Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊雅惠(Ya-Hui Chuang)
dc.contributor.authorSi-Jie Wuen
dc.contributor.author吳希傑zh_TW
dc.date.accessioned2021-05-20T21:56:26Z-
dc.date.available2013-09-13
dc.date.available2021-05-20T21:56:26Z-
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-07-26
dc.identifier.citation1. Kaplan MM. 1996. Primary biliary cirrhosis. N Engl J Med 335: 1570-80
2. Kaplan MM, Gershwin ME. 2005. Primary biliary cirrhosis. N Engl J Med
353: 1261-73
3. Wong RK, Lim SG, Wee A, Chan YH, Aung MO, Wai CT. 2008. Primary biliary cirrhosis in Singapore: evaluation of demography, prognostic factors and natural course in a multi-ethnic population. J Gastroenterol Hepatol 23: 599-605
4. Su CW, Hung HH, Huo TI, Huang YH, Li CP, Lin HC, Lee PC, Lee SD, Wu JC. 2008. Natural history and prognostic factors of primary biliary cirrhosis in Taiwan: a follow-up study up to 18 years. Liver Int 28: 1305-13
5. Jones DE. 2008. Pathogenesis of primary biliary cirrhosis. Postgrad Med J 84: 23-33
6. Scheuer P. 1967. Primary biliary cirrhosis. Proc R Soc Med 60: 1257-60
7. Ludwig J. 1987 New concepts in biliary cirrhosis. Seminars in Liver Disease 7: 293
8. Portmann B, Popper H, Neuberger J, Williams R. 1985. Sequential and diagnostic features in primary biliary cirrhosis based on serial histologic study in 209 patients. Gastroenterology 88: 1777-90
9. Friedman SL. 2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88: 125-72
10. Friedman SL. 2008. Mechanisms of hepatic fibrogenesis. Gastroenterology 134: 1655-69
11. Gershwin ME, Mackay IR, Sturgess A, Coppel RL. 1987. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 138: 3525-31
12. Ishibashi H, Shimoda S, Gershwin ME. 2005. The immune response to mitochondrial autoantigens. Semin Liver Dis 25: 337-46
13. Gershwin ME, Mackay IR. 2008. The causes of primary biliary cirrhosis: Convenient and inconvenient truths. Hepatology 47: 737-45
14. Berg PA, Klein R, Rocken M. 1997. Cytokines in primary biliary cirrhosis. Semin Liver Dis 17: 115-23
15. Harada K, Van de Water J, Leung PS, Coppel RL, Ansari A, Nakanuma Y, Gershwin ME. 1997. In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology 25: 791-6
16. Kita H, Lian ZX, Van de Water J, He XS, Matsumura S, Kaplan M, Luketic V, Coppel RL, Ansari AA, Gershwin ME. 2002. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross- presented by dendritic cells. J Exp Med 195: 113-23
17. Kita H, Matsumura S, He XS, Ansari AA, Lian ZX, Van de Water J, Coppel RL, Kaplan MM, Gershwin ME. 2002. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 109: 1231-40
18. Chuang YH, Ridgway WM, Ueno Y, Gershwin ME. 2008. Animal models of primary biliary cirrhosis. Clin Liver Dis 12: 333-47; ix
19. Irie J, Wu Y, Wicker LS, Rainbow D, Nalesnik MA, Hirsch R, Peterson LB, Leung PS, Cheng C, Mackay IR, Gershwin ME, Ridgway WM. 2006. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 203: 1209-19
20. Oertelt S, Lian ZX, Cheng CM, Chuang YH, Padgett KA, He XS, Ridgway WM, Ansari AA, Coppel RL, Li MO, Flavell RA, Kronenberg M, Mackay IR, Gershwin ME. 2006. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 177: 1655-60
21. Wakabayashi K, Lian ZX, Moritoki Y, Lan RY, Tsuneyama K, Chuang YH, Yang GX, Ridgway W, Ueno Y, Ansari AA, Coppel RL, Mackay IR, Gershwin ME. 2006. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 44: 1240-9
22. Kaplan MM. 2004. Novosphingobium aromaticivorans: a potential initiator of primary biliary cirrhosis. Am J Gastroenterol 99: 2147-9
23. Mattner J, Savage PB, Leung P, Oertelt SS, Wang V, Trivedi O, Scanlon ST, Pendem K, Teyton L, Hart J, Ridgway WM, Wicker LS, Gershwin ME, Bendelac A. 2008. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3: 304-15
24. Wakabayashi K, Lian ZX, Leung PS, Moritoki Y, Tsuneyama K, Kurth MJ, Lam KS, Yoshida K, Yang GX, Hibi T, Ansari AA, Ridgway WM, Coppel RL, Mackay IR, Gershwin ME. 2008. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 48: 531-40
25. Yang GX, Lian ZX, Chuang YH, Moritoki Y, Lan RY, Wakabayashi K, Ansari AA, Flavell RA, Ridgway WM, Coppel RL, Tsuneyama K, Mackay IR, Gershwin ME. 2008. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47: 1974-82
26. Bendelac A, Savage PB, Teyton L. 2007. The biology of NKT cells. Annu Rev Immunol 25: 297-336
27. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L. 2008. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr Opin Immunol 20: 358-68
28. Wilson SB, Delovitch TL. 2003. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 3: 211-22
29. Godfrey DI, Kronenberg M. 2004. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114: 1379-88
30. Porcelli S, Yockey CE, Brenner MB, Balk SP. 1993. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178: 1-16
31. Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A. 1994. An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells. J Exp Med 180: 1171-6
32. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M. 1998. CD1d-mediated recognition of an alpha-galactosyl- ceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188: 1521-8
33. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. 2004. NKT cells: what's in a name? Nat Rev Immunol 4: 231-7
34. Emoto M, Kaufmann SH. 2003. Liver NKT cells: an account of heterogeneity. Trends Immunol 24: 364-9
35. Klugewitz K, Adams DH, Emoto M, Eulenburg K, Hamann A. 2004. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol 25: 590-4
36. Porcelli SA, Modlin RL. 1999. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17: 297-329
37. Boes M, Stoppelenburg AJ, Sille FC. 2009. Endosomal processing for antigen presentation mediated by CD1 and Class I major histocompatibility complex: roads to display or destruction. Immunology 127: 163-70
38. Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. 2000. NKT cells: facts, functions and fallacies. Immunol Today 21: 573-83
39. Kronenberg M, Gapin L. 2002. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2: 557-68
40. Wu L, Van Kaer L. 2009. Natural killer T cells and autoimmune disease. Curr Mol Med 9: 4-14
41. Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, Kronenberg M, Koezuka Y, Van Kaer L. 2001. The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7: 1052-6
42. Ly D, Mi QS, Hussain S, Delovitch TL. 2006. Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+CD25+ regulatory T cells. J Immunol 177: 3695-704
43. Griseri T, Beaudoin L, Novak J, Mars LT, Lepault F, Liblau R, Lehuen A. 2005. Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J Immunol 175: 2091-101
44. Furlan R, Bergami A, Cantarella D, Brambilla E, Taniguchi M, Dellabona P, Casorati G, Martino G. 2003. Activation of invariant NKT cells by alphaGalCer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-gamma. Eur J Immunol 33: 1830-8
45. Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O, Kronenberg M, Koezuka Y, Kumar V. 2001. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194: 1789-99
46. Swain MG. 2008. Hepatic NKT cells: friend or foe? Clin Sci (Lond) 114: 457-66
47. Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. 2000. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 97: 5498-503
48. Biburger M, Tiegs G. 2005. Alpha-galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells. J Immunol 175: 1540-50
49. Tsuneyama K, Yasoshima M, Harada K, Hiramatsu K, Gershwin ME, Nakanuma Y. 1998. Increased CD1d expression on small bile duct epithelium and epithelioid granuloma in livers in primary biliary cirrhosis. Hepatology 28: 620-3
50. Kita H, Naidenko OV, Kronenberg M, Ansari AA, Rogers P, He XS, Koning F, Mikayama T, Van De Water J, Coppel RL, Kaplan M, Gershwin ME. 2002. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 123: 1031-43
51. Chuang YH, Lian ZX, Yang GX, Shu SA, Moritoki Y, Ridgway WM, Ansari AA, Kronenberg M, Flavell RA, Gao B, Gershwin ME. 2008. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 47: 571-80
52. Moteki S, Leung PS, Coppel RL, Dickson ER, Kaplan MM, Munoz S, Gershwin ME. 1996. Use of a designer triple expression hybrid clone for three different lipoyl domain for the detection of antimitochondrial autoantibodies. Hepatology 24: 97-103
53. Lan RY, Salunga TL, Tsuneyama K, Lian ZX, Yang GX, Hsu W, Moritoki Y, Ansari AA, Kemper C, Price J, Atkinson JP, Coppel RL, Gershwin ME. 2009. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 32: 43-51
54. Nakagawa R, Nagafune I, Tazunoki Y, Ehara H, Tomura H, Iijima R, Motoki K, Kamishohara M, Seki S. 2001. Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by alpha-galactosylceramide in mice. J Immunol 166: 6578-84
55. Bendelac A, Rivera MN, Park SH, Roark JH. 1997. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15: 535-62
56. MacDonald HR. 1995. NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function. J Exp Med 182: 633-8
57. Trobonjaca Z, Leithauser F, Moller P, Schirmbeck R, Reimann J. 2001. Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-gamma release by liver NKT cells. J Immunol 167: 1413-22
58. Osman Y, Kawamura T, Naito T, Takeda K, Van Kaer L, Okumura K, Abo T. 2000. Activation of hepatic NKT cells and subsequent liver injury following administration of alpha-galactosylceramide. Eur J Immunol 30: 1919-28
59. Fujii H, Seki S, Kobayashi S, Kitada T, Kawakita N, Adachi K, Tsutsui H, Nakanishi K, Fujiwara H, Ikarashi Y, Taniguchi M, Kronenberg M, Ikemoto M, Nakajima Y, Arakawa T, Kaneda K. 2005. A murine model of NKT cell-mediated liver injury induced by alpha-galactosylceramide/d-galacto- samine. Virchows Arch 446: 663-73
60. Sprengers D, Sille FC, Derkow K, Besra GS, Janssen HL, Schott E, Boes M. 2008. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen. Gastroenterology 134: 2132-43
61. Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. 2004. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199: 1607-18
62. Fujii S, Shimizu K, Hemmi H, Steinman RM. 2007. Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220: 183-98
63. Fujii S, Shimizu K, Hemmi H, Fukui M, Bonito AJ, Chen G, Franck RW, Tsuji M, Steinman RM. 2006. Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci U S A 103: 11252-7
64. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. 2003. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198: 267-79
65. Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L. 2005. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115: 2572-83
66. Galli G, Nuti S, Tavarini S, Galli-Stampino L, De Lalla C, Casorati G, Dellabona P, Abrignani S. 2003. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med 197: 1051-7
67. Tonti E, Galli G, Malzone C, Abrignani S, Casorati G, Dellabona P. 2009. NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood 113: 370-6
68. Park O, Jeong WI, Wang L, Wang H, Lian ZX, Gershwin ME, Gao B. 2009. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 49: 1683-94
69. Gao B, Radaeva S, Park O. 2009. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 86: 513-28
70. Inada S, Suzuki K, Kimura T, Hayashi A, Narita T, Yui R, Asakura H, Fujiwara M. 1995. Concentric fibrosis and cellular infiltration around bile ducts induced by graft-versus-host reaction in mice: a role of CD8+ cells. Autoimmunity 22: 163-71
71. Safadi R, Ohta M, Alvarez CE, Fiel MI, Bansal M, Mehal WZ, Friedman SL. 2004. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 127: 870-82
72. Youn HJ, Ko SY, Lee KA, Ko HJ, Lee YS, Fujihashi K, Boyaka PN, Kim SH, Horimoto T, Kweon MN, Kang CY. 2007. A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine 25: 5189-98
73. Choi YS, Hoory T, Monie A, Wu A, Connolly D, Hung CF. 2008. alpha-Galactosylceramide enhances the protective and therapeutic effects of tumor cell based vaccines for ovarian tumors. Vaccine 26: 5855-63
74. Cerundolo V, Silk JD, Masri SH, Salio M. 2009. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9: 28-38
75. Huang Y, Chen A, Li X, Chen Z, Zhang W, Song Y, Gurner D, Gardiner D, Basu S, Ho DD, Tsuji M. 2008. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine 26: 1807-16
76. Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC, Wilson JM, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M. 2002. Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 195: 617-24
77. Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM. 2002. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8: 3702-9
78. Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ. 2004. Therapeutic activation of Valpha24+Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103: 383-9
79. Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, Shimizu N, Horiguchi S, Okamoto Y, Fujii S, Taniguchi M, Fujisawa T, Nakayama T. 2006. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12: 6079-86
80. Dardalhon V, Korn T, Kuchroo VK, Anderson AC. 2008. Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31: 252-6
81. Ohashi PS. 2003. Negative selection and autoimmunity. Curr Opin Immunol 15: 668-76
82. Felix NJ, Allen PM. 2007. Specificity of T-cell alloreactivity. Nat Rev Immunol 7: 942-53
83. Christen U, von Herrath MG. 2004. Initiation of autoimmunity. Curr Opin Immunol 16: 759-67
84. Ely LK, Burrows SR, Purcell AW, Rossjohn J, McCluskey J. 2008. T-cells behaving badly: structural insights into alloreactivity and autoimmunity. Curr Opin Immunol 20: 575-80
85. Shimoda S, Nakamura M, Shigematsu H, Tanimoto H, Gushima T, Gershwin ME, Ishibashi H. 2000. Mimicry peptides of human PDC-E2 163-176 peptide, the immunodominant T-cell epitope of primary biliary cirrhosis. Hepatology 31: 1212-6
86. Shimoda S, Van de Water J, Ansari A, Nakamura M, Ishibashi H, Coppel RL, Lake J, Keeffe EB, Roche TE, Gershwin ME. 1998. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest 102: 1831-40
87. Van de Water J, Ansari A, Prindiville T, Coppel RL, Ricalton N, Kotzin BL, Liu S, Roche TE, Krams SM, Munoz S, Gershwin ME. 1995. Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med 181: 723-33
88. Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. 1995. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 181: 1835-45
89. Grau-Lopez L, Raich D, Ramo-Tello C, Naranjo-Gomez M, Davalos A, Pujol-Borrell R, Borras FE, Martinez-Caceres E. 2009. Myelin peptides in multiple sclerosis. Autoimmun Rev 8: 650-3
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10761-
dc.description.abstractPBC為慢性膽汁鬱積肝臟的自體免疫疾病,患者肝臟門脈三角出現自體反應淋巴球浸潤以及血清中可測得抗粒線體自體抗體,嚴重者導致肝臟衰竭。iNKT細胞在經由抗原呈獻細胞表面分子CD1d呈獻抗原 (glycolipid) 活化後,會在短時間內分泌大量細胞激素,如IL-4及IFN-g等,調控其他免疫細胞。在PBC患者肝臟內有較多iNKT細胞,且其膽道上皮細胞亦表現較多CD1d分子,推測iNKT細胞可能會影響疾病的發生。我們先前發現dnTGFbRII PBC小鼠肝臟含有高量過度活化且分泌高量IFN-g的iNKT細胞。再者,iNKT細胞缺乏之dnTGFbRII小鼠的肝臟淋巴球浸潤減少且膽道發炎減輕,推測iNKT細胞可能在早期藉由IFN-g的分泌而促使疾病加重。在此,我們進一步探討iNKT cells活化對此疾病的影響。我們以靜脈注射a-GalCer活化iNKT cells,並觀察其對於xenobiotics (2-OA BSA) 致敏之PBC小鼠疾病進程變化。
  我們在初期以靜脈注射給予2-OA BSA致敏小鼠a-GalCer,活化小鼠體內iNKT細胞,12週後觀察晚期PBC小鼠肝臟病理變化以及血清中AMAs效價高低。結果顯示給予a-GalCer之PBC小鼠,血清anti-PDC-E2 IgG以及IgM效價增高、肝臟門脈區發炎和膽道破壞嚴重,甚至出現肝臟肉芽腫及纖維化。分析其肝臟單核細胞組成,發現執行毒殺功能之CD8+ T cells顯著增加,且肝臟出現Th1與Th17細胞激素微環境。進一步分析致敏4週後之結果,給予a-GalCer的2-OA BSA致敏小鼠已加快PBC疾病進程,包括血清AMAs效價顯著升高及肝臟門脈三角更多淋巴球浸潤及膽道破壞,同時肝臟中CD8+ T cells亦已顯著增加。深入探討其機制,我們發現給予a-GalCer至2-OA BSA引起之PBC小鼠可促使肝臟DCs表面MHC class I分子表現量增加,可能因此導致更多CD8+ T cells遷移至肝臟,造成肝臟膽道破壞加重。此外,我們利用pichia pastoris酵母菌表現mPDC-E2蛋白片段,證實在2-OA BSA致敏之PBC小鼠體內有mPDC-E2-specific auto-reactive T cells。
  由此研究結果,我們在xenobiotic (2-OA BSA) 引起之PBC小鼠模式中,再以a-GalCer活化iNKT cells可加快及加重PBC疾病進程,且產生更為相似PBC病人的肝臟肉芽腫及纖維化的病徵。因此,未來我們可在此一小鼠模式下, 配合a-GalCer的給予,使成為更好的PBC小鼠模式。加上mPDC-E2之製備及證明小鼠體內有auto-reactive T cells之存在,且此auto-reactive T cells亦是對抗與人類相同的自體抗原 (PDC-E2) ,給予a-GalCer 之2-OA BSA致敏小鼠將可廣泛用於研究PBC疾病之自體免疫機轉及治療的應用。
zh_TW
dc.description.abstractPrimary biliary cirrhosis (PBC) is a chronic cholestatic liver autoimmune disease. The characteristics of PBC are the presence of anti-mitochondrial auto-Abs, the presence of auto-reactive lymphocyte infiltration in the portal triad of liver, and the destruction of biliary epithelial cells. The destroyed liver would become fibrosis and then failure at the end stage of disease. Invariant NKT (iNKT) cells, an unconventional T cells, are activated by glycolipids, such as a-galactosylceramide (a-GalCer), presented by CD1d molecule on antigen presenting cells. After activation, iNKT cells immediately secrete a variety of cytokines, such as IL-4 and IFN-g, to regulate downstream immune cells. In PBC patients, both the frequency of iNKT cells and CD1d expression on bile duct epithelium were increased, suggesting that iNKT cells are correlated with the onset of PBC. Our previous study demonstrated that the increased number of hyper-reactive liver iNKT cells which secreted more IFN-g than IL-4 was noted in dnTGFbRII PBC mice. However, in NKT cell deficient dnTGFbRII mice, lymphocyte infiltration and bile duct damage in liver were alleviated. These results suggested that iNKT cells exacerbated liver bile duct injury by IFN-g production in early stage. In this study, we investigated the effects of activating iNKT cells in PBC. We intravenously injected a-GalCer to activate iNKT cells and evaluated the PBC progress in xenobiotic (2-OA BSA) -induced PBC mouse model.
We report herein a-GalCer injection exacerbated autoimmune cholangitis in 2-OA BSA immunized mice, including increased AMA production, portal inflammation, bile duct damage, granuloma formation as well as fibrosis, and Th1 and Th17 prone immune responses. Liver total mononuclear cells were significantly increased in a-GalCer-injected 2-OA BSA immunized mice. Importantly, significantly increased CD8+ T cells in the liver were noted in a-GalCer-injected 2-OA BSA immunized mice. Moreover, a-GalCer intravenous injection up-regulated the antigen presenting capacity of dendritic cells (DCs) in 2-OA BSA immunized mice. These results suggest that iNKT cell activation by a-GalCer administration exacerbate PBC by either secreting IFN-g or stimulating the maturation of DCs and subsequently recruiting CD8+ T cells to destroy bile ducts. In addition, we also identified mPDC-E2 specific auto-reactive T cells in 2-OA BSA-immunized mice.
In conclusion, our results demonstrated that administrat ion with a-GalCer to activate iNKT cells in 2-OA BSA immunized mice exacerbate profound liver injury. Moreover, the features of a-GalCer injected 2-OA BSA immunized mice were more similar to that of patients of PBC, such as the presence of granuloma and fibrosis. Meanwhile, we also expressed mPDC-E2 and defined the presence of auto-reactive T cells directed against PDC-E2, the immune dominant autoantigen of human PBC. Therefore, a-GalCer administration in 2-OA BSA immunized mice could be a better mouse model for studying the mechanism of autoimmune pathogenesis and therapeutic strategies of PBC.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:56:26Z (GMT). No. of bitstreams: 1
ntu-99-R97424012-1.pdf: 5340350 bytes, checksum: 749f4a9f650b757964664d5703de24eb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 ......................................................................... i
中文摘要 ..................................................................... ii
Abstract .....................................................................iv
縮寫對照表 ................................................................... vi
圖表目錄 ..................................................................... ix
第一章 總論 ................................................................. 1
1.1 原發性膽道硬化症 (primary biliary cirrhosis;PBC) ........................... 1
1.2 PBC 之動物模式 ............................................................... 4
第二章 探討iNKT cells 的活化對於原發性膽道硬化症小鼠之影響 ................... 7
1. 研究背景 ........................................................................ 7
1.1 自然殺手T 細胞 (Nature Killer T cells;NKT cells) ............................... 7
1.2 iNKT cells 在自體免疫病中扮演之角色 ............................................. 9
1.3 iNKT cells 在PBC 扮演之角色 .................................................... 10
2.研究目的 ......................................................................... 11
3.材料與方法 ...................................................................... 12
4.實驗結果 .......................................................................... 17
4.1 Naïve 小鼠給予α-GalCer 後,體內iNKT cells 迅速活化,並在短時間內釋放出IL-4 及IFN-γ........................................................................... 17
4.2 12 週後,給予α-GalCer 之PBC 小鼠血清AMAs 效價上升、晚期肝臟膽道破壞加重,進而引發肝臟纖維化 .............................................. 17
4.3 12 週後,初期給予α-GalCer 之PBC 小鼠,吸引大量CD8+T cells 浸潤至肝臟 ............................................................................... 20
4.4 12 週後,初期給予α-GalCer 之PBC 小鼠建立Th1 與Th17主導之細胞激素微環境 ...................................................................... 20
4.5 4 週後,初期給予α-GalCer 之PBC 小鼠膽道破壞加快、血清AMAs 效價上升 ................ 21
4.6 4 週後,初期給予α-GalCer 之PBC 小鼠吸引大量CD8+ T cells 與B cells浸潤至肝臟 ................................................................................. 22
4.7 4 週後,初期給予α-GalCer 之PBC 小鼠可活化肝臟與脾臟DCs,並增加其呈獻抗原之能力 ......... 23
5. 討論 ............................................................................... 25
第三章 Xenobiotic 引起之原發性膽道硬化症小鼠模式體內mPDC-E2-specific autoreactive T cells ...................................................................... 30
1. 研究背景 ............................................................................ 30
1.1 自體反應T 淋巴球 (Auto-reactive T lymphocyte) ...................................... 30
1.2 自體反應T 淋巴球在PBC 疾病扮演之角色 ............................................... 31
2. 研究目的 ............................................................................ 33
3. 材料與方法 .......................................................................... 34
4. 實驗結果 ............................................................................ 37
4.1 以Pichia pastoris 酵母菌表現蛋白系統表現小鼠PDC-E2 蛋白片段 ........................ 37
4.2 2-OA BSA 引起之PBC 小鼠體內,可測得mPDC-E2-specificT cells ......................... 37
5. 討論 ................................................................................ 40
第四章 總結 ............................................................................ 42
圖 ......................................................................................44
表 .................................................................................... 69
參考文獻 ...............................................................................72
附錄 ...................................................................................81
dc.language.isozh-TW
dc.title探討invariant NKT細胞的活化對於原發性膽道硬化症之影響zh_TW
dc.titleThe Effects of Activation of Invariant NKT Cells on the Pathogenesis of Primary Biliary Cirrhosisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陶秘華(Mi-Hua Tao),孫昭玲(Jau-Ling Suen),楊曜旭(Yao-Hsu Yang)
dc.subject.keyword原發性膽道硬化症,iNKT cells,a-GalCer,2-OA BSA致敏小鼠,mPDC-E2,mPDC-E2-specific auto-reactive T cells,zh_TW
dc.subject.keywordprimary biliary cirrhosis,iNKT cells,a-GalCer,2-OA BSA-induced PBC mouse model,mPDC-E2 specific autoreactive T cells,en
dc.relation.page86
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf5.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved