Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10805
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳鈞(Chun Chen)
dc.contributor.authorMeng-Hsien Linen
dc.contributor.author林孟賢zh_TW
dc.date.accessioned2021-05-20T22:00:24Z-
dc.date.available2020-07-15
dc.date.available2021-05-20T22:00:24Z-
dc.date.copyright2010-07-21
dc.date.issued2010
dc.date.submitted2010-07-16
dc.identifier.citation1. M.J. Donachie and S.J. Donachie,“Superalloys A Technical Guide”, 2002.
2. M. Hetmanczyk, L. Swadzba, and B. Mendala,“Advanced materials and protective coatings in aero-engines application”. Journal of Achievements in Materials and Manufacturing Engineering.Vol. 24, 2007, pp. 372-381.
3. M. Flemings,“Solidification processing”. Metallurgical and Materials Transactions B.Vol. 5, 1974, pp. 2121-2134.
4. C.T. Sims, N.S. Stoloff, and W.C.Hagel,“Superalloys II”, 1987.
5. F.L. VerSnyder and M.E. Shank,“The development of columnar grain and single crystal high temperature materials through directional solidification”. Materials Science Engineering.Vol. 6, 1970, pp. 213-247.
6. G.W. Goward and D.H. Boone,“Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys”. Oxidation of Metals.Vol. 3, 1971, pp. 475-495.
7. J. Benoist, et al.,“Microstructure of Pt-modified aluminide coatings on Ni-based superalloys”. Surface and Coatings Technology.Vol. 182, 2004, pp. 14-23.
8. T.E. Strangman,“Thermal barrier coatings for turbine airfoils”. Thin Solid Films.Vol. 127, 1985, pp. 93-106.
9. S. Sampath and H. Herman,“Rapid solidification and microstructure development during plasma spray deposition”. Journal of Thermal Spray Technology.Vol. 5, 1996, pp. 445-456.
10. Z. Yu, D.D. Hass, and H.N.G. Wadley,“NiAl bond coats made by a directed vapor deposition approach”. Materials Science and Engineering A.Vol. 394, 2005, pp. 43-52.
11. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin,“A method of cold gas dynamic deposition”. Dokl. Akad. Nauk SSSR.Vol. 315, 1990, pp. 1062-1065.
12. J. Pattison, et al.,“Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication”. International Journal of Machine Tools and Manufacture.Vol. 47, 2007, pp. 627-634.
13. S.V. Klinkov, V.F. Kosarev, and M. Rein,“Cold spray deposition: Significance of particle impact phenomena”. Aerospace Science and Technology.Vol. 9, 2005, pp. 582-591.
14. W.B. Choi, et al.,“Integrated characterization of cold sprayed aluminum coatings”. Acta Materialia.Vol. 55, 2007, pp. 857-866.
15. S. Sampath, et al.,“Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt.%Al bond coats”. Materials Science and Engineering A.Vol. 364, 2004, pp. 216-231.
16. T.H.V. Steenkiste, J.R. Smith, and R.E. Teets,“Aluminum coatings via kinetic spray with relatively large powder particles”. Surface and Coatings Technology.Vol. 154, 2002, pp. 237-252.
17. S.S. Bartenev, Y.P. Fedleo, and A.I. Grigirov,“Detonation coatins in machine building”, in Mashinostroenie. 1982.
18. C. Berndt,“Proceeding of the 1st International thermal spray conference”. in Thermal Spray:Surface Engineering via Applied Research, 2000,
19. C.-J. Li and W.-Y. Li,“Deposition characteristics of titanium coating in cold spraying”. Surface and Coatings Technology.Vol. 167, 2003, pp. 278-283.
20. R. McCune, et al.,“Characterization of copper layers produced by cold gas-dynamic spraying”. Journal of Thermal Spray Technology.Vol. 9, 2000, pp. 73-82.
21. L. Ajdelsztajn, B. Jodoin, and J.M. Schoenung,“Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying”. Surface and Coatings Technology.Vol. 201, 2006, pp. 1166-1172.
22. P. Richer, B. Jodoin, and L. Ajdelsztajn,“Substrate roughness and thickness effects on cold spray nanocrystalline Al−Mg coatings”. Journal of Thermal Spray Technology.Vol. 15, 2006, pp. 246-254.
23. Q. Zhang, et al.,“Study of oxidation behavior of nanostructured NiCrAlY bond coatings deposited by cold spraying”. Surface and Coatings Technology.Vol. 202, 2008, pp. 3378-3384.
24. H.-J. Kim, C.-H. Lee, and S.-Y. Hwang,“Fabrication of WC-Co coatings by cold spray deposition”. Surface and Coatings Technology.Vol. 191, 2005, pp. 335-340.
25. M. Grujicic, et al.,“Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process”. Materials & Design.Vol. 25, 2004, pp. 681-688.
26. H. Assadi, et al.,“Bonding mechanism in cold gas spraying”. Acta Materialia.Vol. 51, 2003, pp. 4379-4394.
27. T. Schmidt, et al.,“Development of a generalized parameter window for cold spray deposition”. Acta Materialia.Vol. 54, 2006, pp. 729-742.
28. I.H.G. Livingstone, K. Verolme, and C.J. Hayhurst,“Predicting the fragmentation onset velocity for different metallic projectiles using numerical simulations”. International Journal of Impact Engineering.Vol. 26, 2001, pp. 453-464.
29. G.L. Stradling, et al.,“Ultra-high velocity impacts: cratering studies of microscopic impacts from 3 km/s to 30 km/s”. International Journal of Impact Engineering.Vol. 14, 1993, pp. 719-727.
30. C.-J. Tsai, D.Y.H. Pui, and B.Y.H. Liu,“Elastic flattening and particle adhesion”, Vol. 15, 1991, London, ROYAUME-UNI Taylor & Francis.
32. X. Li, P.F. Dunn, and R.M. Brach,“Experiment and numerical studies of microsphere oblique impact with planar surfaces”. Journal of Aerosol Science.Vol. 31, 2000, pp. 583-594.
33. V. Heuer, G. Walter, and I.M. Hutchings,“A study of the erosive wear of fibrous ceramic components by solid particle impact”. Wear.Vol. 225-229, 1999, pp. 493-501.
34. G.P. Tilly and W. Sage,“The interaction of particle and material behaviour in erosion processes”. Wear.Vol. 16, 1970, pp. 447-465.
35. P.C. King and M. Jahedi,“Relationship between particle size and deformation in the cold spray process”. Applied Surface Science.Vol. 256, 2010, pp. 1735-1738.
36. V.F. Kosarev, S.V. Klinkov, and A.A. Sova,“Recently patented facilities and applications in cold spray engineering”. Recent Patents on Engineering.Vol. 1, 2007, pp. 35-42.
37. T.H.V. Steenkiste,“Pseudo CMOS dynamic logic with delayed clocks”, in US20050211799 A1. 2005.
38. T.H.V. Steenkiste,“Spray system with combined kinetic spray and thermal spray ability”, in US20040058064A1. 2004.
39. S.V. Klinkov, et al.,“Deposition of multicomponent coatings by cold spray”. Surface & Coatings Technology.Vol. 202, 2008, pp. 5858-5862.
40. T.H.V. Steenkiste,“Replaceable throat insert for a kinetic spray nozzle ”, in US 20060038044A1. 2006.
41. W. Kroemmer, P. Heinrich, and P. Richter,“Cold spraying - equipment and application trends.”, in ITSC 2003: International Thermal Spray Conference 2003: Advancing the
Science and Applying the Technology. 2003 Orlando. p. 97-102.
42. D. Gilmore, et al.,“Particle velocity and deposition efficiency in the cold spray process”. Journal of Thermal Spray Technology.Vol. 8, 1999, pp. 576-582.
43. A. Papyrin,“Cold spray technology”, ed. V. Kosarev, et al., 2007.
44. B. Jodoin, F. Raletz, and M. Vardelle,“Cold spray modeling and validation using an optical diagnostic method”. Surface and Coatings Technology.Vol. 200, 2006, pp. 4424-4432.
45. T.-C. Jen, et al.,“Numerical investigations on cold gas dynamic spray process with nano- and microsize particles”. International Journal of Heat and Mass Transfer.Vol. 48, 2005, pp. 4384-4396.
46. M. Bray, A. Cockburn, and W. O'Neill,“The Laser-assisted Cold Spray process and deposit characterisation”. Surface and Coatings Technology.Vol. 203, 2009, pp. 2851-2857.
47. B. Samareh and A. Dolatabadi,“A three-dimensional analysis of the cold spray process: The effects of substrate location and shape”. 2007, pp.
48. C.-J. Li, et al.,“A theoretical model for prediction of deposition efficiency in cold spraying”. Thin Solid Films.Vol. 489, 2005, pp. 79-85.
49. W.J. Molloy,“Investment cast superalloys”. Advanced Materials and Process.Vol. 138, 1990, pp. 23-30.
50. Y. KOIZUMI, et al.,“Development of a Next-Generation Ni-base Single Crystal Superalloy”, in Proceedings of the International Gas Turbine Congress(ICGT). 2003 Tokyo.
51. G.W. Meetham,“High-temperature materials — a general review”. Journal of Materials Science.Vol. 26, 1991, pp. 853-860.
52. C.T. Sims and W.C. Hagel,“The superalloys”, 1972.
53. G. Lvov, V. Levit, and M. Kaufman,“Mechanism of primary MC carbide decomposition in Ni-base superalloys”. Metallurgical and Materials Transactions A.Vol. 35, 2004, pp. 1669-1679.
54. C.R. Brooks,“Heat treatment, structure and properties of nonferrous alloys”, 1982, Ohio ASM.
55. C.R. Brooks,“Heat treatment, structure and properties of nonferous alloys”, 1982, Ohio ASM.
56. R.F. Decker and C.T. Sims,“The metallurgy of nickel-base alloy”, 1972.
57. Y.H. Zhao, H.W. Sheng, and K. Lu,“Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition”. Acta Materialia.Vol. 49, 2001, pp. 365-375.
58. R.S. Lima, et al.,“Microstructural characteristics of cold-sprayed nanostructured WC-Co coatings”. Thin Solid Films.Vol. 416, 2002, pp. 129-135.
59. A.A. Nazarov, A.E. Romanov, and R.Z. Valiev,“Random disclination ensembles in ultrafine-grained materials produced by severe plastic deformation”. Scripta Materialia.Vol. 34, 1996, pp. 729-734.
60. P. Scardi and M. Leoni,“Whole powder pattern modelling”. Acta Crystallographica Section A.Vol. 58, 2002, pp. 190-200.
61. A.I. Salimon, A.M. Korsunsky, and A.N. Ivanov,“The character of dislocation structure evolution in nanocrystalline FCC Ni-Co alloys prepared by high-energy mechanical milling.”. Materials Science and Engineering A.Vol. 271, 1999, pp. 196-205.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10805-
dc.description.abstract本研究專注於電廠氣渦輪機高溫區段IN-738葉片之冷噴銲塗層製程探討。一般而言,電廠基於成本考量,每隔固定時間即會進行氣渦輪機之檢修,將受損之動葉片進行銲補再生。先進之雷射銲補製程係採用雷射同軸輸送IN-738粉末至葉片受損區域,唯預熱溫度需達到800℃以上方可得到良好的銲補效果,製程較為複雜且耗時。冷噴銲具有銲補速度快且塗層孔隙率低的特性,若應用於IN-738葉片之銲補,可能取代部份銲補再生製程。
實驗結果顯示,IN-738粉末在氮氣載流氣體溫度780至830℃間,噴銲於IN-738基材上可獲得良好的塗層。金相觀察顯示IN-738塗層與基材有良好之接合,且孔隙率相當低(<5%)。SEM更可觀察到粉末邊緣之絕熱剪切應變區,此區為粉末間或粉末與塗層之重要鍵結機制。TEM觀察發現塗層有奈米級細晶區與粗晶區,證明粉末外圍(晶粒較細)與中心(晶粒較粗)所受到之塑性變形量有極大差異。塗層若經過熱處理,內部有γ΄析出,與IN-738基材類似。若經1205℃/10 min熱處理(模擬硬銲製程)後,奈米晶粒消失,並可觀察到不規則形狀之γ΄ (~200 nm) 析出,粉末間之γ΄則較為粗大,此係因粉末邊緣為快速擴散路徑,γ΄成長較為快速。若經1180℃/2 h + 850℃/16 h熱處理,內部呈現方型(邊長200 nm)與圓型(直徑50 nm)兩類型之γ΄,此與IN-738基材經二段式熱處理者相同。此外,粉末間為連續型之γ΄,鈮和鉈的含量較多,故亦為碳化物成核之位置。XRD分析As-sprayed塗層繞射峰並與粉末相較,發現前者γ之半高寬變寬且峰值往低角度偏移。此現象乃因IN-738粉末受到高速衝擊,使塗層晶粒細化、差排密度與氧含量上升所致。IN-738冷噴銲塗層經熱處理後,塗層內γ΄之析出使基地內Al、Ti原子濃度下降,晶格常數變小,繞射峰往高角度移動,此現象在IN-738粉末與冷噴銲塗層中皆可觀察到。試片經不同熱處理後,因γ΄析出非常快速,故峰值角度上差異不大。冷噴銲塗層厚度可達0.5mm,有可能取代IN-738 + DF4B之硬銲再生製程,並可避免因DF4B所導致之硬脆鉻硼化合物的生成,具有相當的應用價值。
zh_TW
dc.description.abstractIN-738 nickel-base superalloy has been widely utilized for fabricating hot-section components, e.g., turbine blades, in the industrial gas turbines. The purpose of this study was to investigate the cold spray process and the coating properties of IN-738 powder on an IN-738 substrate. During recent years, the laser cladding process has been used in power plants to restore damaged turbine blades and has proven to be cost effective. However, the drawback of such a process is that the turbine blades need to be heated to high temperatures; in addition, the process is complicated and time consuming. Satisfactory coatings can be obtained on a workpiece by using the cold spray process, which is a fast process to produce low-porosity coatings.
Experimental results revealed that IN-738 powder could be sprayed on an IN-738 substrate using nitrogen carrier gas at 780~830℃. Metallographic analysis revealed that the coatings had low coating porosity (<5%) and good adhesion to the substrate. In addition, SEM examinations revealed the formation of an adiabatic shear strain zone at the outer layer of the powder particles. The adiabatic shear strain zone is the main mechanism that governs the bonding of the powder particles as well as the coatings to the substrate. TEM observations confirmed that the coatings had a nanograin zone and a coarser grain zone. The diffraction patterns revealed that the nanograin zone occurred at the outer layer of the powder particles and that the coarser grain zone occurred at the inner portion. These results implied that the difference in plastic deformation between the outer and inner portions of the powder particles was substantial. After a heat treatment of 1205℃/10 min (similar to a brazing process), the formation of irregular shaped γ΄ precipitates (~200 nm) the absence of nanograins in the coatings were resulted. Moreover, the coarsening of γ΄ at inter-particle regions was obvious due to fast surface diffusion. When the coatings subjected to a two-step treatment (1180°C/2 h + 850℃/16 h), γ΄ precipitates of either cubical (200 nm edge length) or spherical particles (50 nm diameter) were observed. Such microstructral features were similar to those of the IN-738 substrate after the same heat treatment. The inter-particle regions, which had higher contents of Ta and Nb, were likely to be the nucleation sites for carbides. Additionally, continuous γ΄ precipitates were formed along the inter-particle regions. X-ray diffraction (XRD) analysis was also performed on the raw powder as well as the as-sprayed coatings. The results indicated that the γ peaks obtained for the as-sprayed coatings shifted to lower angles and also broaden relative to the peaks obtained for the raw powder. This phenomenon could be attributed to the presence of fine grains, high dislocation density and increased oxygen content in the coatings. After heat treatment of the coatings or the raw powder, the formation of γ΄ lowered the lattice parameter of γ owing to reduced Al and Ti concentrations in the matrix, i.e., the peaks moving toward the higher angles. A comparison of the coatings after different heat treatments revealed that the diffraction peaks were nearly unchanged. This could be due to the fact that the rate of γ΄ precipitation was fast and less dependent on the heat treatment. By using the cold spray process, coatings with thicknesses of 0.5 mm can be obtained. This process also has the advantage over the brazing process (using IN-738 + DF4B powder mixtures brazed at 1205℃/10 min) to eliminate the formation of brittle chromium borides in the coatings. It is clear that the cold spray process can have many new applications and can possibly replace the brazing process for restoring turbine blades, in particular, refurbishing worn surfaces of the turbine blade.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T22:00:24Z (GMT). No. of bitstreams: 1
ntu-99-R96527066-1.pdf: 34498467 bytes, checksum: 7579fbca5b633981a644a19b0bf5ae4f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
一、 前言 1
二、 文獻回顧 6
2-1 冷噴銲製程 6
2-1-1 冷噴銲製程原理 6
2-1-2 冷噴銲製程設備之演進 19
2-1-3 堆積效率與製程參數 22
2-2 鎳基超合金 30
2-2-1 鎳基超合金之發展 30
2-2-2 鎳基超合金之主要元素組成 30
2-2-3 鎳基超合金之強化機構 36
三、 實驗設備與方法 40
3-1 IN-738 實驗材料 40
3-1-1 IN-738母材 40
3-1-2 冷噴銲粉末 40
3-1-3 冷噴銲前之表面處理 40
3-1-4 冷噴銲試片之熱處理程序 40
3-2 顯微結構觀察 43
3-2-1 金相觀察 43
3-2-2 SEM顯微組織與EDS分析 43
3-2-3 TEM顯微組織與EDS分析 43
3-2-4 X-Ray繞射分析 43
四、 實驗結果與討論 45
4-1 冷噴銲試片前處理 45
4-2 冷噴銲粉末分析 45
4-3 IN-738 As-sprayed 分析 51
4-4 IN-738冷噴銲銲後熱處理 63
4-4-1 IN-738冷噴銲模擬硬銲製程熱處理 63
4-4-2 IN-738冷噴銲模擬葉片全程熱處理 63
4-5 冷噴銲熱處理前後之XRD分析 71
4-6 冷噴銲塗層硬度分佈 78
五、 結論 89
六、 參考文獻 90
dc.language.isozh-TW
dc.titleIN-738超合金之冷噴銲塗層研究zh_TW
dc.titleStudy of Cold-Sprayed Coatings on IN-738 Superalloyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛人愷(Ren-Kae Shiue),吳憲政
dc.subject.keywordIN-738超合金,冷噴銲,熱處理,顯微組織,zh_TW
dc.subject.keywordIN-738 superalloy,cold spray,heat treatment,microstructure,en
dc.relation.page94
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf33.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved