Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10770
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃坤祥(Kuen-Shyang Hwang)
dc.contributor.authorYueh-Ju Linen
dc.contributor.author林岳儒zh_TW
dc.date.accessioned2021-05-20T21:57:14Z-
dc.date.available2015-07-23
dc.date.available2021-05-20T21:57:14Z-
dc.date.copyright2010-07-23
dc.date.issued2010
dc.date.submitted2010-07-22
dc.identifier.citation1. J. Toth, R. Dehoff, and K. Grubb, “Heat Pipes: The Silent Way to Manage Desktop Thermal Problem”, ITherm'98: the Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electric Systems, Edited by S. H. Bhavnani, G. B. Kromann, and D. J. Nelson, IEEE, Piscataway, NJ, 1998, pp. 449-455.
2. A. Faghri, Heat Pipe Science and Technology, Taylor and Francis, Washington, DC, 1995, pp. 3-9, pp.65-71, pp.130-131.
3. G. P. Peterson, An Introduction to Heat Pipe, John Wiley and Sons, New York, NY, 1994, pp. 44-117.
4. C. A. Busse, “Theory of the Ultimate Heat Transfer of Cylindrical Heat Pipes”, International Journal of Heat and Mass Transfer, 1973, Vol. 16, No. 1, pp. 169-186.
5. A. Abo El-Nasr and S. M. El-Haggar, “Effective Thermal Conductivity of Heat Pipes”, Heat and Mass Transfer, 1996, Vol.32, pp. 97-101.
6. Y. Wang and K. Vafai, “An Experimental Investigation of the Thermal Performance of an Asymmetrical Flat Heat Pipe”, International Journal of Heat and Mass Transfer, 2000, Vol.43, pp. 2657-2668.
7. R. W. Fox and A. T. McDonald, Introduction to Fluid Mechanics,5th ed, John Wiley and Sons. Inc., New York, NY, 1998, pp. 345-349.
8. 賴錦川,“燒結式微熱管毛細結構參數之影響研究”,碩士論文,國立台灣大學材料科學與工程研究所,2000。
9. D. A. Pruzan, L. K. Klingensmith, K. E. Torrance, and C. T. Avedisian, “Design of High-Performance Sintered-Wick Heat Pipes”, International Journal of Heat Mass Transfer, 1991, Vol. 34, No. 6, pp. 1417-1427.
10. K. C. Leong, C. Y. Liu, and G.. Q. Lu, “Characterization of Sintered Copper Wicks Used in Heat Pipes”, Journal of Porous Materials, 1997, Vol. 4, No. 4, pp. 303-308.
11. B. Holley and A. Faghri, “Permeability and Effective Pore Radius Measurements for Heat Pipe and Fuel Cell Applications”, Applied Thermal Engineering, 2006, Vol. 26, pp. 448-462.
12. R. M. German, “Gas Flow Physics in Porous Metals”, The International Journal of Powder Metallurgy and Powder Technology, 1979, Vol. 15, No. 1, pp. 23-30.
13. S. W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, New York, NY, 1976, pp. 34-43.
14. R. Von Mists and K. O. Friedrichs, Fluid Dynamics, Springer-Verlag, New York, NY, 1971, pp. 194-199.
15. J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York, NY, 1988, pp. 161-167.
16. A. Lorenz, E. Sachs, and S. Allen, “Freeze-Off Limits in Transient Liquid-Phase Infiltration”, Metallurgical and Materials Transaction A, 2004, Vol. 35A, pp. 641-653.
17. E. A. Moreira, M. D. M. Innocentini, and J. R. Coury, “Permeability of Ceramic Foams to Compressible and Incompressible Flow”, Journal of the European Ceramic Society, 2004, Vol. 24, pp. 3209-3218.
18. G. Canti and G. Piero, “Thermal Hydraulic Characterization of Stainless Steel Wick for Heat Pipe Applications”, Revue Générale De Thermique, 1998, Vol. 37, pp. 5-16.
19. S. Ergun, “Fluid Flow through Packed Columns”, Chemical Engineering Progress, 1952, Vol. 48, pp. 89-94.
20. C. Garcia-Cordovilla, E. Louis, and J. Narciso, “Pressure Infiltration of Packed Ceramic Particulates by Liquid Metals”, Acta Materialia, 1999, Vol. 47, No. 18, pp. 4461-4479.
21. K. P. Trumble, “Spontaneous Infiltration of Non-Cylindrical Porosity: Close-Packed Spheres”, Acta Materialia, 1998, Vol. 46, No. 7, pp. 2362-2367.
22. L. L. Popovich, D. L. Feke, and I. Manaz-Zloczower, “Influence of Physical and Interfacial Characteristic on the Wetting and Spreading of Fluids on Powders”, Powder Technology, 1999, Vol. 104, No. 1, pp. 68-74.
23. J. Wang and I. Catton, “Evaporation Heat Transfer in Thin Biporous Media”, Heat Mass Transfer, 2001, Vol. 37, pp. 275-281.
24. B. H. Shropshire, K. Klatt, S. T. Lin, and T. Y. Chan, “Copper P/M in Thermal Management”, International Journal of Powder Metallurgy, 2003, Vol. 39, No. 4, pp. 47-50.
25. S. Y. Oh, J. A. Cornie, and K. C. Russell, “Wetting of Ceramic Particulates with Liquid Aluminum Alloy: Part I. Experimental Techniques”, Metallurgical Transaction A, 1989, Vol. 20A, pp. 527-532.
26. Y. Xuan, Y. Hong, and Q. Li, “Investigation on Transient Behaviors of Flat Plate Heat Pipes”, Experimental Thermal and Fluid Science, 2004, Vol. 28, pp. 249-255.
27. K. Hayashi, T. W. Lim, and M. Itabashi, “Complete Densification of Copper Sintered Compact by Addition of Iron Powder”, Modern Developments in Powder Metallurgy, compiled by P. U. Gummeson and D. S. Gustafson, MPIF, Princeton, NJ, 1988, Vol. 18, pp. 287-297.
28. R. C. Weast, CRC Handbook of Chemistry and Physics, 61st ed., CRC Press, Boca Raton, FL, 1980, p. F-51.
29. ibid, p. F-45.
30. C. B. Jordan and P. Duwez, “The Densification of Copper Powder Compacts in Hydrogen and in Vacuum”, Transaction of the American Institute of Mining and Metallurgical Engineers, 1949, Vol. 185, pp. 96-99.
31. 黃坤祥,粉末冶金學,中華民國粉末冶金協會,第三版,2003,pp. 174-175。
32. Y. J. Lin and K. S. Hwang, “Effects of Powder Shape and Processing Parameters on Heat Dissipation of Heat Pipes with Sintered Porous Wicks”, Materials Transactions, 2009, Vol. 50, No. 10, pp. 2427-2434.
33. K. Hayashi, H. Asanuma, and M. Itabashi, “A Consideration on the Expansion Phenomenon of High Density Copper Powder Compact Due to Sintering”, Journal of the Japan Society of Powder and Powder Metallurgy, 1986, Vol. 33, pp. 22-27.
34. F. V. Lenel, Powder Metallurgy Principles and Applications, Metal Powder Federation Industries, Princeton, NJ, 1980, pp. 221-223.
35. Y. J. Lin and K. S. Hwang, “Effects of Particle Size and Particle Size Distribution on Heat Dissipation of Heat Pipes with Sintered Porous Wicks”, Metallurgical and Materials Transactions A, 2009, Vol. 40, No. 9, pp. 2071-2078.
36. R. M. German, Sintering Theory and Practice, John Wiley & Sons, Inc., New York, NY, 1996, pp. 440-443.
37. F. N. Rhines and W. A. Anderson, “Hydrogen Embrittlement of Pure Copper and of Dilute Copper Alloys by Alternate Oxidation and Reduction”, Transaction of the American Institute of Mining and Metallurgical Engineers, 1941, Vol. 143, pp. 312-325.
38. E. Mattson and F. Schucker, “An Investigation of Hydrogen Embrittlement in Copper”, Journal of the Institute of Metals, 1959, Vol. 87, No. 8, pp. 241-247.
39. T. J. Carter and L. A. Cornish, “Hydrogen in Metals”, Engineering Failure Analysis, 2001, Vol. 8, pp. 113-21.
40. E. G. West, Copper and Its Alloys, Ellis Horwood Ltd., Chichester, 1982, pp. 12-13.
41. H. Ito, K. Hayashi, “Detection of Gases in Closed Pores of Incompletely Densified Copper Sintering Compact by Mass Spectrometer”, Proceedings of the 1993 Powder Metallurgy World Congress, Part 1, Edited by Y. Bando and K. Kosuge , Japan Society of Powder and Powder Metallurgy, Kyoto, 1993, pp. 245-248.
42. V. A. Dymchenko, A. P. Popovich, “Hydrogen Sickness of Sintered Copper”, Powder Metallurgy and Metal Ceramics, 1983, Vol. 22, pp. 347-349.
43. S. Nakahara, “Microscopic mechanism of the hydrogen effect on the ductility of electroless copper”, Acta Metallurgica, 1988, Vol. 36, No. 7, pp. 1669-1681.
44. K. Hayashi, H. Kihara, “Densification and Grain Growth of Iron and Copper Ultrafine Powders during Sintering”, Journal of the Japan Institute of Metals, 1986, Vol. 50, No. 12, pp. 1089-1094.
45. K. Hayashi, T. W. Lim, H. Komine, “A Consideration on Incomplete Densification in H2 Gas Sintering of Cu, Cu-Sn and Cu-Ni Fine Powders for Injection Molding”, Journal of the Japan Institute of Metals, 1989, Vol. 53, No. 6, pp. 608-613.
46. J. F. Sweet, M. J. Dombroski, and A. Lawley, “Property Control in Sintered Copper: Function of Additives”, The International Journal of Powder Metallurgy, 1992, Vol. 28, No. 1, pp. 41-51.
47. R. M. German, Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, NJ, 1989, pp. 196-203.
48. D. Muscat and R. A. L. Drew, “Molding the Infiltration Kinetics of Molten Aluminum into Porous Titanium Carbide”, Metallurgical and Materials Transactions A, 1994, Vol. 25A, pp. 2357-2370.
49. K. A. Semlak and F. N. Rhines, “The Rate of Infiltration of Metals”, Transactions of Metallurgical Society of AIME, 1958, Vol. 212, pp. 325-331.
50. R. Irmann, “Sintered Aluminum with High Strength at Elevated Temperatures”, Metallurgia, 1952, Vol. 46, pp. 125-132.
51. E. Klar, Metals Handbook, 9th ed, American Society for Metals, Metals Park, Ohio, 1984, Vol. 7, pp. 700-716
52. A. V. Nadkarni, “Dispersion Strengthened Copper Properties and Application”, High Conductivity and Aluminum Alloys, Edited by E. Ling and P. W. Taubenblat, The Metallurgical Society of AIME, Warrendale, PA, 1984, pp. 77-101.
53. N. J. GrantA, U.S. Patent, 3,179,515, 1965.
54. A. V. Nadkarni and E. Klar, U.S. Patent, 3,779,714, 1973.
55. K. Song, J. Xing, Q. Dong, P. Liu, B. Tian, and X. Cao, “Internal Oxidation of Dilute Cu-Al Alloy Powders with Oxidant of Cu2O”, Materials Science and Engineering A, 2004, Vol. 380A, pp. 117-122.
56. A. V. Nadkarni, U.S. Patent, 4,315,7703, 1982.
57. A. V. Nadkarni, W. J. Haws, and C. I. Whitman, U.S. Patent, 4, 315,777, 1982.
58. L. Guobin, S. Jibing, G. Quanmei, and W. Ru, “Fabrication of the Nanometer Al2O3/Cu Composite by Internal Oxidation”, Journal of Materials Processing Technology, 2005, Vol. 170, pp. 336-340.
59. J. Lee, Y. C. Kim, S. Lee, S. Ahn, and N. J. Kim, “Correlation of the Microstructure and Mechanical Properties of Oxide-Dispersion-Strengthened Copper Fabricated by Internal Oxidation”, Metallurgical and Materials Transactions A, 2004, Vol. 35A, pp. 493-502.
60. A. Afshar and A. Simchi, “Abnormal Grain Growth in Alumina Dispersion-Strengthened Copper Produced by an Internal Oxidation Process”, Scripta Materiala, 2008, Vol. 58, pp. 966-969.
61. D. W. Lee, O. Tolochko, C. J. Choi, and B. K. Jim, “Aluminum Oxide Dispersion Strengthened Copper Produced by Thermochemical Process”, Powder Metallurgy, 2002, Vol. 45, No. 3, pp. 267-270.
62. M. Korac, Z. Andic, M. Tasic, and Z. Kamberovic, “Sintering of Cu-Al2O3 Nano-Composite Powders Produced by a Thermochemical Route”, Journal of the Serbian Chemical Society, 2007, Vol. 72, pp. 1115-1125.
63. P. K. Jena, E. A. Brocchi, and M. S. Motta, “In-Situ Formation of Cu-Al2O3 Nano-Scale Composites by Chemical Routes and Studies on their Microstructures”, Materials Science and Engineering A, 2001, Vol. 313A, pp. 180-186.
64. 黃坤祥,粉末冶金學,中華民國粉末冶金協會,2008,第三版,pp. 24-26
65. J. Groza, “Heat-Resistant Dispersion-Strengthened Copper Alloys”, Journal of Materials Engineering and Performance, 1992, Vol. 1, pp. 113-121.
66. J. Naser, W. Riehemann, and H. Ferkel, “Dispersion Hardening of Metals by Nanoscaled Ceramic Powders”, Materials Science and Engineering A, 1997, Vol. 234-236A, pp. 467-469.
67. V. Rajkovic, D. Bozic, and M. T. Jovanovic, “Properties of Copper Matrix Reinforced with Various Size and Amount of Al2O3 Particles”, Journal of Materials Processing Technology, 2008, Vol. 200, pp. 106-114.
68. D. Y. Ying and D. L. Zhang, “Processing of Cu-Al2O3 Metal Matrix Nanocomposite Materials by Using High Energy Ball Milling”, Materials Science and Engineering A, 2000, Vol. 286 A, pp. 152-156.
69. V. Rajkovic, D. Bozic, and M. T. Jovanovic, “Properties of Copper Matrix Reinforced with Nano- and Micro-Sized Al2O3 Particles”, Journal of Alloys and Compounds, 2008, Vol. 459, pp. 177-184.
70. T. Venugopal, K. P. Rao, and B. S. Murty, “Synthesis of Copper-Alumina Nanocomposite by Reactive Milling”, Materials Science and Engineering A, 2005, Vol. 393A, pp. 382-386.
71. G. B. Schaffer and P. G.. Mccormick, “Anomalous Combustion Effects during Mechanical Alloying”, Metallurgical Transactions A, 1991, Vol. 22A, pp. 3019-3024.
72. S. Liang, Z. Fan, and L. Fang, “Effect of Powder Characteristic on Al Internal Oxidation to Prepare Al2O3-Cu Composite”, Journal of Composite Materials, 2004, Vol. 38, pp. 31-39.
73. S. Liang, L. Fang, L. Xu, and Z. Fan, “Effect of Al Content on the Properties and Microstructure of Al2O3-Cu Composite Prepared by Internal Oxidation”, Journal of Composite Materials, 2004, Vol. 38, pp. 1495-1504.
74. S. Liang, Z. Fan, L. Xu, and L. Fang, “Kinetic Analysis on Al2O3/Cu Composite Prepared by Mechanical Activation and Internal Oxidation”, Composites, 2004, Vol. 53, pp. 1441-1446.
75. T. Hartwig, G. Veltl, H. Kunze, R. Scholl, and B. Kieback, “Powder for Metal Injection Molding”, Journal of the European Ceramic Society, 1998, Vol. 18, pp. 1211-1216.
76. 許添順,“化學置換程序回收氯化銅蝕刻廢液之研究”,碩士論文,國立中央大學環境工程研究所,2002,pp. 1-14。
77. D. J. Mackinnon and T. R. Ingraham, “Copper Cementation on Aluminum Canning Sheet”, Candian Metallungical Quarterly, 2000, Vol. 10, No. 3, pp. 197-203.
78. B. Donmez, F. Sevim, and H. Sarac, “A Kinetic Study of the Cementation of Copper from Sulphate Solutions onto a Rotating Aluminum Disc”, Hydrometallurgy, 1999, Vol. 53, No. 4, pp. 145-154.
79. S. S. Djokic, “Cementation of Copper on Aluminum in Alkaline-Solutions”, Journal of the Electrochemical Society, 1996, Vol. 143, No. 4, pp. 1300-1305.
80. J. W. Patterson and W. A. Jancuk, “Cementation Treatment of Copper in Wastewater”, Proceeding of the Industrial Waste Conference, 1977, Vol. 32, pp. 853-865.
81. T. Stefanowicz, M. Osinska, and S. Napieralskazagozda, “Copper Recovery by Cementation Method”, Hydrometallurgy, 1997, Vol. 47, No. 1, pp. 69-90.
82. Y. Ku and C. H. Chen, “Removal of Chelated Copper from Waste-Waters by Iron Cementation”, Industrial & Engineering Chemistry Research, 1992, Vol. 31, No. 4, pp. 1111-1115.
83. Y. Ku and C. H. Chen, “Kinetic-Study of Copper Deposition on Iron by Cementation Reaction”, Separation Science and Technology, 1992, Vol. 27, No. 10, pp. 1259-1275.
84. T. S. Srivatsan, N. Narendra, and J. D. Troxell, “Tensile Deformation and Fracture Behavior of an Oxide Dispersion Strengthened Copper Alloy”, Materials and Design, 2000, Vol. 21, pp. 191-198.
85. K. M. Zwilsky and N. J. Grant, “Dispersion Strengthening in the Copper-Alumina System”, Transaction of the Metallurgical Society of AIME, 1961, Vol. 221, pp. 371-377.
86. 汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,1999,第二版,p. 344.
87. O. Preston and N. J. Grant, “Dispersion Strengthening of Copper by Internal Oxidation”, Transaction of the Metallurgical Society of AIME, 1961, Vol. 221, pp. 164-173.
88. B. Tian, P. Liu, K. Song, Y. Li, Y. Liu, F. Ren, and J. Su, “Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion-Strengthened Copper Base Composite”, Materials Science and Engineering A, 2006, Vol. 435-436A, pp. 705-710.
89. W. J. Ullrich, “Fabrication of Copper P/M Structural Parts”, International Journal of Powder Metallurgy, 2003, Vol. 39, pp. 40-46.
90. 黃坤祥,粉末冶金學,中華民國粉末冶金協會,2008,第三版,p.308.
91. P. K. Samal, “Dispersion Strengthen Copper”, Metal Powder Report, 1984, Vol. 39, pp. 587-589.
92. Y. C. Lu and K. S. Hwang, “Density Improvement of Carbonyl Iron Compacts by Addition of Titania Powders”, Powder Metallurgy, 1999, Vol. 42, No. 3, pp. 257-262.
93. Y. C. Lu and K. S. Hwang, “Enhanced Sintering of Carbonyl Iron Compacts by the Addition of Processing Additives”, International Conference on Processing and Fabrication of Advanced Materials VI, Edited by K. A. Khor, P. S. Srivatsan, and J. J. Moore, The Institute of Materials, Singapore, 1997, Vol. 2, pp. 1455-1463.
94. C. Zener as Quotes by C. S. Smith, “Grain, Phases, and Interfaces: An Interpretation of Microstructure”, Transaction of AIME, 1942, Vol. 175, pp. 15-51.
95. M. F. Ashby and R. M. Centamore, “The Dragging of Small Oxide Particles by Migrating Grain Boundaries in Copper”, Acta Metallurgica, 1968, Vol. 16, pp. 1081-1092.
96. S. K. Mukherjee and G.. S. Upadhyaya, “Sintering of 434L Ferrritic Stainless Steel Containing Al2O3 Particles”, International Journal of Powder Metallurgy & Powder Technology, 1983, Vol. 19, No. 4, pp. 290-299.
97. S. Lal and G.. S. Upadhyaya, “Effect of Y2O3 Addition and Sintering Period on the Properties of P/M 316L Austenitic Stainless Steel”, Journal of Materials Science Letters, 1987, Vol. 6, pp. 761-764.
98. J. Brett and L. Seigle, “The Role of Diffusion Versus Plastic Flow in the Sintering of Model Compacts”, Acta Metallurgica, 1966, Vol. 14, pp. 575-582.
99. F. V. Lenel, G.. S. Ansell, and R. C. Morris, “Sintering of Loose Copper Powder Aggregates Using Silica as Marker”, Metallurgical Transaction, 1970, Vol. 1, pp. 2351-2354.
100. M. F. Ashby, S. Bahk, J. Berk, and D. Turnbull, “The Influence of a Dispersion of Particles on the Sintering of Metal Powders and Wires”, Progress in Materials Science, 1980, Vol. 25, pp. 1-34.
101. M. Lafer, D. Bouvard, P. Stutz, M. Pierronnet, and G. Raisson, “Influence of Alumina Inclusions on the Densification of Supperalloy Powder”, Powder Metallurgy, 1993, Vol. 25, No. 1, pp. 23-27.
102. J. S. Benjamin, “Dispersion Strengthened Superalloys by Mechanical Alloying”, Metallurgical Transaction, 1970, Vol. 1, pp. 2943-2951.
103. Y. C. Lu and K. S. Hwang, “Improved Densification of Carbonyl Iron Compacts by the Addition of Fine Alumina Powders”, Metallurgical and Materials Transaction A, 2000, Vol. 31A, pp. 1645-1652.
104. Y. C. Lu and K. S. Hwang, “The Effect of Nano-Sized Amorphous Silica Particles on the Sintering Behavior of Carbonyl Iron Compacts”, Chinese Journal of Materials Science, 1999, Vol. 31, No. 2, pp. 91-99.
105. K.S. Hwang, Y. C. Lu, G. J. Shu, and B. Y. Chen, “Enhanced Densification of Carbonyl Iron Powder Compacts by the Retardation of Exaggerated Grain Growth through the Use of High Heating Rates”, Metallurgical and Materials Transaction A, 2009, Vol. 40A, in press.
106. M. J. Dombroski, A. Lawley, and D. Apelian, “Effect of Additives on the Sintered Properties of Copper Compacts”, International Journal of Powder Metallurgy, 1992, Vol. 28, No. 1, pp. 27-39.
107. K.S. Hwang and C. C. Hsieh, “Injection-Molded Alumina Prepared with Mg-Containing Binders”, Journal of the American Ceramic Society, 2005, Vol. 88, No. 9, pp. 2349-2353.
108. 饒瑞峰,“黏結劑殘留物對純鐵射出成形體燒結密度之影響”,碩士論文,國立台灣大學材料科學與工程學研究所,1993。
109. 黃坤祥,粉末冶金學,中華民國粉末冶金協會,2008,第三版,pp. 246-260.
110. 陳柏源,“銅散熱元件之MIM製程及散熱性質研究”,碩士論文,國立台灣大學材料科學與工程學研究所,2005。
111. V. K. Pujari, “Effect of Powder Characteristics on Compounding and Green Microstructure in the Injection-Molding Process”, Journal of the American Ceramic Society, 1989, Vol. 72, pp. 1981-1984.
112. C. M. Kipphut and R. M. German, “Powder Selection for Shape Retention in Powder Injection Molding”, International Journal of Powder Metallurgy, 1991, Vol. 27, No. 2, pp. 117-124.
113. D. F. Heaney, R. Zauner, C. Binet, K. Cowan, and J. Piemme, “Variability of Powder Characteristics and Their Effect on Dimensional Variability of Powder Injection Moulded Components”, Powder Metallurgy, 2004, Vol. 47, No. 2, pp. 145-150.
114. N. Wada, Y. Kankawa, and Y. Kaneko, “Injection Molding of Electrolytic Copper Powder”, Journal of the Japan Society of Powder and Powder Metallurgy, 1997, Vol. 44, No. 3, pp. 604-611.
115. J. L. Johnson, L. K. Tan, R. Bollina, P. Suri, and R. M. German, “Evaluation of Copper Powders for Processing Heat Sinks by Powder Injection Molding”, Powder Metallurgy, 2005, Vol. 48, No. 2, pp. 123-128.
116. T. Y. Chan and S. T. Lin, “Effects of Stearic Acid on the Injection Molding of Alumina”, Journal of the American Ceramic Society, 1995, Vol. 78, pp. 2746-2752.
117. 李秉興,“M2 粉末高速鋼之射出成形製程之研究”,碩士論文,國立台灣大學材料科學與工程學研究所,1998。
118. B. K. Lograsso, A. Bose, B. J. Carpenter, C. I. Chung, K. F. Hens, D. Lee, S. T. Lin, R. M. German, P. F. Murley, B. O. Rhee, C. M. Sierra, and J. Warren, “Injection Molding of Carbonyl Iron with Polyethylene Wax”, International Journal of Powder Metallurgy, 1989, Vol. 25, No. 4, pp. 337-348.
119. 楊智貴,“鎢粉/銅粉末射出散熱片之製程研究”,碩士論文,國立台灣大學材料科學與工程學研究所,2003。
120. K. Ono, Y. Kaneko, and Y. Kankawa, “Effects of Oxidation on Debinding Process for Sintered Properties of Injection Molded Copper Powders”, Journal of the Japan Society of Powder and Powder Metallurgy, 1994, Vol. 41, No. 3, pp. 227-231.
121. R. M. German, Sintering Theory and Practice, John Wiley and Sons, Inc., 1996, New York, NY, p.487
122. Standard Test Method for Determining Average Grain Size, Annual Book of ASTM Standards, E 112-96, 2004.
123. 陳信政,“氧化鈦及氧化鋁對羰基鐵粉燒結體緻密化之影響”,碩士論文,國立台灣大學材料科學與工程學研究所,1994。
124. K. Hayashi and T. W. Lin, “Role of Equilibrium Pressure of Gas in Sintering Densification of Carbonyl Iron-Powder for Metal Injection-Molding”, Materials Transactions JIM, 1991, Vol. 32, No. 4, pp. 383-388.
125. Z. Hussain and L. C. Kit, “Properties and Spot Welding Behaviour of Copper-Alumina Composites through Ball Milling and Mechanical Alloying”, Materials and Design, 2008, Vol. 29, pp. 1311-1315.
126. O. Guler and E. Evin, “The Investigation of Contact Performance of Oxide Reinforced Copper Composite via Mechanical Alloying”, Journal of Materials Processing Technology, 2009, Vol. 209, pp. 1286-1290.
127. V. Rajkovic, O. Eric, D. Bozic, M. Mitkov, and E. Romhanji, “Characterization of Dispersion Strengthened Copper with 3 wt%Al2O3 by Mechanical Alloying”, Science of Sintering, 2004, Vol. 36, pp. 205-211.
128. A. Upadhyaya and G. S. Upadhyaya, “Sintering of Copper-Alumina Composites through Blending and Mechanical Alloying Powder metallurgy Routes”, Materials and Design, 1995, Vol. 16, No. 1, pp. 41-45.
129. D. Das, A. Samanta, and P. P. Chattopadhyay, “Synthesis of Bulk Nano-Al2O3 Dispersed Cu-Matrix Composite Using Ball Milled Precursor”, Materials and Manufacturing Processes, 2007, Vol. 22, pp. 516-524.
130. M. V. Rajkovic and V. M. Mitkov, “Dispersion Hardened Cu-Al2O3 Produced by High Energy Milling”, International Journal of Powder Metallurgy, 2000, Vol. 36, No. 8, pp. 45-49.
131. M. S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, William Andrew Publishing, Norwich, NY, 2001, p 7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10770-
dc.description.abstract目前粉末燒結式熱導管應用於散熱零件上遭遇到兩個瓶頸,第一是如何利用銅粉之粉末特性提升熱導管的散熱性能,可惜目前這方面的研究較少,所以業界在提升散熱性能方面仍有改進之空間;第二是如何改善熱導管在裝配時容易發生變形,此問題的原因是所用之無氧銅管雖經過冷加工,強度與硬度均佳,但經過高溫燒結後因晶粒成長造成無氧銅管的強度與硬度大幅下降。
在提升散熱性能方面,本研究發現選用之銅粉的氧含量越低、平均粒徑越大、.粒度分佈越窄以及粉末形狀越趨近球形時會有越佳的散熱性能,並且證實以毛細速度可以取代滲透率及毛細壓力作為評估銅粉是否適用於粉末燒結式熱導管之最佳檢測方法。
在改善強度與硬度方面,希望藉由散佈強化銅的高導電性、高熱傳導性、高硬度以及高強度等特性來解決,所以本研究先利用粉末冶金法製作出銅粉中能含有少量的奈米級Al2O3顆粒,可藉由散佈強化來增加硬度與強度,有望將此銅-氧化鋁複合粉經由加工而製作成銅管或銅板來取代目前散熱零件所用之無氧銅管及無氧銅板。此製程在高溫燒結時少量的奈米級Al2O3顆粒可以阻礙晶界成長有助於晶粒細化,能避免硬度與強度的大幅下降。但由於奈米級氧化鋁容易團聚不易均勻分佈在銅的基地中,因此在銅粉中直接加入奈米氧化鋁粉有其困難度。為了解決此問題,本研究利用金屬置換法、添加含有金屬元素之潤滑劑以及高能量球磨法等三種方式來製作銅-氧化鋁複合粉。
在金屬置換法方面,將鋁片放入氯化銅溶液中以置換出銅鋁複合粉,並以水洗滌法將所含之氯含量降低至100 ppm以下,再經由空氣乾燥以及高溫氧化等過程將鋁氧化成氧化鋁,接著以氫氣氣氛還原即可得到銅-氧化鋁複合粉,若要使此粉之粉末粒度分佈與形狀適合應用於粉末冶金或射出成形,則可利用球磨法在粉末氧化後將其粒度分佈變窄,並可調整粉末形狀,最後再將粉末還原即可。實驗結果發現鋁含量為0.108 wt% (0.456 vol%Al2O3)的粉末燒結體,其相對密度高達99.0 %,硬度為45.4 HB,遠高於純銅(A635)之相對密度(91.8 %)及硬度(32.4 HB)。而鋁含量為0.263 wt% (1.111 vol%Al2O3) 的粉末燒結體,其相對密度為95.4 %,硬度為60.2 HB。而在導電度方面會隨著氧化鋁含量增加而遞減,但上述兩種鋁含量的粉末燒結體之導電度皆為84 %IACS仍稍高於純銅粉末燒結體之導電度(82.5 %IACS)。因此,綜合實驗結果得知最佳的鋁含量為0.108 wt% (0.456 vol%Al2O3),Cu-Al2O3粉不僅有散佈強化的效果,也可以提高密度。
在添加含有金屬元素之潤滑劑方面,利用濕式混合法將潤滑劑與銅粉混合均勻,再藉由高溫將潤滑劑燒除,可留下奈米級的金屬氧化物顆粒在銅之基地中,而達到散佈強化之效果。實驗結果顯示添加硬脂酸鋰之效果最佳,硬脂酸鋁次之,而硬脂酸鋰的最佳添加量為1.0 wt%,其燒結後之相對密度可由94.6 %提升至97.5 %,但在射出成形方面,只有添加0.5 wt%之硬脂酸鋰才有助於提高燒結密度。
在高能量球磨法方面,使用銅-鋁母合金粉經由高能球磨法將所含之鋁氧化成氧化鋁,再經過氫氣還原後而製得銅-氧化鋁的粉末。結果顯示當鋁含量為0.117 wt% (0.498 vol%Al2O3)的粉末燒結體,相對密度與導電度為最佳,分別為96.5 %與83.1 IACS%。而當鋁含量為0.587 wt% (2.453 vol%Al2O3)的粉末燒結體時,硬度則為最高可達到33.7 HRB。但綜合比較上述三項性質,則以鋁含量為0.352 wt% (1.483 vol%Al2O3)的粉末燒結體為最佳,其相對密度為96.4 %,硬度為27.3 HRB,導電度為82.3 IACS%。
zh_TW
dc.description.abstractHeat pipes have been widely applied in thermal management devices for notebook computers and light emitting diodes. But, there is still room for improvement. The first subject studied in this work is to improve the performance of heat dissipation by adjusting the characteristic of Cu powders. The other subject is to resolve the defects encountered during mechanical deformation during heat pipe assembly. These defects are mainly caused by the coarse grains, low hardness, and low strength of the sintered copper tubing. To improve the performance of heat dissipation, a copper with a low oxygen content, larger mean particle size, narrow particle size distribution, and spherical powder shape is preferred for preparing the porous Cu wicks. It is also noticed during evaluation of the heat dissipation performance that the permeability and the capillary pressure, which have been widely used in the past, can be replaced by the capillary speed, which is simpler and more accurate.
For increasing the strength and the hardness, the oxide dispersion strengthened Cu (ODS Cu) has been used in rods, plates, or bars, which have simple cross-sections. In this study, the development of the ODS Cu is aimed for press-and-sintered and powder injection molded parts, which are net-shaped. To attain good distribution of fine alumina particles in the Cu matrix, three methods are used. The first one is to use the cementation process to form alumina in the powder. The second approach is to add metal-containing lubricant, which forms alumina during sintering. The third method is to form alumina using the high energy milling process and Cu-Al pre-alloyed powders.
The results of the cementation method show that the relative density up to 99 % and the hardness of 45.4 HB can be attained with the addition of 0.108 wt% aluminum (0.456 vol% Al2O3). These properties are better than the 91.8 % and 32.4 HB of the alumina-free copper. For 0.263 wt% aluminum (1.111 vol%Al2O3), the density is 95.4 % and the hardness is 60.2 HB. The electrical conductivity of Cu-Al2O3 sintered compacts decreased with increasing amount of alumina. The electrical conductivities of these two Cu-Al2O3 sintered compacts are about 84 %IACS, slightly higher than the 82.5 %IACS of the alumina-free copper. The results of adding metal-containing lubricant reveal that adding 1.0 wt% lithium stearate is effective and increases the relative density of sintered compacts from 94.6% to 97.5%. In high energy milling process, the results exhibit that compact containing 0.117 wt% aluminum (0.498 vol%Al2O3) has the highest relative density of 96.5% and electrical conductivity of 83.1 %IACS. The highest hardness of compact is 33.7 HRB when the aluminum content in the compact is 0.587 wt% (2.453 vol%Al2O3). Considering the mechanical and electrical properties, the suggested optimum aluminum content is 0.352 wt% (1.483 vol%Al2O3), which gives a sintered density of 96.4 %, a hardness of 27.3 HRB, and an electrical conductivity of 82.3 %IACS.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:57:14Z (GMT). No. of bitstreams: 1
ntu-99-D92527014-1.pdf: 11052604 bytes, checksum: fd45f51cf7c9f548015c369692984c54 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 …………………………………………………………………………………Ⅰ
Abstract ........……...…………………………………………………………..…. …Ⅲ
目錄 ..……………...………………………………………….…………………. …Ⅴ
表目錄…………………...……………………………………………….……….ⅩⅡ
圖目錄…………………………………………………………………………….ⅩⅣ
第一章 緒論……………………………………………………………….…………1
1-1 前言………………………………………………………………………………1
1-2 研究目的…………………………………………………………………………2
第二章 粉末特性對粉末燒結式熱導管之分析..........................................................4
2-1 文獻回顧……………………………………………………………………….....4
2-1-1 熱導管的限制……………………………………………………………….5
2-1-1-1 毛細壓力………………………….…………………………………….7
2-1-1-2 滲透率………………………….……………………………………….9
2-1-2 粉末粒徑對毛細結構燒結體之散熱性能影響…………………………...12
2-1-3 粉末形狀對毛細結構燒結體之散熱性能影響…………………………...13
2-2 實驗方法………………………………………………………………………...15
2-2-1 試片製備…………………………………………………………………...15
2-2-1-1 原料……………………………………………………………………15
2-2-1-2 成形方式………………………………………………………………19
2-2-1-3 燒結方式………………………………………………………………19
2-2-2 燒結密度測試……………………………………………………………...20
2-2-3 模擬熱導管之散熱測試……………………………………………...…... 20
2-2-4 滲透率實驗………………………………………………………………...20
2-2-5 毛細壓力與毛細速度測試………………………………………………...21
2-2-6 孔隙分析…………………………………………………………………...22
2-2-7 氧含量分析...................................................................................................22
2-2-8 敲擊密度…………………………………………………………………...22
2-2-9 粉末粒度分析……………………………………………………………...22
2-2-10 燒結行為之分析………………………………………………………….23
2-2-11 金相實驗-冷鑲埋法………………………………………...…………….24
2-2-12 實驗儀器………………………………………………………………….24
2-3 實驗結果………………………………………………………………………...25
2-3-1 粉末粒徑對毛細結構燒結體之散熱性能影響…………………………...26
2-3-1-1 粉末粒徑對毛細結構燒結體的滲透率之影響………………………32
2-3-1-2 粉末粒徑對毛細結構燒結體的毛細壓力之影響……………………33
2-3-1-3 粉末粒徑對毛細結構燒結體的毛細速度之影響……………………34
2-3-2 粉末形狀對毛細結構燒結體之散熱性能影響…………………………...35
2-3-2-1 粉末形狀對毛細結構燒結體的滲透率之影響………………………39
2-3-2-2 粉末形狀對毛細結構燒結體的毛細壓力之影響……………………43
2-3-2-3 粉末形狀對毛細結構燒結體的毛細速度之影響……………………43
2-3-3 氫脆效應對毛細結構燒結體的燒結密度之影響.......................................44
2-3-3-1 燒結氣氛對燒結密度之影響................................................................44
2-3-3-2 熱膨脹儀分析……………………..…………………………………..56
2-3-3-3 顯微結構之分析....................................................................................58
2-3-3-4 燒結氣氛對銅粉本身氧含量之影響....................................................66
2-3-3-5 銅粉氫脆效應之防範............................................................................67
2-4 討論……………………………………………………………………………...68
2-4-1 比較不同粒度分佈在相同的形狀下對毛細結構燒結體的散熱性能之影響………………………………………………………...…………………68
2-4-2 比較不同形狀在相同粒度分佈下對毛細結構燒結體的散熱性能之影響……………………….…………………………………………………..69
2-4-3 粉末特性對毛細結構燒結體的毛細速度之影響………………………...69
2-4-4 銅粉燒結膨脹之機制……………………………………………………...74
2-5 結論………………………………………………………………………….…..76
第三章 銅-氧化鋁複合粉之化學置換法製程及散佈強化特性..............................78
3-1 文獻回顧………………………………………………………………………...78
3-1-1 散佈強化銅之製作方法…………………………………………………...78
3-1-1-1 內部氧化法……………………………………………………………79
3-1-1-2 熱化學法………………………………………………………………81
3-1-1-3 機械合金法……………………………………………………………82
3-1-1-4 機械合金法加上內部氧化法…………………………………………83
3-1-2氯化銅蝕刻廢液回收再生銅鋁複合粉……………………………………84
3-1-2-1 氯化銅蝕刻廢液回收方式....................................................................84
3-1-2-2 金屬置換法之原理……………………………………………………86
3-1-3 散佈強化之機制…………………………………………………………...88
3-1-4 散佈強化銅之特性………………………………………………………...90
3-1-4-1 導電性質………………………………………………………………90
3-1-4-2 機械性質………………………………………………………………93
3-1-4-2-1 硬度.................................................................................................93
3-1-4-2-2 強度……………………………………………………………….96
3-1-5 散佈強化銅之應用………………………………………………………...98
3-2 實驗方法……………………………………………………………………….100
3-2-1金屬置換法開發銅鋁複合粉.......................................................................100
3-2-1-1 除氯製程……………………………………………………………..103
3-2-1-2 乾燥製程……………………………………………………………..104
3-2-1-3 氧化製程……………………………………………………………..104
3-2-1-4 還原製程……………………………………………………………..105
3-2-1-5 抗氧化處理…………………………………………………………..105
3-2-2 球磨製程………………………………………………………………….105
3-2-3 粉末特性分析…………………………………………………………….106
3-2-3-1 鋁離子定量分析…………………………………………………..…106
3-2-3-2 雜質元素定量分析………………………………………………..…106
3-2-3-3 氯離子定量分析……………………………………………………..107
3-2-3-4 碳與氧含量分析……………………………………………………..107
3-2-3-5粉末粒度分析………………………………………………………...108
3-2-3-6 敲擊密度……………………………………………………………..108
3-2-3-7 氧化物結構分析……………………………………………………..108
3-2-4 粉末冶金試片製作……………………………………………………….108
3-2-4-1 原料…………………………………………………………………..108
3-2-4-2 成形方式……………………………………………………………..109
3-2-5 燒結製程………………………………………………………………….110
3-2-6 試片分析………………..………………………………………………...110
3-2-6-1 燒結密度測試………………………………………………………..110
3-2-6-2 硬度測試……………………………………………………………..110
3-2-6-3 金相實驗-熱鑲埋法…………...……………………………………..111
3-2-6-4 導電率測試…………………………………………………………..111
3-2-6-5 燒結行為之分析……………………………………………………..111
3-2-7實驗儀器………………………………………………………………...…112
3-3 結果與討論…………………………………………………………………….113
3-3-1 金屬置換法開發銅鋁複合粉.....................................................................113
3-3-1-1 金屬置換法…………………………………………………………..113
3-3-1-2 除氯製程……………………………………………………………..116
3-3-1-3 乾燥製程……………………………………………………………..118
3-3-1-4 氧化製程對燒結密度與硬度之影響………………………………..121
3-3-1-5 還原製程對燒結密度與硬度之影響………………………………..124
3-3-1-6 燒結製程對燒結密度與硬度之影響………………………………..126
3-3-2 不同氧化鋁含量對散佈強化之影響…………………………………….128
3-3-3 球磨製程………………………………………………………………….134
3-4 結論…………………………………………………………………………….147
第四章 添加含鋁潤滑劑製作銅-氧化鋁之製程及散佈強化特性………………149
4-1 文獻回顧……………………………………………………………………….149
4-1-1 氧化物對燒結密度與散佈強化之影響………………………………….149
4-1-2 潤滑劑對燒結密度與散佈強化之影響………………………………….151
4-1-3 金屬射出成形(Metal Injection Molding, MIM)之燒結緻密化………….151
4-1-3-1 銅粉的選擇…………………………………………………………..152
4-1-3-2 黏結劑的選擇………………………………………………………..155
4-1-3-3 脫脂過程……………………………………………………………..155
4-1-3-4 燒結製程……………………………………………………………..156
4-2 實驗方法……………………………………………………………………….160
4-2-1 試片製作………………………………………………………………….160
4-2-1-1 原料…………………………………………………………………..160
4-2-1-2 濕式混合……………………………………………………………..161
4-2-1-3 粉末冶金試片製作…………………………………………………..161
4-2-1-4 射出成形試片製作…………………………………………………..162
4-2-1-5 溶劑脫脂……………………………………………………………..163
4-2-1-6 熱脫脂與燒結製程…………………………………………………..164
4-2-2 試片分析………………………………………………………………….166
4-2-2-1 燒結密度測試………………………………………………………..166
4-2-2-2 硬度測試……………………………………………………………..166
4-2-2-3 金相實驗……………………………………………………………..166
4-2-3實驗儀器…………………………………………………………………...166
4-3 實驗結果……………………………………………………………………….168
4-3-1添加不同含量的細小氧化物對粉末冶金散佈強化之影響……………...168
4-3-1-1 添加氧化鋁對燒結密度之影響……………………………………..169
4-3-1-2 添加硬脂酸鋁對燒結密度之影響…………………………………..169
4-3-1-3 添加硬脂酸鎂對燒結密度之影響…………………………………..170
4-3-1-4 添加硬脂酸鋰對燒結密度之影響…………………………………..170
4-3-2 添加不同含量的細小氧化物對射出成形散佈強化之影響…………….171
4-3-2-1 添加細小氧化物對射出成形工件的燒結密度之影響……………..172
4-3-2-2 添加細小氧化物對射出成形工件的顯微組織與硬度之影響……..175
4-3-3 高分子之殘留碳含量對銅粉的燒結密度與導電度之影響…………….179
4-3-3-1 熱脫脂速率對含有潤滑劑之銅粉的燒結密度與導電度之影響…..179
4-3-3-2 燒結氣氛對含有潤滑劑之銅粉的燒結密度與導電度之影響……..183
4-4 討論…………………………………………………………………………….187
4-5 結論…………………………………………………………………………….189
第五章 以銅-鋁母合金粉製作銅-氧化鋁之製程及散佈強化特性......................190
5-1 文獻回顧……………………………………………………………………….190
5-1-1 球磨法製備銅-氧化鋁粉...........................................................................190
5-1-2 以銅-鋁母合金粉製作銅-氧化鋁之製程……………………………….194
5-2 實驗方法……………………………………………………………………….203
5-2-1 粉末製備-高能量球磨法……...………………………………………….203
5-2-2 粉末冶金試片製作……………………………………………………….204
5-2-2-1 原料……………………….………………………………………….204
5-2-2-2 成形方式……………………………………………………………..206
5-2-2-3 燒結製程……………………………………………………………..206
5-2-3 粉末特性分析…………………………………………………………….206
5-2-3-1 鋁離子定量分析……………………………………………………..206
5-2-3-2 雜質元素定量分析…………………………………………………..207
5-2-3-3 氧含量分析…………………………………………………………..207
5-2-3-4 粉末粒度分析………………………………………………………..207
5-2-4 試片分析………………………………………………………………….207
5-2-4-1 燒結密度測試………………………………………………………..207
5-2-4-2 硬度測試…………………………………………………………..... 207
5-2-4-3 金相實驗……………………………………………………...…….. 207
5-2-4-4 導電率測試…………………………………………………………..207
5-2-5實驗儀器…………………………………………………………………...208
5-3 實驗結果…………………………………………………..…………………...209
5-3-1 銅-氧化鋁粉末製備……………………………….………………………...209
5-3-1-1 球磨介質含量對粉末特性之影響………………………………...……...209
5-3-1-2 不同的球磨介質與氣氛對粉末特性之影響………..…………….……...211
5-3-1-3 氧化與還原製程對粉末特性之影響………..…………………................215
5-3-2 不同氧化鋁含量對粉末冶金試片散佈強化之影響………..……………...218
5-3-2-1不同氧化鋁含量對粉末冶金試片燒結後相對密度之影響………...218
5-3-2-2不同氧化鋁含量對粉末冶金試片硬度之影響……….......................219
5-3-2-3不同氧化鋁含量對粉末冶金試片導電度之影響………...................223
5-4 結論.....................................................................................................................228
第六章 總結論..........................................................................................................229
未來研究....................................................................................................................231
參考文獻....................................................................................................................232
附錄....................................................................................................................246
dc.language.isozh-TW
dc.title銅粉與銅-氧化鋁複合粉應用於散熱元件之研究zh_TW
dc.titleCu and Cu-Al2O3 Powders for Thermal Management Devicesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee徐開鴻,邱六合,段維新,林招松
dc.subject.keyword銅粉,熱導管,散佈強化,銅-氧化鋁粉,高能量球磨,熱管理,毛細壓力,滲透率,zh_TW
dc.subject.keywordCopper powders,heat pipe,dispersion strengthening,Cu-Al2O3 powders,high energy milling,thermal management,capillarity,permeability,en
dc.relation.page248
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf10.79 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved