBS patients. Consistent evidence showed that IBS may be the adverse outcome of an acute episode of infectious gastroenteritis, termed post-infectious (PI) IBS. Giardia lamblia is the most frequently identified etiologic agent of waterborne disease worldwide. Recent epidemiological data from Norway indicated that more than 80 % of patients from an outbreak of giardiasis showed IBS symptoms after 12-30 months post-onset of Giardia infection and at least 6 months after the clearance of parasites. Despite that IBS represents a substantial clinical problem, its mechanism and pathogenesis remain poorly understood mainly due to the lack of animal models. The aim of the current study is to establish a PI-IBS model using Giardia-infected mice and to evaluate gut barrier dysfunction and mucosal inflammation during infection and after eradication of parasites. Balb/c mice were inoculated with 10e7 trophozoites of Giardia lamblia strain GS/M or pair-fed with phosphate-buffered saline (PBS). The trophozoites in the small intestines were enumerated weekly from PI day 0 to 49 to determine the time course of parasitic infection. Giardia colonization peaked at PI day 4-7 and this period was termed the 'infection phase'; the parasites were cleared by PI day 14, and therefore, day 21-49 was denoted the 'post-clearance phase'. Intestinal epithelial barrier dysfunction was evidenced by increased bacterial colony forming units (CFU) in the gut mucosa. The medium of mucosal endocytosed bacterial counts in the small and large intestines on PI day 7 (164.2 and 253.4 CFU/g) and on PI day 35(118.4 and 98.1 CFU/g)were respectively higher than the values on PI day 0(0.0 and 0.3 CFU/g). In mouse pair-fed with PBS, the mucosal bacterial counts in small and large intestines on day 35 were comparable with day 0. Total bacterial counts in small and large intestines on PI day 7 in mouse infected with G. lamblia was 4 to 10 times higher than those pair-fed with PBS, suggesting bacterial overgrowth during giardiasis; whereas no difference was seen between the two groups on PI day 35. The numbers of superficial bacteria in small intestines of Giardia-infected mice increased on day 7 and day 35 compared to those pair-fed with PBS, suggesting bacterial adherence during infection and after clearance of Giardia. Increased tight junctional occludin cleavage was noticed in small intestinal mucosa during infection. Heightened intestinal myeloperoxidase activity was found on day 7 and 35. Increased percentage of neutrophils in white blood cells was seen on PI day 7, and augmented neutrophil infiltration into the crypt area in small intestinal tissues was observed on PI day 7 and 35. Elevated intestinal TNFα, IL-1βand MIP-1α levels were associated with increased epithelial iNOS expression on PI day 35. In conclusion, Giardia-infected mice showed persistent enteric bacterial influx accompanied by mucosal inflammation and neutrophil activation after parasite clearance. The post-giardiasis animals may be suitable models for investigating gut barrier dysfunction underlying the mechanism of PI-IBS.en
dc.description.provenanceMade available in DSpace on 2021-05-20T22:00:40Z (GMT). No. of bitstreams: 1
ntu-99-R97441006-1.pdf: 8231234 bytes, checksum: 2822449fe4bd4127d0e157677d683adc (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書
誌謝……………………………………………………………………………………I
中文摘要……………………………………………………………………………..III
英文摘要……………………………………………………………………………...V
中英文縮寫名詞對照……………………………………………………………...VIII
一、前言………………………………………………………………………………….1
1. 腸道組織之外觀結構……………………………………………………………….1
2. 腸道生理功能……………………………………………………………………….1
2.1.物理性屏障…………………………………………………………………….1
2.2.化學性屏障…………………………………………………………………….3
2.3.免疫性屏障…………………………………………………………………….3
2.3.1 巨噬細胞 (macrophage)………………………………………………….4
2.3.2 多型核嗜中性白血球…………………………………………………….4
2.3.3 適應性免疫反應………………………………………………………….6
3. 腸腔內共生細菌 (commensal bacteria)……………………………………………..6
4. 腸躁症(Irritable Bowel Syndrome, IBS)………………………………………….7
4.1. IBS之病理症狀………………………………………………………………..7
4.2. 後感染腸躁症Post-infectious Irritable Bowel Syndrome (PI-IBS)………….9
5. 梨形蟲 (Giardia lamblia) ………………………………………………………….10
5.1 梨形蟲分類和自然史(natural course)………………………………….........10
5.2 梨形蟲感染引發腸道病變……………………………………………….......11
5.3 宿主對G. lamblia感染的防衛機制………………………………………….11
5.3.1 自然性屏障……………………………………………………………..11
5.3.2. 宿主的免疫反應……………………………………………………….11
5.3.3 梨形蟲對宿主的免疫抑制……………………………………………..13
6. Giardia感染與PI-IBS之關係………………………………………………………14
7. 本實驗之目的………………………………………………………………………14
二、材料與方法………………………………………………………………………..16
1.實驗動物……………………………………………………………………………..16
2.實驗寄生蟲…………………………………………………………………………..16
3.實驗動物分組………………………………………………………………………..17
4. 組織處理及實驗分析………………………………………………………………18
4.1. Giardia lamblia trophozoites 計數…………………………………………..18
4.2 腸道細菌數目變化分析……………………………………………………...18
4.2.1腸道黏膜細胞內吞細菌(mucosal endocytosed bacteria)分析………….18
4.2.2 腸道上皮表層細菌(superficial bacteria)量分析……………………….20
4.2.3 腸段總細菌量(total bacteria)分析……………………………………...20
4.3. 白血球總數、嗜中性白血球、淋巴球、單核白血球之百分比計數……..21
4.4. 腸道組織中嗜中性白血球染色(neutrophil staining)…………………….21
4.5. 腸道組織骨髓過氧化酶(Myeloperoxidase, MPO)活性測定…………….22
4.6. 小鼠腸道組織細胞激素之表現量測試……………………………………..23
4.6.1 瘤壞死因子α (Tumor necrosis factor (TNF)α)、巨噬細胞炎性蛋白-1α (Macrophage inflammatory protein (MIP)-1α )、細胞激素(IL-1β、IL-6及IL-12)之表現量測試………………………………………………………….23
4.6.2 干擾素γ(Interferon(INF)-γ)之表現量測試…………………………24
4.7. 小鼠血清中IL-1β之表現量測試……………………………………….......25
4.8. 組織切片及染色……………………………………………………………..25
4.8.1石蠟包埋檢體的製備……………………………………………………25
4.8.2蘇木紫-伊紅染色 (Haematoxylin and Eosin Staining)…………………26
4.8.3免疫螢光染色-誘導型一氧化氮合成酶(inducible nitric oxide synthase, iNOS)………………………………………………………………………….26
4.9西方轉漬法 (Western blotting)……………………………………………….27
4.9.1 黏膜層蛋白質萃取 …………………………………………………….27
4.9.2 蛋白質定量……………………………………………………………..28
4.9.3 蛋白質電泳……………………………………………………………..28
4.9.4 蛋白質分析……………………………………………………………28
4.10 細胞凋亡染色-缺口末端標記技術 ( terminal deoxynucleotide transferase biotin-dUTP nick-end labeling, TUNEL )……………………………………….29
4.11 統計方法…………………………………………………………………….30
三、實驗結果…………………………………………………………………………..32
1. G. lamblia 之感染曲線……………………………………………………………...32
2. 腸道黏膜細胞之內吞細菌(mucosal endocytosed bacteria)量……………………..32
3. G. lamblia感染對於腸道的總細菌量及表層細菌量之影響………………………33
3.1. 腸道總細菌量(total bacteria)………………………………………………..33
3.2. 腸道上皮表層細菌(superficial bacteria)量…………………………………34
4. 腸道黏膜組織中occludin之表現………………………………………………….34
5. 白血球總數、嗜中性白血球、淋巴球及單核白血球百分比計數……………….34
6. 腸道組織中嗜中性白血球染色(neutrophil staining)……………………………35
7. 腸道組織骨髓過氧化酶(Myeloperoxidase, MPO)活性測定……………………35
8. 小鼠腸道組織TNFα、MIP-1α、IL-1β、IL-6、IL-12及INFγ之表現量測試……36
9. 小鼠血清中IL-1β之表現量測試…………………………………………………..36
10.腸道組織中 iNOS之表現………………………………………………………….37
11. G. lamblia感染對於小腸絨毛型態及腸道上皮細胞凋亡之影響………………..37
四、討論 ………………………………………………………………………………39
五、圖表………………………………………………………………………………..49
六、參考文獻…………………………………………………………………………...66
dc.language.isozh-TW
dc.title梨形蟲感染排除後之小鼠腸道呈現持續性上皮屏障失常及黏膜發炎的現象:探討「後感染腸躁症」之致病機轉zh_TW
dc.titlePersistent Gut Barrier Dysfunction and Mucosal Inflammation after Eradication of Giardia lamblia Infection: Implications for the Pathogenesis of Post-Infectious Irritable Bowel Syndromeen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧俊良(Ching-Liang Lu),吳明賢,孫錦虹(Chin-Hung Sun)
dc.subject.keyword後感染腸躁症,梨形蟲,腸道屏障,骨髓過氧化&#37238,嗜中性白血球,誘導型一氧化氮合成&#37238,zh_TW
dc.subject.keywordpost-infectious (PI) IBS,Giardia lamblia,gut barrier,myeloperoxidase,neutrophils,iNOS,en
dc.relation.page84
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf8.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved