請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 夏俊雄 | |
| dc.contributor.author | Jia-Yuan Dai | en |
| dc.contributor.author | 戴佳原 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:56:11Z | - |
| dc.date.available | 2010-07-27 | |
| dc.date.available | 2021-05-20T21:56:11Z | - |
| dc.date.copyright | 2010-07-27 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-23 | |
| dc.identifier.citation | [1] J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski: The evolution of slow dispersal rates: a reaction-diffusion model. Journal of Mathematical Biolology. Vol.34, 579-612. (1998)
[2] C. Cosner and Y. Lou: Does movement toward better environment always benefit a population? Journal of Mathematical Analysis and Applications. Vol.277, 489-503. (2003) [3] R.S. Cantrell, C. Cosner, and Y. Lou: Movement toward better environment and the evolution of rapid diffusion. Mathematical Biosciences. Vol.204, 199-214. (2006) [4] R.S. Cantrell, C. Cosner, and Y. Lou: Advection-mediated coexistence of competing species. Proceedings of the Royal Society of Edinburgh. Vol.137A, 497-518. (2007) [5] X.F. Chen and Y. Lou: Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model. Indiana University Mathematics Journal. 627-658. (2008) [6] X.F. Chen, R. Hambrock, and Y. Lou: Evolution of conditional dispersal: a reaction-diffusion-advection model. Journal of Mathematical Biology. Vol.57, 361-386. (2008) [7] R. Hambrock and Y. Lou: The evolution of conditional dispersal strategies in spatially heterogeneous habitats. Journal of Mathematical Biology. Vol.71, 1793-1817. (2009) [8] R.S. Cantrell and C. Cosner: Spatial Ecology via Reaction-Diffusion Equations. Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK. (2003) [9] L.C. Evans: Partial differential equations. American Mathematical Society. (1998) [10] D. Gilbarg and N. Trudinger: Elliptic Partial Differential Equations of Second Order. 2nd Edition. Springer-Verlag, Berlin. (1983) [11] D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics 840, Springer-Verlag, New York. (1981) [12] P. Hess: Periodic-parabolic boundary value problems and positivity. Pitman Research Notes in Mathematics Series. (1991) [13] M.W. Hirsch and H.L. Smith: Asymptotically stable equilibria for monotone semiflows. Discrete and Continuous Dynamical Systems. Vol.14, 385-398. (2006) [14] S. Hsu, H. Smith, and P. Waltman: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Transactions of the American Mathematical Society. Vol.348, 4083-4094. (1996) [15] X. Mora: Semilinear parabolic problems define semiflows on Ck spaces. Transactions of the American Mathematical Society. Vol.278, 21-55. (1983) [16] M. H. Protter and H. F. Weinberger: Maximum Principles in Differential Equations. 2nd Edition. Springer-Verlag, Berlin. (1984) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10758 | - |
| dc.description.abstract | 本論文完整地回顧了一個具有生態學意義的問題:兩個競爭物種在資源異質分布的孤立環境中將如何演化?本研究透過再分布機制由相互競爭、隨機擴散跟有向移動組成的假設建立一個特別的 Lotka-Volterra 競爭模型,用以分析競爭物種的長期演化結果,亦即決定該模型均衡解的穩定性。本研究以標準程序應用諸如最大值原則(maximum principles)、變分法(calculus of variation)和單調動力系統理論(the theory of monotone dynamical systems)等數學方法。主要結論是隨機擴散和有向移動共同決定了演化結果,因此不同擴散速率和有向流傾向的組合可能影響演化結果。據此,研究者建立了一個初步的分歧圖以提供理論上可信賴的預測。 | zh_TW |
| dc.description.abstract | This thesis is a rather complete survey concerning an ecologically meaningful problem: how would two competing species evolve in a given spatially heterogeneous and isolated environment? A special kind of the Lotka-Volterra competition model is derived by assuming that the mechanisms of redistribution consist of mutual competition, random diffusion, and advective motion. The main task is to analyze the evolutionary results of the competing species in the long run, or equivalently, to determine the stability of equilibria of the model. The mathematical methods such as maximum principles, calculus of variation, and the theory of monotone dynamical systems are utilized as the standard procedure. The main conclusion is that both random diffusion and advective motion decide the evolutionary results; thus different combinations of diffusion rates and advective tendencies may influence the evolutionary results. Accordingly, a preliminary bifurcation diagram can be established to provide certain theoretically reliable predictions. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:56:11Z (GMT). No. of bitstreams: 1 ntu-99-R97221006-1.pdf: 1010116 bytes, checksum: 2408fb61e4b8bc3f85b1d648186c2565 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 論文口試委員審定書
致謝................................................... i 中文摘要............................................... iii 英文摘要............................................... iv 1. Introduction........................................ 1 Main Results ........................................ 6 Frequently-applied Theorems and the Main Scheme ..... 8 2. The Main Result of Type A .......................... 16 Proof of Theorem 1.1................................. 19 An Interlude: Type A Under Effects of Mutation ...... 19 3. The Main Result of Type B .......................... 24 Proof of Theorem 1.2................................. 34 4. The Main Result of Type C .......................... 35 Advection-induced Coexistece......................... 44 Advection-induced Extinction......................... 45 The Asymptotic Behavior of Principal Eigenvalues..... 47 5. Discussions......................................... 56 Conclusions: a Bifurcation Diagram .................. 56 Further Problems .................................. 57 Appendix: a Manual for Maximum Principles ............. 59 References ............................................ 61 後記:研究歷程 | |
| dc.language.iso | en | |
| dc.title | 擴散跟有向流在競爭物種演化下的效應:一個關於Lotka-Volterra競爭模型的回顧 | zh_TW |
| dc.title | The Effects of Diffusion and Advection on the Evolution of Competing Species: a Survey on the Lotka-Volterra Competition Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林紹雄,Jerry. L. Bona(Jerry. L. Bona),陳虹秋(Hongqiu Chen) | |
| dc.subject.keyword | Lotka-Volterra 競爭模型,隨機擴散,有向移動,均衡解,局部穩定性,全域穩定性, | zh_TW |
| dc.subject.keyword | Lotka-Volterra competition model,random diffusion,advective motion,equilibria,local stability,global stability, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 986.44 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
