Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10748
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor於幼華(Yue-Hwa Yu)
dc.contributor.authorWei-Chih Yenen
dc.contributor.author顏維志zh_TW
dc.date.accessioned2021-05-20T21:55:19Z-
dc.date.available2011-08-02
dc.date.available2021-05-20T21:55:19Z-
dc.date.copyright2010-08-02
dc.date.issued2010
dc.date.submitted2010-07-25
dc.identifier.citation英文部分
3M. (2003). Perfluorooctanoic Acid Physiochemical Properties and Environmental Fate Data. Retrieved from http://www.fluoridealert.org/pesticides/pfos.reports.htm
Aguado, M. A., Gimenez, J., & Cerveramarch, S. (1991). Continuous Photocatalytic Treatment of Cr(Vi) Effluents with Semiconductor Powders. Chemical Engineering Communications, 104, 71-85.
Cao, H., & Xiao, J. B. (2007). Analysis of anions in alkaline solutions by ion chromatography after solid-phase extraction. Annali Di Chimica, 97(1-2), 49-58.
Carter, K. E., & Farrell, J. (2008). Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes. Environmental Science & Technology, 42(16), 6111-6115.
Chambers, E., Wagrowski-Diehl, D. M., Lu, Z. L., & Mazzeo, J. R. (2007). Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 852(1-2), 22-34.
Chen, J., Zhang, P. Y., & Liu, J. (2007). Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences-China, 19(4), 387-390.
Chen, J., Zhang, P. Y., & Zhang, L. (2006). Photocatalytic decomposition of environmentally persistent perfluorooctanoic acid. Chemistry Letters, 35(2), 230-231.
Choi, W. Y., & Hoffmann, M. R. (1995). Photoreductive Mechanism of Ccl4 Degradation on Tio2 Particles and Effects of Electron-Donors. Environmental Science & Technology, 29(6), 1646-1654.
Choi, W. Y., & Hoffmann, M. R. (1996). Kinetics and mechanism of CCl4 photoreductive degradation on TiO2: The role of trichloromethyl radical and dichlorocarbene. Journal of Physical Chemistry, 100(6), 2161-2169.
de Voogt, P., & Saez, M. (2006). Analytical chemistry of perfluoroalkylated substances. Trac-Trends in Analytical Chemistry, 25(4), 326-342.
Dietz, R., Bossi, R., Riget, F. F., Sonne, C., & Born, E. W. (2008). Increasing perfluoroalkyl contaminants in east Greenland polar bears (Ursus maritimus): A new toxic threat to the Arctic bears. Environmental Science & Technology, 42(7), 2701-2707.
Dillert, R., Bahnemann, D., & Hidaka, H. (2007). Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere, 67(4), 785-792.
Hawari, J., Demeter, A., Greer, C., & Samson, R. (1991). Acetone-Induced Photodechlorination of Aroclor 1254 in Alkaline 2-Propanol - Probing the Mechanism by Thermolysis in the Presence of Di-Tert-Butyl Peroxide. Chemosphere, 22(12), 1161-1174.
Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., et al. (2004). Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology, 38(22), 6118-6124.
Hori, H., Nagaoka, Y., Murayama, M., & Kutsuna, S. (2008). Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science & Technology, 42(19), 7438-7443.
Hori, H., Nagaoka, Y., Sano, T., & Kutsuna, S. (2008). Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water. Chemosphere, 70(5), 800-806.
Hori, H., Nagaoka, Y., Yamamoto, A., Sano, T., Yamashita, N., Taniyasu, S., et al. (2006). Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology, 40(3), 1049-1054.
Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., & Kutsuna, S. (2005). Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology, 39(7), 2383-2388.
Kasprzyk-Hordern, B., Ziolek, M., & Nawrocki, J. (2003). Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B-Environmental, 46(4), 639-669.
Kim, S., Park, H., & Choi, W. (2004). Comparative study of homogeneous and heterogeneous photocatalytic redox reactions: PW12O403- vs TiO2. Journal of Physical Chemistry B, 108(20), 6402-6411.
Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1991). Photolysis of Chloroform and Other Organic-Molecules in Aqueous Tio2 Suspensions. Environmental Science & Technology, 25(3), 494-500.
Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., & Chang, D.-G. (2009). Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. [doi: DOI: 10.1016/j.watres.2009.03.052]. Water Research, 43(11), 2811-2816.
Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical Processes for Water-Treatment. Chemical Reviews, 93(2), 671-698.
Linsebigler, A. L., Lu, G. Q., & Yates, J. T. (1995). Photocatalysis on Tio2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758.
Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., & Maeda, Y. (2005). Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science & Technology, 39(9), 3388-3392.
Ochoa-Herrera, V., Sierra-Alvarez, R., Somogyi, A., Jacobsen, N. E., Wysocki, V. H., & Field, J. A. (2008). Reductive defluorination of perfluorooctane sulfonate. Environmental Science & Technology, 42(9), 3260-3264.
OECD. (2002). Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and Its Salts. Paris: Organization for Economic Co-operation and Development.
OECD. (2005). Result of Survey on Production and Use of PFOS, PFAS and PFOA, Related Substances and Products/Mixtures Containing These Substances. Paris: Organization for Economic Co-operation and Development.
OECD. (2006a). Results of the 2006 OECD Survey on Production and Use Of PFOS, PFAS, PFOA, PFCA, Their Related Substances and Products/Mixtures Containing These Substances. Paris: Organization for Economic Co-operation and Development.
OECD. (2006b). SIDS Initial Assessment Report After SIAM 22. Paris: Organization for Economic Co-operation and Development.
OECD. (2007a). Lists of PFOS, PFAS, PFOA, PFCA, Related Compounds and Chemicals That May Degrade to PFCA. Paris: Organization for Economic Co-operation and Development.
OECD. (2007b). Report of An OECD Workshop on Perfluorocarboxylic Acids (PFCAs) and Precursors. Stockholm: Organization for Economic Co-operation and Development.
Panchangam, S. C., Lin, A. Y.-C., Shaik, K. L., & Lin, C.-F. (2009). Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. [doi: DOI: 10.1016/j.chemosphere.2009.07.003]. Chemosphere, 77(2), 242-248.
Panchangam, S. C., Lin, A. Y. C., Tsai, J. H., & Lin, C. F. (2009). Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid. Chemosphere, 75(5), 654-660.
Park, H., & Choi, W. (2004). Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. Journal of Physical Chemistry B, 108(13), 4086-4093.
Park, H., Vecitis, C. D., Cheng, J., Choi, W., Mader, B. T., & Hoffmann, M. R. (2009). Reductive Defluorination of Aqueous Perfluorinated Alkyl Surfactants: Effects of Ionic Headgroup and Chain Length. Journal of Physical Chemistry A, 113(4), 690-696.
Park, H., vecitis, C. D., Cheng, J., Dalleska, N., Mader, B. T., & Hoffmann, M. R. (in press). Photolytic reduction and oxidation of perfluoroalkyl compounds: the relative reactivity of aquated electrons and sulfate radicals. Environmental Science & Technology.
Paul, A. G., Jones, K. C., & Sweetman, A. J. (2009). A First Global Production, Emission, And Environmental Inventory For Perfluorooctane Sulfonate. Environmental Science & Technology, 43(2), 386-392.
Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 40(1), 32-44.
Qiu, Y. (2007). Study on treatment technologies for perfluorochemicals in wastewater. Kyoto University.
Qu, Y., Zhang, C. J., Li, F., Chen, J., & Zhou, Q. (2010). Photo-reductive defluorination of perfluorooctanoic acid in water. Water Research, 44(9), 2939-2947.
Rantakokko, P., Mustonen, S., Yritys, M., & Vartiainen, T. (2004). Ion chromatographic method for the determination of selected inorganic anions and organic acids from raw and drinking waters using suppressor current switching to reduce the background noise. Journal of Liquid Chromatography & Related Technologies, 27(5), 829-842.
Rayne, S., Forest, K., & Friesen, K. J. (2009). Linear free energy relationship based estimates for the congener specific relative reductive defluorination rates of perfluorinated alkyl compounds. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 44(9), 866-879.
Schroder, H. F., & Meesters, R. J. W. (2005). Stability of fluorinated surfactants in advanced oxidation processes - A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. Journal of Chromatography A, 1082(1), 110-119.
Singh, A., & Kremers, W. (2002). Radiolytic dechlorination of polychlorinated biphenyls using alkaline 2-propanol solutions. Radiation Physics and Chemistry, 65(4-5), 467-472.
Smithwick, M., Muir, D. C. G., Mabury, S. A., Solomon, K. R., Martin, J. W., Sonne, C., et al. (2005). Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environmental Toxicology and Chemistry, 24(4), 981-986.
Tang, C. Y. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S., & Leckie, J. O. (2006). Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 40(23), 7343-7349.
Theron, P., Pichat, P., Guillard, C., Petrier, C., & Chopin, T. (1999). Degradation of phenyltrifluoromethylketone in water by separate or simultaneous use of TiO2 photocatalysis and 30 or 515 kHz ultrasound. Physical Chemistry Chemical Physics, 1(19), 4663-4668.
Ukisu, Y. (2008). Highly enhanced hydrogen-transfer hydrodechlorination and hydrogenation reactions in alkaline 2-propanol/methanol over supported palladium catalysts. Applied Catalysis a-General, 349(1-2), 229-232.
UNEP. (2006). Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting: Risk profile on perfluorooctane sulfonate: nited Nations Environment Programme.
Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., & Hoffmann, M. R. (2008). Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A, 112(18), 4261-4270.
Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., & Hoffmann, M. R. (2009). Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Frontiers of Environmental Science & Engineering in China, 3(2), 129-151.
Villagrasa, M., de Alda, M. L., & Barcelo, D. (2006). Environmental analysis of fluorinated alkyl substances by liquid chromatography-(tandem) mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 386(4), 953-972.
Wang, Y., Zhang, P. Y., Pan, G., & Chen, H. (2008). Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light. Journal of Hazardous Materials, 160(1), 181-186.
Weaver, S., & Mills, G. (1997). Photoreduction of 1,1,2-trichlorotrifluoroethane initiated by TiO2 particles. Journal of Physical Chemistry B, 101(19), 3769-3775.
Yamamoto, T., Noma, Y., Sakai, S. I., & Shibata, Y. (2007). Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environmental Science & Technology, 41(16), 5660-5665.
Yamamoto, T., Ohara, A., Noma, Y., Nishizawa, K., Yasuhara, A., & Sakai, S. (2007). Photodegradation of tetraphenyltin contained in polychlorinated biphenyl-based transformer oil simulants in alkaline 2-propanol solution. Journal of Material Cycles and Waste Management, 9(2), 188-193.
Yu, Q., Zhang, R. Q., Deng, S. B., Huang, J., & Yu, G. (2009). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research, 43(4), 1150-1158.
Zhao, B. X., & Zhang, P. Y. (2009). Photocatalytic decomposition of perfluorooctanoic acid with beta-Ga2O3 wide bandgap photocatalyst. Catalysis Communications, 10(8), 1184-1187.
Zhong, F. J., Chen, X. Q., Zhang, S. C., & Li, Y. P. (2007). Organic acids and inorganic anions in Bayer liquors by ion chromatography after solid-phase extraction. Journal of Central South University of Technology, 14(2), 191-195.
中文部分
王春盛. (2002). 半導體高濃度廢水之高及氧化處理與有機廢液之異丙醇回收.
刘超, 胡建信, 刘建国, & 仝宣昌. (2008). 镀铬企业周边全氟辛烷磺酰基化合物环境风险评价. 中国环境科学, 28(10), 950-954.
張世佳. (2007). 以微波熱水輔助過硫酸鹽降解水中全氟辛酸. 國立台灣大學環境工程學研究所碩士論文.
章涛, 王翠苹, & 孙红文. (2008). 环境中全氟取代化合物的研究进展. 安全与环境学报, 8(03), 22-28.
曾雨凡. (2007). 選擇性光催化還原水中硝酸鹽為氮氣之研究. 國立台灣大學環境工程學研究所碩士論文.
蔡家弘. (2008). 超音波促進光催化氧化法去除水中全氟辛酸. 國立台灣大學環境工程學研究所碩士論文.
羅兆君. (2007). 電子業放流水中全氟化物流布之研究. 國立台灣大學環境工程學研究所碩士論文.
杨波, 南碎飞, 余晓斌, & 窦梅. (2006). 含低浓度全氟辛酸铵废水溶液的处理研究. 水处理技术(04), 30-33.
杨莉, 吴光辉, 周韦, & 时武龙. (2005). TiO2薄膜光催化还原Hg2+的研究. 感光科学与光化学(06).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10748-
dc.description.abstract全氟辛酸 (perfluorooctanoic acid, PFOA) 是全氟化物 (perfluorinated compounds, PFCs) 的一種,自1950年代被合成出來後,廣泛使用在聚合物、塗料等工業製程中。由於具有持久性有機汙染物的性質,近年來PFOA在環境中的流佈途徑、及生態毒理機制已被廣泛的研究與重視。因此,本研究嘗試利用光 (紫外線) 還原反應的處理方式,探討在水溶液為無氧狀態下,初始pH值、電子提供者 (異丙醇) 濃度與觸媒 (二氧化鈦) 添加量對PFOA降解的影響。
研究結果顯示,在不添加二氧化鈦觸媒的情況下,不論pH值變化與添加異丙醇濃度為何,PFOA在24小時反應時間的去除率都約在20% 左右,但氟離子產率則隨初始pH值與異丙醇濃度的增加而上升。根據質譜儀的分析結果,未添加異丙醇時PFOA紫外線反應之降解產物以短鏈全氟羧酸為主,而含異丙醇環境下之降解機制則明顯不同,其中m/z=235[C4F9O]-為可能的中間產物。推測未添加異丙醇時,PFOA以直接光解方式氧化成短鏈全氟羧酸,而在含異丙醇的環境下,短鏈全氟羧酸進一步產生自由基連鎖還原反應,因此產生更多的氟離子,尤其在鹼性環境下則有利於還原性更強的自由基產生。
在添加觸媒的光還原反應PFOA研究結果上,0.5 g/L 的二氧化鈦添加量有最佳的PFOA降解效果,然而在鹼性環境下PFOA降解不明顯,推測原因為二氧化鈦與PFOA在鹼性條件下均帶負電,在電性相斥的現象下,二氧化鈦無法發揮作用;在酸性溶液之不同異丙醇濃度環境下,PFOA在24小時反應時間的去除率在57至73% 之間,與未添加二氧化鈦觸媒的條件比較,已明顯提高甚多去除率。根據質譜儀的分析結果,未添加異丙醇時降解產物以短鏈全氟羧酸為主,而含異丙醇環境下之降解機制亦明顯不同,還原產物m/z=395[C7F14HCOO]-為可能的中間產物。推測未添加異丙醇時,PFOA與二氧化鈦產生的電洞產生氧化反應,生成短鏈全氟羧酸;在含異丙醇環境下,異丙醇與電洞反應產生自由基,進一步還原PFOA。綜合上述各反應條件,結果顯示添加0.5 g/L二氧化鈦、2 wt %異丙醇與初始pH3的反應條件下,PFOA有最佳的降解效果,24小時反應時間有73%的降解率。
zh_TW
dc.description.abstractPerfluorinated compounds (PFCs) were used as an industrial raw material since 1950s, Perfluorooctanoic acid (PFOA) was one of these PFCs. PFOA has properties of persistant organic pollutants (POPs) and the characteristics of environmental fate and bio-toxicology had investigated widely in recent years. Based on above, this study invesgated the photo-reduction (UV) of PFOA under various pH, electron donor (isopropanol, IPA) concentration and amount of catalyst (titanium dioxide, TiO2) in anaerobic aqueous solution.
The experimental result showed that decomposition rate of PFOA was about 20% after 24 hours reaction time in all conditions of no titanium dioxide added. Moreover, higher pH value and isopropanol concentraton implied higher fluoride ion yield in aqueous solution. According to the MASS analysis, the formation of short chain perfluorocarboxylic acids (PFCAs) were main byproduct under no IPA condition, and the reaction mechanism was significantly different with IPA aqueous solution. Especially, the intermediate compound of m/z=235 [C4F9O]- was inferred in IPA aqueous solution. In no IPA condition, direct photolysis was suggested the reaction mechanism to form shorter chain PFCAs. However, the byproduct of shorter chain PFCAs would induce into radical chain reaction and yield more fluoride ion in IPA aqueous solution, especially in alkaline condition.
In catalytic photo-reduction PFOA, the result exhibited that the 0.5 g/L of titanium dioxide (optimum dose) presented significantly higher PFOA removal rate than no TiO2 condition. The PFOA removal rate could be ranged from 57% to 73% during 24 hours reaction time under various IPA concentrations in acidic condition. However, in alkaline condition PFOA did not display same high removal rate. The reason could refer that electrical repulsion between TiO2 and PFOA caused by same negative surface charges in alkaline condition. Formation of short chain PFCAs were main byproduct under no IPA condition, and the reaction mechanism was also significantly different with IPA aqueous solution. The intermediate compound of m/z=235 [C7F14HCOO]- of reduced PFOA was inferred in IPA aqueous solution. PFOA react with electron hole which generated by UV/TiO2 to produce shoter chain PFCAs under no IPA added. In IPA aqueous solution, IPA reacts with electron hole to incur radical chain reaction and reduced PFOA. Summarizing, the highest PFOA removal efficiency of 73% during 24 hours reaction time was under the condition of 0.5 g/L TiO2, 2 wt% IPA and pH 3 in aqueous solution.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:55:19Z (GMT). No. of bitstreams: 1
ntu-99-R97541206-1.pdf: 3433112 bytes, checksum: 190014e4565345831a290218846b7a9c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 全氟化物 3
2.2 全氟辛酸性質 5
2.2.1 全氟辛酸物化性質 5
2.2.2 全氟辛酸的持久性有機汙染物特性 6
2.3 全氟辛酸製造 8
2.4 全氟羧酸鹽製造、使用與排放 9
2.4.1 全氟羧酸鹽製造 12
2.4.2 氟聚合物製造與加工 13
2.4.3 氟聚合物分散液 14
2.4.4 水膜生成泡沫(Aqueous film forming foams, AFFF) 15
2.4.5 消費及工業產品 15
2.4.6 PFOS相關物質 15
2.4.7 氟調聚物相關物質 16
2.5 全氟羧酸環境濃度及規範 18
2.5.1 工業製程中產品或廢水全氟羧酸濃度 18
2.5.2 環境水體中全氟羧酸濃度 19
2.5.3 全氟羧酸濃度規範 19
2.6 全氟辛酸處理 20
2.6.1 高級氧化法 23
2.6.2 光化學法 25
2.6.3 電化學法 27
2.6.4 超音波 27
2.6.5 還原方法 28
2.6.6 小結 30
2.7 鹵化有機物的還原處理 30
2.7.1 UV結合鹼性異丙醇還原有機鹵化物 30
2.7.2 光催化還原有機鹵化物 33
第三章 實驗方法 40
3.1 實驗內容 40
3.2 實驗材料 42
3.2.1 實驗藥品 42
3.2.2 實驗設備 44
3.2.3 反應槽 45
3.3 實驗步驟 45
3.3.1 UV照射異丙醇溶液實驗 45
3.3.2 UV照射添加觸媒之異丙醇溶液實驗 46
3.4 分析方法 47
3.4.1 樣品前處理 47
3.4.2 氟離子選擇電極 48
3.4.3 離子層析儀 48
3.4.4 高效液相層析儀 49
3.4.5 ABI 3200 Qtrap質譜儀Q1掃描 51
第四章 結果與討論 52
4.1 UV照射含異丙醇之PFOA水溶液 52
4.1.1 不使用UV之對照組實驗 52
4.1.2 溶液中IPA濃度對PFOA降解影響 53
4.1.3 初始pH值對PFOA降解影響 60
4.1.4 未添加TiO2時PFOA光降解機制探討 67
4.2 UV照射添加TiO2與異丙醇之PFOA水溶液 69
4.2.1 不使用UV之對照組實驗 69
4.2.2 TiO2 使用量對PFOA降解影響 71
4.2.3 初始 pH值對PFOA降解影響 72
4.2.4 溶液中IPA濃度對PFOA降解影響 73
4.2.5 添加TiO2時PFOA光降解機制探討 81
第五章 結論與建議 85
5.1 結論 85
5.2 建議 86
參考文獻 87
附錄一 92
附錄二 97
附錄三 99
dc.language.isozh-TW
dc.title光還原法處理添加異丙醇之全氟辛酸水溶液zh_TW
dc.titlePhotoreduction of Perfluorooctanoic Acid (PFOA) in Isopropanol Aqueous Solutionen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee商能洲(Neng-Chou Shang),陳奕宏(Yi-Hung Chen)
dc.subject.keyword全氟辛酸,光還原反應,觸媒,電子提供者,二氧化鈦,異丙醇,zh_TW
dc.subject.keywordPerfluorooctanoic acid (PFOA),Photoreduction reaction,Catalyst,Electron donor,Titanium dioxide,Isopropanol,en
dc.relation.page100
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf3.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved