Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡哲明
dc.contributor.authorChuan Kuen
dc.contributor.author顧銓zh_TW
dc.date.accessioned2021-05-20T21:54:04Z-
dc.date.available2013-09-21
dc.date.available2021-05-20T21:54:04Z-
dc.date.copyright2011-09-21
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10733-
dc.description.abstract細菌葉瘤共生現象只出現在少數被子植物。在紫金牛屬中,葉瘤為圓齒亞屬的主要特徵。過去研究發現,硃砂根頂芽腔內的細菌會感染幼葉,使葉緣形成葉瘤。此外,這些細菌也會感染開花側枝,並透過種子傳至下一代。目前葉瘤共生菌尚無法培養,且在共生關係中所扮演的角色仍然未知。為對葉瘤共生關係有進一步的了解,本研究利用分子方法,並輔以形態觀察及脈衝式電泳分析鑑定共生菌。另外也重建宿主植物譜系關係,並與共生菌比較,以瞭解其共演化關係。
電子顯微鏡觀察中,不同圓齒紫金牛物種之頂芽腔、胚珠表面或葉瘤中的共生菌形態均相當類似,皆為不具鞭毛及夾膜的桿菌,且有外膜,為典型格蘭氏陰性菌。根據 16S rDNA 序列,紫金牛葉瘤細菌與茜草科葉瘤細菌同樣屬於 β 變形桿菌亞綱的伯克霍德氏菌屬。脈衝式電泳顯示硃砂根及黑星紫金牛共生菌均具有兩條染色體,約 3.5 Mb 及 1.2 Mb,基因體較大多已知的伯克霍德氏菌小。在所取樣的物種中,共生菌的 rrn 操縱組可分為三型(第 1、2A 及 2B 型)。其中八個分類群都具有的第 1 型,與其他變形桿菌最常見的相同。其餘二型只出現在硃砂根及黑星紫金牛。第 2A 型在 16S-23S 區間的 trnI 及 trnA 基因與之間的區域有 163 bp 之缺失。第 2B 型則有完整之 16S-23S 區間,但在 rDNA 區域則有許多不同長短之缺失或插入,顯示此二型有功能分化的現象。
紫金牛屬譜系分析利用細胞核(nrITS、TM6 第二內插子)及葉綠體(trnL-trnF 、atpB-rbcL、psbA-trnH)片段,共納入 7 個亞屬的 23 個種、1 個亞種及 1 個變種。結果顯示葉瘤在紫金牛屬內應為單次起源。而圓齒亞屬外的其他三個亞洲亞屬(高木、鋸齒、腋序),本研究所分析的物種亦各自為支持度良好之單系群。整體來說,葉緣形態及毛被物為重要之屬內分類特徵,而生長型、胚珠數目及輪數則較不適合。此外,花藥及花絲之長度比在亞屬間及圓齒亞屬內有明顯之變異,顯示該特徵對紫金牛系統分類之潛在重要性。
共譜系分析顯示宿主與細菌譜系樹有顯著相關。此外,同種宿主但來源地不同之樣本形成姊妹群,亦支持循環式共生假說。在細菌譜系樹上,所取樣的圓齒亞屬中分為三個系群:廣泛分佈的硃砂根–黑星紫金牛系群、屯鹿紫金牛–百兩金–雪下紅–裡堇紫金牛系群及台灣特有的雨傘仔–玉山–阿里山–高士佛紫金牛系群。值得注意的是,阿里山與高士佛紫金牛有許多相似之處,而 TM6 第二內插子譜系樹亦顯示過去在該系群內可能有過雜交事件。
zh_TW
dc.description.abstractBacterial leaf-nodule symbiosis is only found in a few angiosperm taxa. In Ardisia, leaf nodules are the distinctive feature of the subgenus Crispardisia. Previous anatomical studies of Ardisia crenata showed that a population of bacteria kept in the shoot tip inoculates the margins of young leaves, where leaf nodules later develop. The bacteria also infect floral primordia and are passed on to the next generation through seeds. To date, the bacteria are still unculturable and the role they play in the symbiotic relationship remains uncertain. To better our understanding of leaf-nodule symbiosis, a molecular approach, combined with morphological observation and PFGE analysis, was used to identify and characterize Crispardisia symbionts. A phylogeny of the host plants was also constructed and compared with that of the symbionts.
Under electron microscopes, symbiotic bacteria from shoot apices, ovaries or leaf nodules of different host species are similar in morphology. They are rod-shaped, non-flagellated and non-capsulated and have an outer membrane, a typical Gram-negative structure. Analyses of 16S rDNA sequences suggest that the leaf-nodule symbionts of Ardisia belong to the genus Burkholderia in the β-subclass of Proteobacteria, as do the leaf-nodule bacteria of Rubiaceae. The PFGE patterns of A. crenata and A. polysticta symbionts indicate that they have two replicons of about 3.5 Mb and 1.2 Mb, which comprise a relatively small genome compared to other Burkholderia. One notable finding is that the symbionts have three types of rrn operons (Types 1, 2A and 2B). Eight sampled Crispardisia taxa have Type 1, the most common type in Proteobacteria. The other types are only found in A. crenata and A. polysticta. Type 2A is similar to Type 1 in the 16S and 23S regions, but has a 163-bp deletion in the trnI and trnA genes and their spacer within the 16S-23S spacer. In contrast, Type 2B has an intact spacer and rDNA regions with indels of various sizes, suggesting the two types are functionally complementary.
For the phylogenetic analyses of Ardisia, 23 species, 1 subspecies and 1 variety from 7 subgenera were included in the data matrices of nuclear (nrITS, TM6 second intron) and chloroplast (trnL-trnF, atpB-rbcL, psbA-trnH) markers. The phylogenies suggest a single origin of leaf nodules within the genus. In addition to Crispardisia, the sampled taxa of the other three Asian subgenera (Tinus, Bladhia and Akosmos) also each form a well supported clade. In general, leaf-margin morphology and vestiture appear to be more important characters, rather than growth forms or numbers of ovules and ovule series. The ratios of anther and filament lengths were also found to be variable among the subgenera and within Crispardisia, suggesting its potential systematic value for Ardisia.
Cophylogenetic analyses suggested that the host and symbiont phylogenies are significantly dependent. Furthermore, symbionts from hosts of the same species are grouped together irrespective of their geographic origins. These all supported the hypothesis of cyclic symbiosis. Within Crispardisia, three clades are recognized in the symbiont phylogeny: the widely distributed crenata-polysticta, brevicaulis-crispa-villosa-violacea and cornudentata-kusukuensis, a clade endemic to Taiwan. It should be noted that a number of similarities have been found between A. cornudentata ssp. morrisonensis var. stenosepala and A. kusukuensis, and the TM6 second intron phylogeny suggests possible hybridization events in the past.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:54:04Z (GMT). No. of bitstreams: 1
ntu-100-R98b44001-1.pdf: 47214078 bytes, checksum: e518d68a5bc5d34b224f2dd3115a13fb (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTABLE OF CONTENTS………………………………………………………………II
摘要………………..…………………………………………………………………...V
ABSTRACT…………………………………………………………………………..VI
LIST OF TABLES…………………………………………………………………...VII
LIST OF FIGURES…………………………………………………………………VIII
CHAPTER 1. GENERAL INTRODUCTION TO BACTERIAL LEAF-NODULE SYMBIOSIS……………………………………………………………………………1
1.1. Morphology of symbiotic bacteria and their associated structures……………….1
1.2. Maintenance of symbiotic bacteria and the hypothesis of cyclic symbiosis……...2
1.3. Cultivation and identification of leaf-nodule symbionts………………………….3
1.4. Functional analyses of bacterial leaf-nodule symbiosis…………………………..5
CHAPTER 2. IDENTIFICATION AND CHARACTERIZATION OF ARDISIA LEAF-NODULE SYMBIONTS………………………………………………………..7
2.1. Introduction……………………………………………………………………….7
2.2. Materials and Methods……………………………………………………………7
2.2.1. Study plants…………………………………………………………………...7
2.2.2. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation……………………………………………………………………7
2.2.3. Molecular identification of A. crenata symbionts…………………………….8
2.2.3.1. Total DNA extraction……………………………………………………..8
2.2.3.2. Amplification of bacterial rrn operons…………………………...……….8
2.2.3.3. Cloning and sequencing…………………………………………………..9
2.2.4. Sequencing of 16S rDNA, 16S-23S spacer and 23S rDNA of Crispardisia symbionts…………………………….………………………………………………9
2.2.5. Detection of symbionts in different parts of the host………………………..10
2.2.6. Pulsed-field gel electrophoresis (PFGE) analyses of A. crenata and A. polysticta symbionts…………………………………………………………………10
2.2.6.1. Preparation of symbiont chromosomes………………………………….10
2.2.6.2. Pulsed-field gel electrophoresis (PFGE)..……………………………….11
2.2.7. Phylogenetic analyses of Crispardisia symbionts…………………………...12
2.3. Results………………..…………..……………………………………………...13
2.3.1. Observation of Crispardisia symbionts………………..…………..………..13
2.3.2. Molecular identification of A. crenata symbionts………………..………….14
2.3.3. Different types of rrn operons in Crispardisia symbionts………………..…14
2.3.4. PCR detection of symbionts within A. crenata……………………………...15
2.3.5. PFGE genome organization analysis………………..…………..…………...16
2.3.6. Phylogenetic relationships of Burkholderia………………..…………..……16
2.4. Discussion……………………………………………………………..…….......16
2.4.1. Molecular identification, detection and observation of Crispardisia symbionts…………………………………………………………………………...17
2.4.2. Relationships among the rrn operons of Crispardisia symbionts……...……19
2.4.3. Phylogenetic relationships between Crispardisia symbionts and other Burkholderia……………………………………………………………..…………21
2.4.3.1. The closest relative of Crispardisia symbionts…………...……………..21
2.4.3.2. Two independent origins of leaf-nodule symbiosis between Burkholderia and angiosperms……………………………………………………………..…22
2.4.3.3. Phylogenetic patterns indicate vertical transmission of leaf-nodule symbionts……………………………………………………………..………...24
CHAPTER 3. PHYLOGENETIC ANALYSES OF ARDISIA BASED ON NUCLEAR AND CHLOROPLAST MARKERS.…………..…………..…………………………25
3.1. Introduction.…………..…………..…………….…………..…………..……….25
3.2. Materials and Methods.…………..…………..………………………………….26
3.2.1. Taxon sampling.…………..…………..……………………………………..26
3.2.2. Flow cytometry and estimation of nuclear genome size.…………..………..26
3.2.3. Amplification and sequencing of nrITS and three chloroplast markers…….27
3.2.4. Amplification and cloning of TM6 intron 2.…………..…………..………...27
3.2.5. Phylogenetic analyses of Ardisia…………..…………..…………..………..28
3.2.6. Morphometric analyses of Ardisia stamens…………………………………29
3.3. Results…………..…………..………………………….……..…………..……..29
3.3.1. Estimated genome sizes…………..…………..…………..…………..……...30
3.3.2. Phylogenetic relationships of Ardisia………….…………..………………...30
3.3.3. Morphometrics of Ardisia stamens………………………………………….31
3.4. Discussion…………………...……………..…………..………………………..31
3.4.1. Ploidy level variation in Ardisia…………………...………………………..31
3.4.2. Phylogenetic utility of TM6int2…………………...………………………...32
3.4.3. Relationships among subgenera of Ardisia…………………...……………..34
3.4.4. Relationships within Crispardisia…………………………………………...37
CHAPTER 4. PLANT-BACTERIA COPHYLOGENETIC ANALYSES...…...…….41
4.1. Introduction…………………………………………………………………...…41
4.2. Materials and Methods……………………………………………….……...…..41
4.3. Results………………………………………………………………..……...…..42
4.4. Discussion…………………………………………………………………...…..42
LITERATURE CITED………………………………………………………………..81
APPENDIX 1. SEQUENCE ALIGNMENT………………………………………….92
dc.language.isoen
dc.title紫金牛葉瘤共生菌之鑑定及與宿主之共譜系分析zh_TW
dc.titleIdentification of Ardisia (Myrsinaceae) Leaf-Nodule Symbionts and Cophylogenetic Analyses of Plant-Bacteria Symbiosisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊遠波,郭志鴻
dc.subject.keyword紫金牛,伯克霍德氏菌,圓齒紫金牛,葉瘤,譜系分析,植物細菌共生,rrn 操縱組,zh_TW
dc.subject.keywordArdisia,Burkholderia,Crispardisia,leaf nodules,phylogenetics,plant-bacteria symbiosis,rrn operon,en
dc.relation.page118
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf46.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved