請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
| dc.contributor.author | Dai-Po Huang | en |
| dc.contributor.author | 黃岱柏 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:51:50Z | - |
| dc.date.available | 2013-08-06 | |
| dc.date.available | 2021-05-20T21:51:50Z | - |
| dc.date.copyright | 2010-08-06 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-28 | |
| dc.identifier.citation | 1. Brock, T. D., and Freeze, H. (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile, J Bacteriol 98, 289-297.
2. Fujiwara, S., Okuyama, S., and Imanaka, T. (1996) The world of archaea: Genome analysis, evolution and thermostable enzymes, Gene 179, 165-170. 3. Chen, M. Y., Lin, G. H., Lin, Y. T., and Tsay, S. S. (2002) Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan, Int J Syst Evol Microbiol 52, 1647-1654. 4. Wang, N., Gottesman, S., Willingham, M. C., Gottesman, M. M., and Maurizi, M. R. (1993) A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease, Proc Natl Acad Sci U S A 90, 11247-11251. 5. Amerik, A., Petukhova, G. V., Grigorenko, V. G., Lykov, I. P., Yarovoi, S. V., Lipkin, V. M., and Gorbalenya, A. E. (1994) Cloning and sequence analysis of cDNA for a human homolog of eubacterial ATP-dependent Lon proteases, FEBS Lett 340, 25-28. 6. Suzuki, C. K., Suda, K., Wang, N., and Schatz, G. (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration, Science 264, 273-276. 7. Roudiak, S. G., Seth, A., Knipfer, N., and Shrader, T. E. (1998) The lon protease from Mycobacterium smegmatis: molecular cloning, sequence analysis, functional expression, and enzymatic characterization, Biochemistry 37, 377-386. 8. Lu, B., Liu, T., Crosby, J. A., Thomas-Wohlever, J., Lee, I., and Suzuki, C. K. (2003) The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals, Gene 306, 45-55. 9. Kikuchi, M., Hatano, N., Yokota, S., Shimozawa, N., Imanaka, T., and Taniguchi, H. (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease, J Biol Chem 279, 421-428. 10. Ostersetzer, O., Kato, Y., Adam, Z., and Sakamoto, W. (2007) Multiple intracellular locations of Lon protease in Arabidopsis: evidence for the localization of AtLon4 to chloroplasts, Plant Cell Physiol 48, 881-885. 11. Clemmer, K. M., and Rather, P. N. (2008) The Lon protease regulates swarming motility and virulence gene expression in Proteus mirabilis, J Med Microbiol 57, 931-937. 12. Buchanan, C. E., Hua, S. S., Avni, H., and Markovitz, A. (1973) Transcriptional control of the calactose operon by the capR (lon) and capT genes, J Bacteriol 114, 891-893. 13. Chung, C. H., and Goldberg, A. L. (1981) The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La, Proc Natl Acad Sci U S A 78, 4931-4935. 14. Howard-Flanders, p., Simson, E. and Theriot, L. (1964) A Locus That Controls Filament Formation And Sensitivity To Radiation In Escherichia Coli K-12, genetics 49, 237-246. 15. Neuwald, A. F., Aravind, L., Spouge, J. L., and Koonin, E. V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes, Genome Res 9, 27-43. 16. Dougan, D. A., Mogk, A., Zeth, K., Turgay, K., and Bukau, B. (2002) AAA+ proteins and substrate recognition, it all depends on their partner in crime, FEBS Lett 529, 6-10. 17. Ogura, T., and Wilkinson, A. J. (2001) AAA+ superfamily ATPases: common structure--diverse function, Genes Cells 6, 575-597. 18. Rotanova, T. V., Melnikov, E. E., Khalatova, A. G., Makhovskaya, O. V., Botos, I., Wlodawer, A., and Gustchina, A. (2004) Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains, Eur J Biochem 271, 4865-4871. 19. Rotanova, T. V., Botos, I., Melnikov, E. E., Rasulova, F., Gustchina, A., Maurizi, M. R., and Wlodawer, A. (2006) Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains, Protein Sci 15, 1815-1828. 20. Tripathi, L. P., and Sowdhamini, R. (2008) Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes, BMC Genomics 9, 549. 21. Amerik, A., Antonov, V. K., Gorbalenya, A. E., Kotova, S. A., Rotanova, T. V., and Shimbarevich, E. V. (1991) Site-directed mutagenesis of La protease. A catalytically active serine residue, FEBS Lett 287, 211-214. 22. Birghan, C., Mundt, E., and Gorbalenya, A. E. (2000) A non-canonical lon proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus, Embo J 19, 114-123. 23. Rotanova, T. V. (2002) [Peptide hydrolases with catalytic dyad Ser-Lys. Similarity and distinctions of the active centers of ATP-dependent Lon proteases, LexA repressors, signal peptidases and C-terminal processing proteases], Vopr Med Khim 48, 541-552. 24. Besche, H., and Zwickl, P. (2004) The Thermoplasma acidophilum Lon protease has a Ser-Lys dyad active site, Eur J Biochem 271, 4361-4365. 25. Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., Rasulova, F., Dauter, Z., Maurizi, M. R., Rotanova, T. V., Wlodawer, A., and Gustchina, A. (2004) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site, J Biol Chem 279, 8140-8148. 26. Botos, I., Melnikov, E. E., Cherry, S., Kozlov, S., Makhovskaya, O. V., Tropea, J. E., Gustchina, A., Rotanova, T. V., and Wlodawer, A. (2005) Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases, J Mol Biol 351, 144-157. 27. Im, Y. J., Na, Y., Kang, G. B., Rho, S. H., Kim, M. K., Lee, J. H., Chung, C. H., and Eom, S. H. (2004) The active site of a lon protease from Methanococcus jannaschii distinctly differs from the canonical catalytic Dyad of Lon proteases, J Biol Chem 279, 53451-53457. 28. Chung, C. H., and Goldberg, A. L. (1982) DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from Escherichia coli, Proc Natl Acad Sci U S A 79, 795-799. 29. Goldberg, A. L. (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells, Eur J Biochem 203, 9-23. 30. Flanagan, J. M., and Bewley, M. C. (2002) Protein quality control in bacterial cells: integrated networks of chaperones and ATP-dependent proteases, Genet Eng (N Y) 24, 17-47. 31. Wickner, S., Maurizi, M. R., and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins, Science 286, 1888-1893. 32. Botos, I., Melnikov, E. E., Cherry, S., Khalatova, A. G., Rasulova, F. S., Tropea, J. E., Maurizi, M. R., Rotanova, T. V., Gustchina, A., and Wlodawer, A. (2004) Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution, J Struct Biol 146, 113-122. 33. Ammelburg, M., Frickey, T., and Lupas, A. N. (2006) Classification of AAA+ proteins, J Struct Biol 156, 2-11. 34. Smith, C. K., Baker, T. A., and Sauer, R. T. (1999) Lon and Clp family proteases and chaperones share homologous substrate-recognition domains, Proc Natl Acad Sci U S A 96, 6678-6682. 35. Li, M., Rasulova, F., Melnikov, E. E., Rotanova, T. V., Gustchina, A., Maurizi, M. R., and Wlodawer, A. (2005) Crystal structure of the N-terminal domain of E. coli Lon protease, Protein Sci 14, 2895-2900. 36. Park, S. C., Jia, B., Yang, J. K., Van, D. L., Shao, Y. G., Han, S. W., Jeon, Y. J., Chung, C. H., and Cheong, G. W. (2006) Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli, Mol Cells 21, 129-134. 37. van Dijl, J. M., Kutejova, E., Suda, K., Perecko, D., Schatz, G., and Suzuki, C. K. (1998) The ATPase and protease domains of yeast mitochondrial Lon: roles in proteolysis and respiration-dependent growth, Proc Natl Acad Sci U S A 95, 10584-10589. 38. Stahlberg, H., Kutejova, E., Suda, K., Wolpensinger, B., Lustig, A., Schatz, G., Engel, A., and Suzuki, C. K. (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits, Proc Natl Acad Sci U S A 96, 6787-6790. 39. Maehara, T., Hoshino, T., and Nakamura, A. (2008) Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins, Extremophiles 12, 285-296. 40. Koyama, Y., Hoshino, T., Tomizuka, N., and Furukawa, K. (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp, J Bacteriol 166, 338-340. 41. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein, Protein Sci 4, 2411-2423. 42. Kelly, S. M., and Price, N. C. (1997) The application of circular dichroism to studies of protein folding and unfolding, Biochim Biophys Acta 1338, 161-185. 43. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophys J 78, 1606-1619. 44. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. (1979) An improved assay for nanomole amounts of inorganic phosphate, Anal Biochem 100, 95-97. 45. Twining, S. S. (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes, Anal Biochem 143, 30-34. 46. Goldberg, A. L., Moerschell, R. P., Chung, C. H., and Maurizi, M. R. (1994) ATP-dependent protease La (lon) from Escherichia coli, Methods Enzymol 244, 350-375. 47. Farahbakhsh, Z. T., Huang, Q. L., Ding, L. L., Altenbach, C., Steinhoff, H. J., Horwitz, J., and Hubbell, W. L. (1995) Interaction of alpha-crystallin with spin-labeled peptides, Biochemistry 34, 509-516. 48. Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints, J Mol Biol 234, 779-815. 49. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: A program to check the stereochemical quality of protein structures J. Appl. Cryst. 26, 283-291 50. Luthy, R., Bowie, J. U., and Eisenberg, D. (1992) Assessment of protein models with three-dimensional profiles, Nature 356, 83-85. 51. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., and McCammon, J. A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome, Proc Natl Acad Sci U S A 98, 10037-10041. 52. Ko, L. J., and Engel, J. D. (1993) DNA-binding specificities of the GATA transcription factor family, Mol Cell Biol 13, 4011-4022. 53. Sreerama, N., and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal Biochem 287, 252-260. 54. Wickner, S., and Maurizi, M. R. (1999) Here's the hook: similar substrate binding sites in the chaperone domains of Clp and Lon, Proc Natl Acad Sci U S A 96, 8318-8320. 55. Lee, A. Y., Hsu, C. H., and Wu, S. H. (2004) Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains, J Biol Chem 279, 34903-34912. 56. Lin, Y. C., Lee, H. C., Wang, I., Hsu, C. H., Liao, J. H., Lee, A. Y., Chen, C., and Wu, S. H. (2009) DNA-binding specificity of the Lon protease alpha-domain from Brevibacillus thermoruber WR-249, Biochem Biophys Res Commun 388, 62-66. 57. Coleman, J. L., Katona, L. I., Kuhlow, C., Toledo, A., Okan, N. A., Tokarz, R., and Benach, J. L. (2009) Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions, PLoS Pathog 5, e1000676. 58. Sterner, R., and Liebl, W. (2001) Thermophilic adaptation of proteins, Crit Rev Biochem Mol Biol 36, 39-106. 59. Roudiak, S. G., and Shrader, T. E. (1998) Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis, Biochemistry 37, 11255-11263. 60. Oh, J. Y., Eun, Y. M., Yoo, S. J., Seol, J. H., Seong, I. S., Lee, C. S., and Chung, C. H. (1998) LonR9 carrying a single Glu614 to Lys mutation inhibits the ATP-dependent protease La (Lon) by forming mixed oligomeric complexes, Biochem Biophys Res Commun 250, 32-35. 61. Starkova, N. N., Koroleva, E. P., Rumsh, L. D., Ginodman, L. M., and Rotanova, T. V. (1998) Mutations in the proteolytic domain of Escherichia coli protease Lon impair the ATPase activity of the enzyme, FEBS Lett 422, 218-220. 62. Rudyak, S. G., Brenowitz, M., and Shrader, T. E. (2001) Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis, Biochemistry 40, 9317-9323. 63. Rep, M., van Dijl, J. M., Suda, K., Schatz, G., Grivell, L. A., and Suzuki, C. K. (1996) Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon, Science 274, 103-106. 64. Leonhard, K., Stiegler, A., Neupert, W., and Langer, T. (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease, Nature 398, 348-351. 65. Suzuki, C. K., Rep, M., van Dijl, J. M., Suda, K., Grivell, L. A., and Schatz, G. (1997) ATP-dependent proteases that also chaperone protein biogenesis, Trends Biochem Sci 22, 118-123. 66. Lee, A. Y., Tsay, S. S., Chen, M. Y., and Wu, S. H. (2004) Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme, Eur J Biochem 271, 834-844. 67. Horwitz, J. (1992) Alpha-crystallin can function as a molecular chaperone, Proc Natl Acad Sci U S A 89, 10449-10453. 68. Liao, J. H., Lee, J. S., and Chiou, S. H. (2002) Distinct roles of alphaA- and alphaB-crystallins under thermal and UV stresses, Biochem Biophys Res Commun 295, 854-861. 69. Wang, I., Lou, Y. C., Lin, Y. C., Lo, S. C., Lee, A. Y., Wu, S. H., and Chen, C. (2007) (1)H, (13)C and (15)N resonance assignments of alpha-domain for Bacillus subtilis Lon protease, Biomol NMR Assign 1, 201-203. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10708 | - |
| dc.description.abstract | Lon 蛋白酵素高度保留存在於各種生物體中,且為多功能的單一聚合型酵素。先前的研究指出 Lon 蛋白酵素具有 ATPase、Protease、Peptidase、Chaperone、DNA-binding 等生物活性,透過其多功能的特性,Lon 蛋白酵素 可以維持生物體內蛋白質完整的功能與結構,或適時降解目標蛋白,進而調控體內蛋白質質量的恆定。本論文選擇臺灣本土烏來地區所分離出的嗜熱菌 Meiothermus taiwanensis (WR-220),選殖出其基因體內被推論為 Lon 蛋白酵素的三個基因,透過表現與純化,以此三個蛋白酵素 (Mt-LonA1、Mt-LonA2、Mt-TTC1975) 為研究對象,探討此三個蛋白酵素在結構與功能的特徵,進而比較此三個蛋白酵素的差異。
Lon 蛋白酵素分為 A-type 與 B-type,其中 A-type Lon 具有三個功能區(domain): N 端功能區、ATP 水解酵素功能區以及 C 端蛋白水解酵素功能區。透過應用軟體分析此三個蛋白酵素的一級結構,Mt-LonA1 與 Mt-LonA2 高度保留 A-type Lon 的三個功能區,而 Mt-TTC1975,只保留 C 端蛋白水解酵素功能區,因此我們認為 Mt-TTC1975 不應歸類為 Lon 蛋白酵素。 在結構方面,利用原二色偏光儀分析 Mt-LonA1、Mt-LonA2 與 Mt-TTC1975,結果顯示此三個蛋白酵素皆以 α-螺旋為主要的二級結構,並具有完整的三級結構。進一步利用分析級超高速離心儀、原態膠體電泳以及電子顯微鏡分析此三個蛋白酵素的四級結構,我們認為 Mt-LonA1 以六聚合體 (hexamer) 為主,Mt-LonA2 以二聚合體 (dimer) 與五聚合體 (pentamer) 為主,而 Mt-TTC1975 以六聚合體 (hexamer) 與七聚合體 (heptamer) 為主。 活性方面,Mt-LonA1 具有 ATPase、Protease、Peptidase、Chaperone 等活性,而 Mt-LonA2 具有 ATPase、Protease、Peptidase、DNA-binding 等活性,實驗結果顯示此兩個蛋白酶為 A-type Lon 蛋白酵素,值得注意的是,Mt-LonA1 缺乏DNA-binding 的活性,而 Mt-LonA2 缺乏 chaperone 的活性,我們認為 Mt-LonA1 與 Mt-LonA2 在生物體內所扮演的角色可能不盡相同。而 Mt-TTC1975 則只擁有 chaperone 活性,此結果也與 Mt-TTC1975 不應歸類為 Lon 蛋白酵素的推論相符。 最後,我們討論 Mt-LonA1 與 Mt-LonA2 在 DNA-binding 活性的差異,藉由分析此兩個蛋白酵素與已被清楚研究的 Bt-Lon 之 α-domain 一級結構,以及比較 α-domain 的分子模型,我們認為 Mt-LonA2 之 K527 胺基酸與一段的保留序列 K-K-R ,可能為提供與 DNA 結合所需之正電荷的重要胺基酸。 | zh_TW |
| dc.description.abstract | The Lon proteases had been known as one of the most evolutionarily conserved proteins. According to previous findings, Lon proteases possessed ATPase, protease, peptidase and chaperone activities. Based on these multi-functional Lon proteases, the protein quality control system and the regulation of metabolic process could both work well. In this study, the function-structural characterizations among Mt-LonA1, Mt-LonA2 and Mt-TTC1975 from Meiothermus taiwanensis would be juxtaposed to express the contrast.
The Lon protease family could be divided into two subfamilies, LonA and LonB, mainly based on the sources and the domain structures of these proteins. The LonA consisted of a variable N-terminal domain (N domain), a central ATPase domain (A domain), and a C-terminal protease domain (P domain) on a single polypeptide. Depending on the analysis of primary structures of Mt-LonA1, Mt-LonA2 and Mt-TTC1975, This study considered that Mt-LonA1 and Mt-LonA2 both should be classified as the LonA subfamily, for Mt-LonA1 and Mt-LonA2 both possessed the classical LonA-type domains. For Mt-TTC1975, it only possessed a high similarity in protease domain with canonical LonA. Therefore, it should not be classified as the Lon protease. Structural characteristic results by circular dichroism showed that Mt-LonA1, Mt-LonA2 and Mt-TTC1975 possessed mostly α-helical secondary structures and they all possesed well-defined three-dimensional structures. For quaternary structures, the AUC data, Native-PAGE and EM graph revealed that Mt-LonA1 functions mainly as a hexamer; the AUC data and Native-PAGE revealed that Mt-LonA2 might function as a mixture of dimer and pentamer; Native-PAGE revealed that Mt-TTC1975 functions as a hexamer or a heptamer. Functional characteristic results showed that Mt-LonA1 exhibited the ATPase, protease, peptidase and chaperone activity; Mt-LonA2 exhibited the ATPase, protease, peptidase and DNA-binding activity; Mt-TTC1975 exhibited the chaperone activity only. Lastly, the comparison of primary structure of α-domains and the results of homology modeling suggested that the K527 residue and the K-K-R conserved region of Mt-LonA2 might critically influence the DNA-binding activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:51:50Z (GMT). No. of bitstreams: 1 ntu-99-R97b46021-1.pdf: 4537969 bytes, checksum: 934edaa2d3d96fb04af57fb2d8db21a8 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Table of Contents
口試委員審定......................i 謝誌....................ii 中文摘要....................iii Abstract....................v Abbreviation Table ......vii 1. Introduction......1 1-1. Thermophiles......1 1-2. Lon protease......2 Figure 1-1. Domain structures of LonA and LonB subfamily..8 Figure 1-2. Schematic diagram of the functions of Lon....9 2. Materials and Methods....10 2-1. Materials.....10 2-2. Methods......12 3. Results......22 PART 1: Analysis of the three putative Lon proteases from Meiothermus taiwanensis WR-220......22 PART 2: Structural characteristic and thermal stability of Mt-LonA1, Mt-LonA2 and Mt-TTC1975......24 PART 3: Functional characteristics of Mt-LonA1, Mt-LonA2 and Mt-TTC1975..28 4. Discussion......31 4-1. Phylogenetic analysis of Mt-LonA1, Mt-LonA2 and Mt-TTC1975..31 4-2. Thermal stability of Mt-LonA1, Mt-LonA2 and Mt-TTC1975...32 4-3. Structural characteristics of Mt-LonA1, Mt-LonA2 and Mt-TTC1975..33 4-4. Catalytic activity of Mt-LonA1, Mt-LonA2 and Mt-TTC1975...34 4-5. Characterization of chaperone activity of Mt-LonA1, Mt-LonA2 and Mt-TTC1975......35 4-6. DNA-binding and α-domain....36 5. Figure......38 Figure 5-1. Putative promoter region of Mt-LonA1 and Mt-LonA2..38 Figure 5-2. The amino acid sequence alignment of Mt-LonA1 and other Lon protease .......39 Figure 5-3. The amino acid sequence alignment of Mt-LonA2 and other Lon protease .......40 Figure 5-4. The amino acid sequence alignment of Mt-LonA1 and other Mt-LonA2 .......41 Figure 5-5. The phylogenetic tree of Lon proteases...42 Figure 5-6. SDS-PAGE of purified recombinant Mt-LonA1, Mt-LonA2 and Mt-TTC1975......43 Figure 5-7. Far-UV CD spectra......44 Figure 5-8. Near-UV CD spectra....45 Figure 5-9. Thermostability of Mt-LonA1, Mt-LonA2 and Mt-TTC1975...46 Figure 5-10. Sedimentation velocity experiment of Mt-LonA1...47 Figure 5-11. Sedimentation velocity experiment of Mt-LonA2...48 Figure 5-12. Native PAGE of Mt-LonA1, Mt-LonA2 and Mt-TTC1975..49 Figure 5-13. Transmission electron microscopy images of Mt-LonA1..50 Figure 5-14. ATPase activity assay.....51 Figure 5-15. Protease activity assay....52 Figure 5-16. Peptidase activity assay....53 Figure 5-17. Chaperone activity assay...54 Figure 5-18. Electrophoretic mobility shift assay....55 Figure 5-19. Amino acid sequence alignment of α-domains..56 Figure 5-20. Homology modeling of α-domains...57 6. Table......58 Table 6-1......58 Table 6-2......59 Table 6-3......60 References......61 | |
| dc.language.iso | en | |
| dc.title | 臺灣本土嗜熱菌 Meiothermus taiwanensis Lon 蛋白酵素功能與結構之研究 | zh_TW |
| dc.title | Function-Structural Studies on the Lon Protease from Meiothermus taiwanensis WR-220 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張文章,梁博煌,李岳倫 | |
| dc.subject.keyword | Lon 蛋白酵素,嗜熱菌,四級結構, | zh_TW |
| dc.subject.keyword | Meiothermus taiwanensis WR-220,Lon protease,α-domain,quaternary structure, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-07-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 4.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
