Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖中明
dc.contributor.authorShu-Ching Yangen
dc.contributor.author楊舒晶zh_TW
dc.date.accessioned2021-05-20T21:59:30Z-
dc.date.available2013-07-22
dc.date.available2021-05-20T21:59:30Z-
dc.date.copyright2010-07-22
dc.date.issued2010
dc.date.submitted2010-07-18
dc.identifier.citationAnderson RM, May RM. 1991. Infectious diseases of human: Dynamics and control. UK: Oxford University Press.
Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. 2006. Kinetics of influenza A virus infection in humans. Journal of Virology 80: 7590–7599.
Benegar KB. 1992. Influenza virus infections and immunity: a review of human and animal models. Laboratory Animal Science 42: 222–232.
Billoir E, Delignette-Muller ML, Péry ARR, Charles S. 2008. A Bayesian approach to analyzing ecotoxicological data. Environmental Science and Technology 42: 8978–8984.
Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron AJ. 2008. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. American Journal of Epidemiology 167: 775–785.
Cheng PKC, Leung TWC, Ho ECM, Leung PCK, Ng AYY, Lai MYY, Lim WWL. 2009. Oseltamivir and amantadine resistant influenza viruses A (H1N1). Emerging Infectious Diseases 15: 966–968.
Chowell G, Ammon CE, Hengartner NW, Hyman JM. 2006. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. Journal of Theoretical Biology 241:193–204.
Chowell G, Mill MA, Vibound C. 2008. Seasonal influenza in the United States, France, and Australia: transmission and prospects for control. Epidemiology and Infection 136: 852–864.
Cox NJ, Subbarao K. 1999. Influenza. Lancet 354: 1277–1282.
Elveback LR, Fox JP, Ackerman E, Langworthy A, Boyd M, Gatewood L. 1976. An influenza simulation model for immunization studies. American Journal of Epidemiology 103: 152–165.
Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, Lamsirithaworn S, Burk DS. 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437: 209–214.
Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burk DS. 2006. Strategies for mitigating an influenza pandemic. Nature 442: 448–452.
Finkelman BS, Vibound C, Koelle K, Ferrari MJ, Bharti N, Grenfell BT. 2007. Global patterns in seasonal activity of influenza A/H3N2, A/H1H1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PLoS One 2: e1296.
Flahault A, Letrait S, Hazout PBS, Ménarés J, Valleron AJ. 1988. Modelling the 1985 influenza epidemic in France. Statistics in Medicine 7: 1147–1155.
Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. 2004. Proceedings of the National Academy of Sciences of the United States of America 101: 6146–6151.
Fritz RS, Hayden FG, Calfee DP, Cass LM, Peng AW, Alvord WG, Strober W, Straus SE. 1999. Nasal cytokine and chemokine responses in experimental influenza A virus infection: Results of a placebo-controlled trial of intravenous zanamivir treatment. The Journal of Infectious Diseases 180: 586–593.
Gani R, Hughes H, Fleming D, Griffin T, Medlock J, Leach S. 2005. Potential impact of antiviral drug use during influenza pandemic. Emerging Infectious Diseases 11: 1355–1362.
Garten RJ, Davis CT, Russell CA et al. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science 325: 197–201.
Germann TC, Kadau K, Longini Jr. IM, Macken CA. 2006. Mitigation strategies for pandemic influenza in the United States. Proceedings of the National Academy of Sciences of the United States of America 103: 5935–5940.
Handel A, Longini Jr. IM, Antia R. 2007. Neuraminidase Inhibitor resistance in influenza: assessing the danger of its generation and spread. PLoS Computational Biology 3: e240.
Handel A, Regoes RR, Antia R. 2006. The role of compensatory mutations in the emergence of drug resistance. PLoS Computational Biology 2: e137
Hayden FG, Fritz RS, Lobo MC, Alvord WG, Strober W, Straus SE. 1998. Local and systemic cytokine responses during experimental human influenza A virus infection. The Journal of Clinical Investigation 101: 643-649.
Hayden FG, Sperber SJ, Belshe RB, Clover RD, Hay AJ, Pyke S. 1991. Recovery of drug-Resistant influenza A virus during therapeutic use of rimantadine. Antimicrobial Agents and Chemotherapy 35: 1741-1747.
Hayden FG, Tunkel AR, Treanor JJ, Betts RF, Allenheiligen S, Harris J. 1994. Oral LY217896 for prevention of experimental influenza A virus infection and illness in humans. Antimicrobial Agents and Chemotherapy 38: 1178-1181.
Hayden FG, Treanor JJ, Betts RF, Lobo M, Esinhart, JD, Hussey EK. 1996. Safety and efficacy of the neuraminidase inhibitor GG167 in experimental human influenza. Journal of the American Medical Association 275: 295–299.
Hayden FG, Treanor JJ, Fritz RS, Lobo M, Betts RF, Miller M, Kinnersley N, Mills RG, Ward P, Straus SE. 1999. Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza. Journal of the American Medical Association 282: 1240–1246.
Heldens JGM, Weststrate MW, van den Hoven. 2002. Area under the curve alculations as a tool to compare the efficacy of equine influenza vaccines-a retrospective analysis of three independent field trials. Journal of Immunological Methods 264: 11–17.
Keeling MJ, Rohani P. 2008. Modeling infectious diseases: In humans and animals. NJ: Princeton University Press.
Larson EW, Dominik JW, Rowberg AH, Higbee GA. 1976. Influenza virus population dynamics in the respiratory tract of experimentally infected mice. Infection and Immunity 13: 438–447.
Liao CM, Chang SY, Chen SC, Chio CP. 2009. Influenza-associated morbidity in subtropical Taiwan. International Journal of Infectious Diseases 13: 589–599.
Liao CM, Chen SC. 2008. Modelling control measures to reduce the impact of pandemic influenza among schoolchildren. Epidemiology and Infection 136: 1035–1045.
Lee VJ, Lye DC, Wilder-Smith A. 2009. Combination strategies for pandemic influenza response-a systematic review of mathematical modeling studies. BMC Medicine 7: 76.
Lin CH, Chiu SC, Su YJ, Chen HY. 2002. Isolation of influenza viruses and influenza epidemics in the Taiwan area, 1999-2002. Epideiology Bulletin 18: 219–233.
Massad E, Burattini MN, Coutinho FAB, Lopez LF. 2007. The 1918 influenza A epidemic in the city of São Paulo, Brazil. Medical hypotheses 68: 442–445.
Mills CE, Robins JM, Lipsitch M. 2004. Transmissibility of 1918 pandemic influenza. Nature 432: 904–906.
Moghadas SM. 2008. Management of drug resistance in the population: influenza as a case study. Proceedings of the Royal Society B 275: 1163–1169.
Nelson KE, Willians CM, Graham NMH. 2001. Infectious disease epidemiology: Theory and practice. Gaithersburg, Maryland.
Nicholson KG, Wood JM, Zambon M. 2003. Influenza. Lancet 362: 1733–1745.
Park AW, Glass K. 2007. Dynamic patterns of avian and human influenza in east and southeast Asia. Lancet Infectious Diseases; 7: 543–548.
Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. 2008. The genomic and epidemiological dynamics of human influenza A virus. Nature 453: 615–619.
Rvachev LA, Longini IM Jr. 1985. A mathematical model for the global spread of influenza. Mathematical Biosciences 75: 3–22.
Shih SR, Chen GW, Yang CC, Yang WZ, Liu DP, Lin JH, Chiu SC, Chen HY, Tsao KC, Huang CG, Huang YL, Mok CK, Chen CJ, Lin TY, Wang JR, Kao CL, Lin KH, Chen LK, Eng HL, Liu YC, Chen PY, Lin JS, Wang JH, Lin CW, Chan YJ, Lu JJ, Hsiung CA, Chen PJ, Su IJ. 2005. Laboratory-based surveillance and molecular epidemiology of influenza virus in Taiwan. Journal of Clinical Microbiology 43: 1651–1661.
Smith W, Andrews CH, Laidlaw PP. 1933. A virus isolated from influenza patients. The Lancet 2: 66–68.
Stiver G. 2003. The treatment of influenza with antiviral drugs. Canadian Medical Association Journal 168: 49–56.
Treanor J. 2004. Influenza vaccine-outmaneuvering antigentic shift and drift. The New English Journal of Medicine 350: 218–220.
Tuite AR, Greer AL, Whelan M, Winter AL, Lee B, Yan P, Wu J, Moghadas S, Buckeridge D, Pourbohloul B, Fisman DN. 2009. Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Canadian Medical Association Journal 182: 128–133.
Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. 2006. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312: 447–451.
Vynnycky E, Trindall A, Mangtani P. 2007. Estimates of the reproduction numbers of Spanish influenza using morbidity data. International Journal of Epidemiology 36: 881–889.
World Health Organization (WHO). 2009a. Influenza seasonal epidemics. (http://www.who.int/mediacentre/factsheets/fs211/en/index.html).
World Health Organization (WHO). 2009b. Overview of pandemic (H1N1) 2009 in the WHO European Region. (http://www.euro.who.int/influenza/AH1N1/20091026_1)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10795-
dc.description.abstract流行性感冒為目前引起急性呼吸道疾病之最常見原因,且流感具影響所有年齡族群之能力。全球每年流感流行造成嚴重地致病率及死亡率。因此,需實質控制策略以降低流感散佈。本研究目的為推估自然史與傳輸參數並推求相關關鍵流行病學參數以了解不同型別與亞型之流感病毒。本研究數據來源為近期發表之病毒排出與症狀計分動態實驗數據並對其重新進行分析,且發展一套最適切之統計模式以連結人體流感感染實驗與流行病學因子。本研究藉由病毒排出與時間之曲線下面積訂定門檻值,經擬合後之病毒排出模式可得特定病毒之傳輸率 (β)、復原率 (γ)、感染率 (σ)及基本再生數 (R0)。本研究亦利用疊圖法將特定病毒之R0與病毒排出數據推求時變之傳染力並以時變之症狀計分為基礎推求無症狀之機率。結果顯示A (H3N2)曲線下面積之病毒負載量值 (6.09)較B型 (3.78)及A (H1N1) (2.81)為高,亦導致相對應之復原率 (γ)依序為0.17, 0.20及0.30 d-1,及感染率 (σ)分別為0.39, 0.42及0.40 d-1。根據參考文獻訂定A (H1N1) β值為0.51 d-1,推估A (H3N2)之β與R0分別為1.11 d-1及6.5及B型之β與R0則分別為0.69 d-1及3.4。本研究結果亦指出A (H1N1)之R0推估值為1.74,符合文獻數據值1.7-2.0間。最後,本研究以劑量與反應關係連結病毒力價與症狀計分實驗數據,再以症狀計分與接觸率之相關性疊合接觸率與病毒力價。本研究提供一有效之分析工具不僅能連結特定病毒之人體流感實驗數據以推求其自然史與傳輸參數,亦能推求相關關鍵流行病學因子。zh_TW
dc.description.abstractInfluenza is currently the most frequent cause of acute respiratory illness, affecting all age groups. The severe morbidity and mortality worldwide were due to annual epidemic of influenza. It is substantially requiring control measures to reduce the spread of influenza. The purpose of this study was to estimate the natural history and transmission parameters estimations and to relate it to key epidemiological parameters for understanding influenza virus type and subtypes. The recent published experimental data of viral shedding and symptom score dynamics were reanalyzed. A simple statistical algorithm was developed for linking between experimental human influenza infection and epidemiological factors. This study calculated threshold-adjusted area under the viral shedding versus time curve (AUC) of the fitted viral shedding models to obtain the virus-specific transmission rate (β), recovery rate (γ), infectious rate (σ), and basic reproduction number (R0). We used the mapping technique on virus-specific R0 and vital shedding data to estimate the infectiousness. The asymptomatic probability based on temporal variation of symptom scores was constructed. Results indicate that A (H3N2) had the highest viral load AUC value (6.09) than those of type B (3.78) and A (H1N1) (2.81), leading to the corresponding recovery rates (γ) were estimated to be 0.17, 0.20, and 0.30 d-1 and infectious rate (σ) were 0.39, 0.42, and 0.40 d-1, respectively. Based on a reference value of β = 0.51 d-1 of A (H1N1), mean β and R0 for A (H3N2) were estimated to be 1.11 d-1 and 6.5, respectively, whereas β = 0.69 d-1 and R0 = 3.4 were estimated for type B. Results also indicate that the estimated R0 = 1.74 for A (H1N1) is consistent with published data ranged from 1.7 – 2.0. Finally, this study linked both the dose-response relationship between experimental symptom scores and viral titer and the relationship between symptom scores and contact rate to map contact rate to viral titer. This study could offer a useful analytical tool not only to link virus-specific experimental human influenza data to natural history and transmission parameter estimates but also to relate it to key epidemiological factors.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:59:30Z (GMT). No. of bitstreams: 1
ntu-99-R97622018-1.pdf: 1054944 bytes, checksum: 9158c0eedb9288be1edb2e1d9baa1f37 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
中文摘要 I
英文摘要 II
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 X
壹、 前言 1
貳、 動機與目的 3
2.1 研究動機 3
2.2 研究目的 5
參、 文獻回顧 6
3.1 流感病毒 6
3.2 流感自然史 9
3.3 流感在流行病學上重要參數 13
3.3.1 基本再生數 (R0) 13
3.3.2 傳染代隔 (Tg) 15
3.3.3 無症狀比例 (θ) 16
3.4 數學模式與統計方法 17
3.4.1 曲線下面積模式 17
3.4.2 疊圖分析 18
3.5 劑量反應評估 23
肆、 材料與方法 26
4.1 人體流感實驗數據 26
4.2 研究架構 30
4.3 曲線下面積 32
4.3.1 閾值訂定 32
4.3.2 傳輸率推估 33
4.4 時變傳染力與無症狀機率推估 35
4.5 流行病學重要參數推估 37
4.6 接觸率與症狀計分相關性 38
4.7 統計方法與分析 39
伍、 結果 40
5.1 疊圖分析病毒力價與傳染力 40
5.1.1 病毒排出動態 40
5.1.2 曲線下面積模式應用 46
5.1.3 傳染力分佈擬合 50
5.2 流行病學重要流感參數 53
5.3 接觸率與症狀之效應評估 57
陸、 討論 60
6.1 研究之限制 60
6.2 自然史與傳輸參數 61
6.3 控制策略之應用 64
6.4 應用 67
柒、 結論 68
捌、 未來研究建議 71
參考文獻 73
dc.language.isozh-TW
dc.title以人體感染實驗研析流感病毒之流行病學特性zh_TW
dc.titleAnalysis of influenza viruses epidemiological properties based on experimental human infectionsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈林琥,蔡正偉,陳詩潔,陳介文
dc.subject.keyword流行性感冒,病毒排出,症狀,流行病學,基本再生數,傳輸,zh_TW
dc.subject.keywordInfluenza,Virus shedding,Symptoms,Epidemiology,Basic reproduction number,Transmission,en
dc.relation.page80
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved