Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴文崧(Wen-Sung Lai)
dc.contributor.authorYao-Chu Chenen
dc.contributor.author陳耀主zh_TW
dc.date.accessioned2021-05-20T21:50:48Z-
dc.date.available2012-08-04
dc.date.available2021-05-20T21:50:48Z-
dc.date.copyright2010-08-04
dc.date.issued2010
dc.date.submitted2010-07-30
dc.identifier.citationChapter 1
Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L., et al. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 8104.
Alessi, D., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., et al. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. The EMBO Journal, 15(23), 6541.
Alessi, D., James, S., Downes, C., Holmes, A., Gaffney, P., Reese, C., et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Current Biology, 7(4), 261-269.
Anden, N. (1972). Dopamine turnover in the corpus striatum and the lumbic system after treatment with neuroleptic and anti-acetylcholine drugs. The Journal of pharmacy and pharmacology, 24(11), 905.
Andjelkovi , M., Jakubowicz, T., Cron, P., Ming, X., Han, J., & Hemmings, B. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 93(12), 5699.
Andjelkovic, M., Maira, S., Cron, P., Parker, P., & Hemmings, B. (1999). Domain swapping used to investigate the mechanism of protein kinase B regulation by 3-phosphoinositide-dependent protein kinase 1 and Ser473 kinase. Molecular and Cellular Biology, 19(7), 5061.
Angrist, B., & Gershon, S. (1970). The phenomenology of experimentally induced amphetamine psychosis: Preliminary observations. Biological Psychiatry, 2(2), 95-107.
Angrist, B., Rotrosen, J., & Gershon, S. (1980). Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects. Psychopharmacology, 67(1), 31-38.
Angrist, B., Sathananthan, G., Wilk, S., & Gershon, S. (1974). Amphetamine psychosis: behavioral and biochemical aspects. Journal of Psychiatric Research, 11, 13-23.
Bajestan, S. N., Sabouri, A. H., Nakamura, M., Takashima, H., Keikhaee, M. R., Behdani, F., et al. (2006). Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 141B(4), 383-386.
Balendran, A., Casamayor, A., Deak, M., Paterson, A., Gaffney, P., Currie, R., et al. (1999). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Current Biology, 9(8), 393-404.
Barto, A., Sutton, R., & Anderson, C. (1983). Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on systems, man, and cybernetics, 13(5), 834-846.
Barto, A., Sutton, R., & Watkins, C. (1989). Sequential decision problems and neural networks. In D. Touretzky (Ed.), Advances in Neural Information Processing Systems 2 (pp. 686-693). Cambridge, MA: MIT Press.
Batki, D. (2000). Stimulant psychosis: symptom profile and acute clinical course. American Journal on Addictions, 9(1), 28-37.
Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129-141.
Beaulieu, J. M., Marion, S., Rodriguiz, R. M., Medvedev, I. O., Sotnikova, T. D., Ghisi, V., et al. (2008). A beta-arrestin 2 signaling complex mediates lithium action on Behavior. Cell, 132(1), 125-136.
Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., & Caron, M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122(2), 261-273.
Beaulieu, J. M., Sotnikova, T. D., Yao, W. D., Kockeritz, L., Woodgett, J. R., Gainetdinov, R. R., et al. (2004). Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 5099-5104.
Beaulieu, J. M., Tirotta, E., Sotnikova, T. D., Masri, B., Salahpour, A., Gainetdinov, R. R., et al. (2007). Regulation of Akt signaling by D-2 and D-3 dopamine receptors in vivo. Journal of Neuroscience, 27(4), 881-885.
Bellacosa, A., Franke, T., Gonzalez-Portal, M., Datta, K., Taguchi, T., Gardner, J., et al. (1993). Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene, 8(3), 745.
Berridge, K., & Robinson, T. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309-369.
Bush, R., & Mosteller, F. (1955). Stochastic models for learning. New York: John Wiley and Sons, Inc.
Cardno, A. G., & Gottesman, II. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to star wars mx and functional genomics. American Journal of Medical Genetics, 97(1), 12-17.
Casey, D. (1991). Neuroleptic drug-induced extrapyramidal syndromes and tardive dyskinesia. Schizophrenia Research, 4(2), 109-120.
Chapman, J. (1966). The early symptoms of schizophrenia. The British Journal of Psychiatry, 112(484), 225.
Chen, P., Lao, C., & Chen, J. (2006). Dual alteration of limbic dopamine D1 receptor-mediated signalling and the Akt/GSK3 pathway in dopamine D3 receptor mutants during the development of methamphetamine sensitization. Journal of Neurochemistry, 100(1), 225-241.
Coffer, P., & Woodgett, J. (1991). Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. European Journal of Biochemistry, 201(2), 475-481.
Corlett, P., Frith, C., & Fletcher, P. (2009). From drugs to deprivation: a Bayesian framework for understanding models of psychosis. Psychopharmacology, 206(4), 515-530.
Corlett, P., Honey, G., Aitken, M., Dickinson, A., Shanks, D., Absalom, A., et al. (2006). Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis. Archives of General Psychiatry, 63(6), 611.
Corlett, P., Murray, G., Honey, G., Aitken, M., Shanks, D., Robbins, T., et al. (2007). Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain.
Crocker, A. (1994). Experimental and clinical pharmacology: Dopamine-mechanisms of action. Australian Prescriber, 17, 17-17.
Crow, T. (2007). How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. American Journal of Psychiatry, 164(1), 13.
Crow, T., Deakin, J., & Longden, A. (2009). The nucleus accumbens possible site of antipsychotic action of neuroleptic drugs? Psychological Medicine, 7(02), 213-221.
Dahlstrom, A., & Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiologica Scandinavica. Supplementum.
Dao-Castellana, M., Paill re-Martinot, M., Hantraye, P., Attar-Levy, D., Remy, P., Crouzel, C., et al. (1997). Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophrenia Research, 23(2), 167-174.
Davis, K., Kahn, R., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry, 148(11), 1474.
DeLong, M., Crutcher, M., & Georgopoulos, A. (1983). Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. Journal of Neuroscience, 3(8), 1599.
Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3 beta signaling in schizophrenia. Nature Genetics, 36(2), 131-137.
Farde, L., Wiesel, F., Halldin, C., & Sedvall, G. (1988). Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Archives of General Psychiatry, 45(1), 71.
Farde, L., Wiesel, F., Stone-Elander, S., Halldin, C., Nordstrom, A., Hall, H., et al. (1990). D2 dopamine receptors in neuroleptic-naive schizophrenic patients: a positron emission tomography study with [11C] raclopride. Archives of General Psychiatry, 47(3), 213.
Fayard, E., Tintignac, L. A., Baudry, A., & Hemmings, B. A. (2005). Protein kinase B/Akt at a glance. Journal of Cell Science, 118(24), 5675-5678.
Feng, J., Park, J., Cron, P., Hess, D., & Hemmings, B. (2004). Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. Journal of Biological Chemistry, 279(39), 41189.
Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48-58.
Franke, T. (2008). PI3K/Akt: getting it right matters. Oncogene, 27(50), 6473-6488.
Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1-3), 70-87.
Gao, T., Furnari, F., & Newton, A. (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Molecular Cell, 18(1), 13-24.
Gjedde, A., & Wong, D. (2001). Quantification of neuroreceptors in living human brain. V. Endogenous neurotransmitter inhibition of haloperidol binding in psychosis. Journal of Cerebral Blood Flow & Metabolism, 21(8), 982-994.
Gottesman, I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 58(1), 199-&.
Hamon, J., Paraire, J., & Velluz, J. (1952). Remarques sur l'action du 4560 RP sur l'agitation maniaque.
Hanada, M., Feng, J., & Hemmings, B. (2004). Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 1697(1-2), 3-16.
Hietala, J., Syvalahti, E., Vuorio, K., Rakkolainen, V., Bergman, J., Haaparanta, M., et al. (1995). Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet, 346(8983), 1130.
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1(4), 304-309.
Howes, O. D., & Kapur, S. (2009). The Dopamine Hypothesis of Schizophrenia: Version III--The Final Common Pathway. Schizophrenia Bulletin, 35(3), 549-562.
Huber, M., Helgason, C., Damen, J., Scheid, M., Duronio, V., Liu, L., et al. (1999). The role of SHIP in growth factor induced signalling. Progress in Biophysics and Molecular Biology, 71(3-4), 423-434.
Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., et al. (2004). Association of AKT1 with schizophrenia confirmed in a Japanese population. Biological Psychiatry, 56(9), 698-700.
Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshiya, Y., et al. (2006). Positive association of AKT1 haplotype to Japanese methamphetamine use disorder. International Journal of Neuropsychopharmacology, 9(1), 77-81.
Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31(1), 6-41.
Juckel, G., Schlagenhauf, F., Koslowski, M., Wustenberg, T., Villringer, A., Knutson, B., et al. (2006). Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage, 29(2), 409-416.
Kapur, S. (2003). Psychosis as a State of Aberrant Salience: A Framework Linking Biology, Phenomenology, and Pharmacology in Schizophrenia. American Journal of Psychiatry, 160(1), 13-23.
Kapur, S., & Mamo, D. (2003). Half a century of antipsychotics and still a central role for dopamine D2 receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(7), 1081-1090.
Kapur, S., & Remington, G. (2001). Dopamine D2 receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biological Psychiatry, 50(11), 873-883.
Kawakami, Y., Nishimoto, H., Kitaura, J., Maeda-Yamamoto, M., Kato, R., Littman, D., et al. (2004). Protein kinase C beta II regulates Akt phosphorylation on Ser-473 in a cell type-and stimulus-specific fashion. Journal of Biological Chemistry, M408797200v408797201.
Knill, D., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712-719.
Lee, T., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, 20(7), 1434-1448.
Lewis, C. M., Levinson, D. F., Wise, L. H., DeLisi, L. E., Straub, R. E., Hovatta, I., et al. (2003). Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia. The American Journal of Human Genetics, 73(1), 34-48.
Lindenmayer, J., Grochowski, S., & Hyman, R. (1995). Five factor model of schizophrenia: replication across samples. Schizophrenia Research, 14(3), 229-234.
Lindstrom, L. H., Gefvert, O., Hagberg, G., Lundberg, T., Bergstrom, M., Hartvig, P., et al. (1999). Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by -([beta]-11C) DOPA and PET. Biological Psychiatry, 46(5), 681-688.
Mao, Y., Ge, X., Frank, C. L., Madison, J. M., Koehler, A. N., Doud, M. K., et al. (2009). Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK3beta/beta-Catenin Signaling. Cell, 136(6), 1017-1031.
Mathur, A., Law, M., Megson, I., Shaw, D., & Wei, J. (2010). Genetic association of the AKT1 gene with schizophrenia in a British population. Psychiatric Genetics, 20(3), 118.
Montague, P., Dayan, P., & Sejnowski, T. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 1936.
Montague, P., Hyman, S., & Cohen, J. (2004). Computational roles for dopamine in behavioural control. Nature, 431(7010), 760-767.
Moore, R., & Bloom, F. (1978). Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annual Review of Neuroscience, 1(1), 129-169.
Murray, G., Corlett, P., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., et al. (2008). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13(3), 267-276.
Muscettola, G., Barbato, G., Pampallona, S., Casiello, M., & Bollini, P. (1999). Extrapyramidal syndromes in neuroleptic-treated patients: prevalence, risk factors, and association with tardive dyskinesia. Journal of clinical psychopharmacology, 19(3), 203.
Nordstrom, A., Farde, L., Eriksson, L., & Halldin, C. (1995). No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C] N-methylspiperone. Psychiatry Research: Neuroimaging, 61(2), 67-83.
Owen, M. J., Williams, N. M., & O'Donovan, M. C. (2003). The molecular genetics of schizophrenia: new findings promise new insights. Molecular Psychiatry, 9(1), 14-27.
Persad, S., Attwell, S., Gray, V., Mawji, N., Deng, J., Leung, D., et al. (2001). Regulation of protein kinase B/Akt-serine473phosphorylationbyintegrin-limkedkinase: Critical roles for kinase activity and amino acids arginine 211 and serine 343. The Journal of Biological Chemistry, 276, 29.
Pessiglione, M., Seymour, B., Flandin, G., Dolan, R., & Frith, C. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 1042-1045.
Reith, J., Benkelfat, C., Sherwin, A., Yasuhara, Y., Kuwabara, H., Andermann, F., et al. (1994). Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11651.
Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In A. Black & W. Prokasy (Eds.), Classical Conditioning. II: Current Research and Theory. New York: Appleton-Century-Crofts.
Roh, M., SEA, M., Kim, Y., Kim, S., Jeon, W., Ahn, Y., et al. (2007). Haloperidol and clozapine differentially regulate signals upstream of glycogen synthase kinase 3 in the rat frontal cortex. Experimental and molecular medicine, 39(3), 353-360.
Rosenthal, D. (1964). The Genain quadruplets: a case study and theoretical analysis of heredity and environment in schizophrenia: Basic Books.
Salamone, J., Cousins, M., & Snyder, B. (1997). Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neuroscience & Biobehavioral Reviews, 21(3), 341-359.
Sanger, D. (2004). The search for novel antipsychotics: pharmacological and molecular targets. Expert Opinion on Therapeutic Targets, 8(6), 631-641.
Sarbassov, D., Guertin, D., Ali, S., & Sabatini, D. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098.
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1.
Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13(3), 900.
Schultz, W., Dayan, P., & Montague, P. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593.
Schultz, W., Ruffieux, A., & Aebischer, P. (1983). The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation. Experimental Brain Research, 51(3), 377-387.
Schwab, S., Hoefgen, B., Hanses, C., Hassenbach, M. B., Albus, M., Lerer, B., et al. (2005). Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biological Psychiatry, 58(6), 446-450.
Schwab, S., & Wildenauer, D. (2009). Update on key previously proposed candidate genes for schizophrenia. Current Opinion in Psychiatry, 22(2), 147-153
Seeman, P. (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse, 1(2), 133-152.
Skinner, B. F. (1963). Behaviorism at 50. Science, 140(357), 951-958.
Smith, Y., & Kieval, J. (2000). Anatomy of the dopamine system in the basal ganglia. Trends in Neurosciences, 23, S28-S33.
Staal, S., Hartley, J., & Rowe, W. (1977). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 74(7), 3065.
Stambolic, V., Suzuki, A., De la Pompa, J., Brothers, G., Mirtsos, C., Sasaki, T., et al. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. CELL, 95, 29-39.
Sullivan, P. F. (2008). Schizophrenia genetics: the search for a hard lead. Current Opinion in Psychiatry, 21(2), 157.
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait - Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 1187-1192.
Summerfield, C., & Koechlin, E. (2008). A neural representation of prior information during perceptual inference. Neuron, 59(2), 336-347.
Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine learning, 3(1), 9-44.
Sutton, R., & Barto, A. (1990). Time-derivative models of Pavlovian reinforcement. In M. Gabriel & J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks (pp. 497-537). Cambridge, MA: MIT Press.
Sutton, R., & Barto, A. (1998). Reinforcement learning: MIT Press.
Thiselton, D. L., Vladimirov, V. I., Kuo, P. H., McClay, J., Wormley, B., Fanous, A., et al. (2008). AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biological Psychiatry, 63(5), 449-457.
Toker, A., & Newton, A. (2000). Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. Journal of Biological Chemistry, 275(12), 8271.
Viniegra, G. (2004). Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. Journal of Biological Chemistry, 280, 4029-4036.
Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412(6842), 43-48.
Watkins, C. (1989). Learning from delayed rewards. Cambridge University, Cambridge.
Werbos, P. (1977). Advanced forecasting methods for global crisis warning and models of intelligence. General Systems, 22, 25-38.
Wise, R. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 5(1), 39-87.
Wise, R. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5(6), 483-494.
Wise, R., Spindler, J., DeWit, H., & Gerberg, G. (1978). Neuroleptic-induced' anhedonia' in rats: pimozide blocks reward quality of food. Science, 201(4352), 262.
Wise, R., Spindler, J., & Legault, L. (1978). Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Canadian journal of psychology, 32(2), 77-85.
Wong, D., Pearlson, G., Tune, L., Young, L., Meltzer, C., Dannals, R., et al. (1997). Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. Journal of Cerebral Blood Flow & Metabolism, 17(3), 331-342.
Wong, D., Wagner Jr, H., Tune, L., Dannals, R., Pearlson, G., Links, J., et al. (1986). Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234(4783), 1558.
Xu, M. Q., Xing, Q. H., Zheng, Y. L., Li, S., Gao, J. J., He, G., et al. (2007). Association of AKT1 gene Polymorphisms with risk of schizophrenia and with response to Antipsychotics in the chinese population. Journal of Clinical Psychiatry, 68, 1358-1367.
Yang, J., Cron, P., Good, V., Thompson, V., Hemmings, B., & Barford, D. (2002). Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nature Structural & Molecular Biology, 9(12), 940-944.
Chapter 2
Abler, B., Walter, H., Erk, S., Kammerer, H., & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage, 31(2), 790-795.
Baum, W. (1974). On two types of deviation from the matching law: Bias and undermatching. Journal of the Experimental Analysis of Behavior, 22(1), 231.
Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129-141.
Bayes, T. (1783). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society London 53, 370-418.
Beaulieu, J. M., Gainetdinov, R. R., & Caron, M. G. (2007). The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends in Pharmacological Sciences, 28(4), 166-172.
Beaulieu, J. M., Gainetdinov, R. R., & Caron, M. G. (2009). Akt/GSK3 Signaling in the Action of Psychotropic Drugs. Annual Review of Pharmacology and Toxicology, 49, 327-347.
Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., & Caron, M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122(2), 261-273.
Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214-1221.
Casella, G., & George, E. (1992). Explaining the Gibbs sampler. American Statistician, 46(3), 167-174.
Cho, H., Thorvaldsen, J. L., Chu, Q. W., Feng, F., & Birnbaum, M. J. (2001). Akt1/PKB alpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. journal of Biological Chemistry, 276(42), 38349-38352.
Cohen, M., Krohn-Grimberghe, A., Elger, C., & Weber, B. (2007). Dopamine gene predicts the brain's response to dopaminergic drug. European Journal of Neuroscience, 26(12), 3652-3660.
Cohen, M., Young, J., Baek, J. M., Kessler, C., & Ranganath, C. (2005). Individual differences in extraversion and dopamine genetics predict neural reward responses. Cognitive Brain Research, 25(3), 851-861.
Corlett, P., Aitken, M., Dickinson, A., Shanks, D., Honey, G., Honey, R., et al. (2004). Prediction Error during Retrospective Revaluation of Causal Associations in Humans fMRI Evidence in Favor of an Associative Model of Learning. Neuron, 44(5), 877-888.
Corlett, P., Honey, G., Aitken, M., Dickinson, A., Shanks, D., Absalom, A., et al. (2006). Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis. Archives of General Psychiatry, 63(6), 611.
Corlett, P., Murray, G., Honey, G., Aitken, M., Shanks, D., Robbins, T., et al. (2007). Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain.
Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3 beta signaling in schizophrenia. Nature Genetics, 36(2), 131-137.
Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48-58.
Forbes, E., Hariri, A., Martin, S., Silk, J., Moyles, D., Fisher, P., et al. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166(1), 64.
Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16311-16316.
Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495-501.
Franke, T. F. (2008). PI3K/Akt: getting it right matters. Oncogene, 27(50), 6473-6488.
Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1-3), 70-87.
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1(4), 304-309.
Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis. of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709.
Howes, O. D., & Kapur, S. (2009). The Dopamine Hypothesis of Schizophrenia: Version III--The Final Common Pathway. Schizophrenia Bulletin, 35(3), 549-562.
Jocham, G., Klein, T. A., Neumann, J., von Cramon, D. Y., Reuter, M., & Ullsperger, M. (2009). Dopamine DRD2 Polymorphism Alters Reversal Learning and Associated Neural Activity. Journal of Neuroscience, 29(12), 3695-3704.
Jocham, G., Neumann, J., Klein, T. A., Danielmeier, C., & Ullsperger, M. (2009). Adaptive Coding of Action Values in the Human Rostral Cingulate Zone. Journal of Neuroscience, 29(23), 7489-7496.
Jonsson, E. G., Nothen, M. M., Grunhage, F., Farde, L., Nakashima, Y., Propping, P., et al. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4(3), 290-296.
Juckel, G., Schlagenhauf, F., Koslowski, M., Wustenberg, T., Villringer, A., Knutson, B., et al. (2006). Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage, 29(2), 409-416.
Kaelbling, L., Littman, M., & Moore, A. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4(237-285), 102-138.
Kapur, S. (2003). Psychosis as a State of Aberrant Salience: A Framework Linking Biology, Phenomenology, and Pharmacology in Schizophrenia. American Journal of Psychiatry, 160(1), 13-23.
Kapur, S., & Mamo, D. (2003). Half a century of antipsychotics and still a central role for dopamine D-2 receptors. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(7), 1081-1090.
Kapur, S., Zipursky, R., Jones, C., Remington, G., & Houle, S. (2000). Relationship between dopamine D-2 occupancy, clinical response, and side effects: A double-blind PET study of first-episode schizophrenia. American Journal of Psychiatry, 157(4), 514-520.
Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940-947.
Kirsch, P., Reuter, M., Mier, D., Lonsdorf, T., Stark, R., Gallhofer, B., et al. (2006). Imaging gene-substance interactions: The effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neuroscience Letters, 405(3), 196-201.
Klein, T. A., Neumann, J., Reuter, M., Hennig, J., von Cramon, D. Y., & Ullsperger, M. (2007). Genetically determined differences in learning from errors. Science, 318(5856), 1642-1645.
Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinion in Neurology, 18(4), 411-417.
Lai, W., Xu, B., Westphal, K., Paterlini, M., Olivier, B., Pavlidis, P., et al. (2006). Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proceedings of the National Academy of Sciences, 103(45), 16906.
Lee, T., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, 20(7), 1434-1448.
Luce, R. (1959). Individual choice behavior: Wiley New York.
Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10(4), 325-337.
Matsumoto, M., & Hikosaka, O. (2008). Representation of negative motivational value in the primate lateral habenula. Nature Neuroscience, 12(1), 77-84.
Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837-841.
McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38(2), 339-346.
Montague, P., Dayan, P., & Sejnowski, T. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 1936.
Montague, P., Hyman, S., & Cohen, J. (2004). Computational roles for dopamine in behavioural control. Nature, 431(7010), 760-767.
Murray, G., Corlett, P., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., et al. (2007). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13(3), 267-276.
Murray, G., Corlett, P., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., et al. (2008). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13(3), 267-276.
O'Doherty, J. P., Hampton, A., & Kim, H. (2007). Model-based fMRI and its application to reward learning and decision making. In B. W. Balleine, K. Doya, J. Odoherty & M. Sakagami (Eds.), Reward and Decision Making in Corticobasal Ganglia Networks (Vol. 1104, pp. 35-53). Oxford: Blackwell Publishing.
Roux, S., Froger, C., Porsolt, R. D., Valverde, O., & Maldonado, R. (2003). Place preference test in rodents. Currrrent Protocol Neuroscience, 9, 15.
<B
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10696-
dc.description.abstract本研究旨在探討精神分裂症候選基因Akt1對增強學習模型中酬賞預測誤差之影響,並進一步探討AKT1在精神分裂症多巴胺假說中所扮演的角色。在近幾年的研究中,AKT被發現是多巴胺D2受體下游細胞內訊息傳遞因子之一,且與抗精神病藥物之藥效作用有密切關連。同時由於多巴胺假說認為紋狀體中過剩的多巴胺僅與精神分裂症中的正性症狀有關,且治療正性症狀的抗精神病藥物主要作用在D2受體之上。因此透過這些機制AKT1極可能參與正性症狀之產生或調節。近期一些關於精神症(即正性症狀之總稱)的研究嘗試採取貝氏推論之觀點,認為精神症之生成與多巴胺系統所產生不正常之酬賞預測誤訊號有關。奠基於這些理論及發現,本研究的假設為:若Akt1涉入精神症的生成,則Akt1缺損之小鼠的酬賞預測誤強度會與正常控制組小鼠有所不同。本研究採用Akt1異型合子之小鼠在動態搜索T形迷津之行為資料推算增強學習模型之參數,由此推估酬賞預測誤訊號之強度。實驗一結果顯示在所有三個測試狀況下Akt1異型合子之小鼠較正常控制組有更強的酬賞預測誤訊號。進一步透過西方墨點法分析腹側及背側紋狀體AKT1的磷酸化程度,異型合子小鼠較無法反應甲基安非他命所引發的磷酸化,顯示AKT1的活性與多巴胺有關。實驗二如同較強的酬賞預測誤所預期的,此小鼠在其他酬賞關聯學習作業的習得階段中有較迅速的學習表現。進一步以線性擬合法分析配合律,也發現Akt1異型合子之小鼠對於酬賞有較高的敏感度。最後,實驗三隱性抑制作業證明由實驗一所得較高酬賞預測誤之結果並無法預測以嫌惡學習為基礎的行為結果。本研究的結果顯示,AKT1可能透過調控腦中多巴胺系統的酬賞預測誤強度參與精神分裂症正性症狀之產生。zh_TW
dc.description.abstractThe current research aims to investigate how the schizophrenia candidate gene Akt1 (protein kinase Bα) participates in functions of the dopamine system, and further to identify its role in the dopamine hypothesis of schizophrenia. According to recent findings, AKT is found to be a downstream regulator under dopamine D2 receptor, and participates in antipsychotics remedy by acting as an intermediate in the antipsychotics-induced signaling cascade. The dopamine hypothesis of schizophrenia emphasized that psychosis is resulted from excessive dopamine concentration in the striatum, furthermore, antipsychotics mitigates psychosis by acting on dopamine D2 receptors. Recent theory, based on the view that brain is a Bayesian inference machine, regards psychosis is related to disruptions in the reward prediction error (RPE) signal produced by the midbrain dopamine system. Based on these findings, we hypothesized that if AKT1 is involved in the pathogenesis of psychosis, the RPE signal should be different in magnitude between Akt1 deficient and normal mice. In experiment 1, we estimated parameters in the reinforcement learning model by utilizing the behavioral data collected from a dynamic foraging T maze task perform by male Akt1 heterozygous (HET) and wildtype (WT) mice in order to infer the reward prediction error magnitude. The results showed that, compared with WT littermates, Akt1 HET exhibits higher reward prediction error magnitude among all three testing sections. In experiment2, consistent with the prediction of higher RPE magnitude, Akt1 HET mice learned more rapidly than WT mice in reward-related tasks. Revealed by the Western blots analysis, a reduction of methamphetamine-induced phosphorylated AKT1 was found in the ventral and dorsal striatum of Akt1 HET mice but not in WT controls, indicating the activity of AKT1 is indeed related to dopamine. Matching law analysis further revealed that Akt1 HET mice have higher reward sensitivity compared with WT controls. Finally, in experiment 3, revealed by latent inhibition paradigm, we showed that higher RPE signal cannot predict performance in an aversive-based behavioral paradigm. Our study suggests that, AKT1 might participate in the pathogenesis of psychosis by regulating the RPE magnitude in the dopamine system.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:50:48Z (GMT). No. of bitstreams: 1
ntu-99-R96227107-1.pdf: 1338346 bytes, checksum: 1923363bbb9bd6c5663bf5142dad30e4 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgement iii
摘要 v
Abstract vii
Chapter 1: General Introduction 1
Overview 1
Schizophrenia 2
The genetics of Schizophrenia 3
Dopamine hypothesis of schizophrenia 9
Explaining psychosis in a Bayesian approach 14
Taken together 29
Figure legends 32
Table and figures 34
Reference 39
Chapter 2: Investigation of the Role of AKT1 in Reinforcement Learning Model and Its Possible Implication in Schizophrenia Psychosis 49
Introduction 49
Materials and methods 53
Results 65
Discussion 70
Figure legends 79
Table and figures 84
Reference 97
Chapter 3: General discussion 103
Reference 111
Appendix 115
dc.language.isoen
dc.title化約論者的瘋狂─以貝氏取向探討AKT1在精神分裂症多巴胺假說中的角色zh_TW
dc.titleReductionist's madness ─ a Bayesian approach to investigate the possible role of AKT1 in the dopamine hypothesis of schizophreniaen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁庚辰,陳景宗,顏乃欣,蕭朱杏
dc.subject.keyword精神分裂症,Akt1,多巴胺,酬賞預測誤差,貝氏推論,zh_TW
dc.subject.keywordschizophrenia,Akt1,dopamine,reward prediction error,Bayesian inference,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved