Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10714
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor夏俊雄(Chun-Hiung Hisa)
dc.contributor.authorChun-Ming Liangen
dc.contributor.author梁峻銘zh_TW
dc.date.accessioned2021-05-20T21:52:22Z-
dc.date.available2015-07-30
dc.date.available2021-05-20T21:52:22Z-
dc.date.copyright2010-07-30
dc.date.issued2010
dc.date.submitted2010-07-28
dc.identifier.citation[1]. Wislaw Krawcewitz and Jianhong Wu : Theory of Degree with Applications to Bifurcations and Differential Equations, John Wiley and Sons, Inc. 1997.
[2]. L. Nirenberg : Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Science 1974.
[3]. Tian Ma and Shouhong Wang : Bifurcation Theory and Applications, World Scienti c 2005.
[4]. Donal O'Regan, Yeol Je Cho and Yu-Qing Chen : Topological Degree Theory and Applications, Chapman and Hall/CRC 2006.
[5]. Joel smoller : Shock Waves and Reaction-Diffusion Equations, Second Edition, Springer-Verlag
[6]. Micheal G. Crandall and Paul H. Rabinnowitz : Bifurcation from Simple Eigenvalues, Journal of Functional Analysis 8, 321-340(1971).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10714-
dc.description.abstract我們主要討論方程式 f(λ,x)=0,其中 f 是一個從 Banach Space 映到 Banach Space 的算子, λ 是它的參數。這個方程式在數學、應用數學甚至理論物理的領域都是很常見的方程式。舉例來說,方程式 f(λ,x)=0 可以代表一個受λ參數控制的積分方程或微分方程系統。首先,我們有興趣的是 f 的解集合並且假設 (λ,0) 爲在其中的一條解曲線。實際上,我們就是在研究討論當f在何種情況或具備哪種條件之下, (λ,0) 這條解曲線上的某一定點(非端點)會同時是f的另外一條解曲線上的點,也就是 f 的解在那一定點上產生分歧。
  我們會從有限維空間的分歧理論開始介紹,接著應用度理論證明在有限維空間以及無限維空間的分歧理論,最後我們給個例子作爲結束。
zh_TW
dc.description.abstractMany problems in mathematics, and its applications to theoretical physics, lead to a problem of the form
f(λ,x)=0, (1)
where f is an operator on R×X into Y , and X and Y are Banach spaces. For example, (1) could represent a system of differential or integral equations, depending on a parameter λ. We are interested in the structure of the solution set; namely, the set
f^(-1) (0)={ (λ,x)∈R×X∶f(λ,x)=0 }. (2)
Since we are interested in bifurcation from trivial solutions, we may assume that (λ,0) is a solution curve of (1). In particular, we seek conditions on f to see if a solution (λ,0) of (1) whether or not lies on the other solution curves of (1). In this paper, we start with introducing the bifurcation theory in finite dimensional space case. The degree theory is used in both finite and the infinite dimensional space cases. We conclude the article with some examples.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:52:22Z (GMT). No. of bitstreams: 1
ntu-99-R97221035-1.pdf: 423826 bytes, checksum: 66e53a0dd5a6c46ad8f23fb5ef0d2bd6 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝辭…………………………………………………………… ……… i
中文摘要…………………………………………………… …………ii
英文摘要 …………………………………………………………… iii
目錄 …………………………………………………… ……………iv
1.Preliminary ………………………………………………… …… 1
2.Bifurcation in finite dimensional space ……………… … 5
3.The Degree Theory…………………………………………… … 10
3.1 Brouwer Degree …………………………… ………… ……10
3.2 Leray-Schauder Degree………………………………… … 16
4.Bifurcation from a simple eigenvalue……………………… 17
5.Example………………………………………………………………20
6.Reference …………………………………… ……………………21
dc.language.isoen
dc.title分歧理論之基礎探討zh_TW
dc.titleA survey on foundation of bifurcation theoryen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳虹秋(Hongqiu Chen),Bona Jerry(Bona Jerry)
dc.subject.keyword分歧,zh_TW
dc.subject.keywordbifurcation,en
dc.relation.page22
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf413.89 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved