請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10691
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊申語(Sen-Yeu Yang) | |
dc.contributor.author | Chen-Chung Li | en |
dc.contributor.author | 李振中 | zh_TW |
dc.date.accessioned | 2021-05-20T21:50:24Z | - |
dc.date.available | 2013-02-26 | |
dc.date.available | 2021-05-20T21:50:24Z | - |
dc.date.copyright | 2010-08-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-30 | |
dc.identifier.citation | [1] Becker, H., Gärtner, C., “Polymer based micro-reactors”, Reviews in Molecular Biotechnology, Vol. 82, pp. 89-99, 2001
[2] Jenoptik Mikrotechnik, Datasheet of HEX03 hot embossing system, 2002 [3] 張哲豪, “流體微熱壓製程開發研究”,臺灣大學博士論文,民國93年6月。 [4] 劉冠含, “超臨界二氧化碳流體對聚乙烯氧/聚甲基丙烯酸甲酯摻合體之影響”, 雲林科技大學碩士論文, 民國91年6月。 [5] V. Studer, A. Pepin, and Y. Chen, “Nanoembossing of thermoplastic polymers for microfluidic applications”, Applied Physics Letters, Vol. 80, No. 19, pp.3614-3616, 2002. [6] Ryan T. Kelly, and Adam T. Woolldy, “Thermal Bonding of Polymeric Capillary Electrophoresis Microdevices in Water”, Analytical.Chemistry, 75(8), pp.1941-1945, 2003. [7] Zhifeng Chen, Yunhua Gao, Jinming Lin, Rongguo Su, Yu Xie, “Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template”, Journal of Chromatography A, Vol. 1038, pp.239-245, 2004. [8] B Bilenberg, T Nielsen, B Clausen and A Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics”, Journal of Micromechanics and Microengineering, Vol. 14, No. 6, pp.814-818, 2004. [9] Xuelin Zhu, Gang Liu, Yuhua Guo, “Study of PMMA thermal bonding”, Microsyst Technol, Vol. 13, pp.403-407, 2007. [10] Yi Sun, Yien Chian Kwok and Nam-Trung Nguyen, “Low-perssure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation”, Journal of Micromechanics and Microengineering, Vol. 16, pp.1681-1688, 2006. [11] Nimai C. Nayak, C. Y. Yue, Y. C. Lam, “Thermal bonding of PMMA: effect of polymer molecular weight”, Microsyst Technol, Vol. 16, pp.487-491, 2009. [12] Che-Hsin Lin, Chien-Hsiang Chao, Che-Wei Lan, “Low azeotropic solvent for bonding of PMMA microfluidic devics”, Sensors and Actuators B, Vol. 121, pp.698-705, 2007. [13] Laurie Brown, Terry Koerner, J. Hugh Horton and Richard D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents”, Lab Chip, Vol. 6, pp.66-73, 2006. [14] Yi-Chu Hsu, Tang-Yuan Chen, “Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices”, Biomed Microdevices, Vol. 9, pp.513-522, 2007. [15] Dieudonne A. Mair, Marco Rolandi, Marian Snauko, Richard Noroski, Frantisek Svec, and Jean M. J. Frechet, “Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips”, Analytical.Chemistry, Vol. 79, pp.5097-5102, 2007. [16] S. H. Ng, R. T. Tjeung, Z. F. Wang, A. C. W. Lu, I. Rodriguez, N. F. de Rooij, “Thermally activated solvent bonding of polymers”, Microsyst Technol, Vol. 14, pp.753-759, 2008. [17] Haotian Duan, Luyan Zhang, Gang Chen, “Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature”, Journal of Chromatography A, Vol. 1217(1), 2009. [18] Mona Rahbar, Sumanpreet Chhina, Dan Sameoto, and M Parameswaran, “Microwave-induced, thermally assisted solvent bonding for low-cost PMMA microfluidic devices”, Journal of Micromechanics and Microengineering, Vol. 20, No. 1, 2010. [19] Yong Yang, Changchun Zeng, and L. James Lee, “Three-Dimensional Assembly of Polymer Microstructures at Low Temperatures”, Advanced Materials, Vol. 16, No. 6, pp. 560-564, 2004. [20] 黃偉恆, “超臨界二氧化碳在高分子材料中的吸附現象及其擴散係數的計算”,中國文化大學碩士論文, 民國92年6月。 [21] Yong Yang and Ly James Lee, “Subcritical carbon dioxide assisted polymer nanofabrication at low temperatures”, Journal of Vacuum Science & Technology B, Vol. 23, Issue 6, pp.3202-3204, 2005. [22] Yong Yang, Dehua Liu, Yubing Xie, Ly J. Lee, and David L. Tomasko, “Low-Temperature Fusion of Polymeric Nanostructures Using Carbon Dioxide”, Advanced Materials, Vol. 19, pp.251-254, 2007. [23] Yong Yang, Mark Ming-Cheng Cheng, Xin Hu, Dehua Liu, Richard J. Goyette, L. James Lee, and Mauro Ferrari, “Low-Pressure Carbon Dioxide Enhanced Polymer Chain Mobility below the Bulk Glass Transition Temperature”, Macromolecules, Vol. 40, pp.1108-1111, 2007. [24] Yong Yang, Shubhayu Basu, David L. Tomasko, L. James Lee, Shang-Tian Yang, “Fabrication of well-defined PLGA scaffolds using novel micro-embossing and carbon dioxide bonding”, Biomaterials, 26, pp. 2585–2594, 2005 [25] Yong Wang, Zhimin Liu,Buxing Han, Ying Huang, Jianling Zhang, Donghai Sun, Jimin Du, ” Compressed- CO2-Assisted Patterning of Polymers”, Journal of Physical Chemistry B, 109 (25), pp. 12376–12379, 2005 [26] S. S. Nozaki, M. Ohshima, “A CO2 assisted nano-imprinting and cold embossing”, ANTEC, pp. 2551-2555, 2006. [27] W. M. Choi, M. Y. Song, O. O. Park, “Compressed-carbon dioxide (CO2) assisted nanoimprint lithography using polymeric mold”, Microelectronic Engineering, pp.1957-1960, 2006. [28] Satoshi Fujita, Daizaburo Ono, Masahiro Ohshima, Hiroo Iwata, “Supercritical CO2-assisted embossing for studying cell behaviour on microtextured surfaces”, Biomaterials, 29, pp. 4494–4500, 2008. [29] 邱俊凱, “CO2氣體輔助微熱壓製程開發研究”, 臺灣大學碩士論文, 民國96年6月。 [30] 朱映達, “大面積二氧化碳輔助氣體微熱壓製程開發研究”, 臺灣大學碩士論文, 民國98年6月。 [31] 談駿嵩, “超臨界流體的應用”, 科學發展, 359期, pp.12-17, 2002. [32] 吳炫聰, 李明哲, 林河木, “超臨界抗溶劑法製備次微米級blue 15:6顏料微粒”, 第三屆超臨界流體技術應用與發展研討會, pp.112-119, 2004. [33] 邱永和, 陳靜玉, 陳嘉宏, 李貴琪, “超臨界二氧化碳金屬纖維染色之研究與討論”, 第三屆超臨界流體技術應用與發展研討會, pp.174-179, 2004. [34] 連培榮, 凌永健, “超音波輔助超臨界二氧化碳去光阻研究”, 第三屆超臨界流體技術應用與發展研討會, pp.219-225, 2004. [35] E.Kondoh, “Nanostructure Formation using Supercritical Carbon Dioxide Fluids”, MNE’06 Micro-and Nano-Engineering, 2006 [36] Febe Kusmanto, Mark Billham, Peter Hornsby, “Polymer Plasticiation Using Supercritical Carbon Dioxide”, Journal of Vinyl & Additive Technology, Vol. 14, Issue 4, pp.163-166, 2008. [37] E. Kukharenka, M. M. Farooqui, L. Grigore, M. Kraft, N. Hollinshead, “Electroplating moulds using dry film thick negative photoresist”, Journal of Micromechanical and Microengineering, 13 (4), pp. S67-S74, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10691 | - |
dc.description.abstract | 聚甲基丙烯酸甲酯(polymethyl methacrylate;PMMA),具有高透明度、低廉、易成型、良好生物相容性等優點,常用於製作微流體元件。本論文主要在開發PMMA更有效、更低溫的接合技術。
傳統熱融合接合需加熱至玻璃轉移溫度以上,易破壞微結構;加上傳統以壓板施壓,中心壓力比邊緣大,施壓不均造成殘留應力太大。而有機溶劑接合,需塗佈清除有機溶劑,易留下雜質或傷損微結構。本研究利用二氧化碳為PMMA氣體溶劑及氣體等向均壓施壓之特性,降低PMMA接合溫度,並全面均勻施壓。 經實驗證實,利用二氧化碳對分子鏈糾纏程度鬆散的表面有較佳的促進移動性效果,促使聚合物表面分子鏈穿越接合面,在近室溫下(40 ℃)即具接合效果(強度619 kPa, 接合面積34.76 %)。本製程成功在低於玻璃轉移溫度下(80 ℃)完成微流道元件接合,並維持良好的微結構特徵。 本研究進一步控制二氧化碳滲入與排氣時間方式,開發兩段式二氧化碳輔助熱融合接合製程,使板材獲得均勻收縮;實驗結果顯示,兩段式二氧化碳輔助製程確實可大幅提昇平坦度,並有效增加強度(700 kPa)與接合面積(86.87 %)。 本研究更進一步藉旋塗PMMA甲苯溶液於接合面,利用此表面層增加分子鏈擴散數量,並配合兩段式二氧化碳輔助熱融合接合製程,成功在低於玻璃轉移溫度下完成接合,並大幅提昇接合強度至860 kPa。 | zh_TW |
dc.description.abstract | Poly-methyl methacrylate (PMMA), which has adventages of high optical transmittance, low-cost, simple fabrication and excellent biocompatibility, is commonly used in manufacturing microfluidic device. This thesis is devoted to the development of effective low-temperature PMMA bonding technology.
Traditional thermal fusion bonding must heat the PMMA to above the glass transition temperature, which may distort the microstructures and induce residual stress. In addition, the pressure distribution is not uniform when the substrates are pressed by hot platens. On the other hand, organic solvent bonding comprises coating and removing solvent, which may induce impurities and harm the microstructure. This research uses carbon dioxide (CO2) as gas solvent and as pressuring agent as well. The bonding temperature thus is lowered and the pressing pressure becomes uniform. A bonding area of 34.76 % and bonding strength of 619 kPa have been achieved even the PMMA plates are bonded at a temperature as low as 40 ℃. This bonding process has been successfully applied to the packaging of microchannel device with processing temperature below the glass transition temperature (80 ℃). Besides, in this study an innovative two-stage CO2-assisted thermal fusion bonding process has been developed which takes the soaking and releasing times of CO2 into account. The experimental results shows that this new process significantly enhances the flatness after bonding process and increases bonding area to 86.87 % and bonding strength to 700 kPa. Furthermore, by coating a layer of PMMA solution on bonding surface, the diffusion number of chain increases, and thus increases the bonding strength up to 860 kPa with the two-stage CO2-assisted process. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:50:24Z (GMT). No. of bitstreams: 1 ntu-99-R97522736-1.pdf: 43497470 bytes, checksum: 60c29616b4cfae8e63416f155926327f (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌 謝 I
摘 要 II Abstract III 目 錄 IV 圖 目 錄 VII 表 目 錄 X 第一章 導 論 1 1.1 前言 1 1.2 熱融合接合 1 1.3 有機溶劑接合 2 1.4 流體輔助加壓技術 3 1.5 二氧化碳氣體特性 3 1.6 研究動機及目的 4 1.7 研究方向與目標 4 1.8 論文架構 5 第二章 文獻回顧 10 2.1 熱融合接合文獻 10 2.2 有機溶劑接合文獻 11 2.3 二氧化碳接合文獻 13 2.4 二氧化碳氣體輔助熱壓成型文獻 14 2.5 超臨界二氧化碳其他應用相關文獻 16 2.6 綜合歸納 18 第三章 實驗設置與實驗方法 35 3.1 實驗設備 35 3.1.1 熱壓機 35 3.1.2 氣輔模腔(chamber) 35 3.1.3 二氧化碳氣體 35 3.1.4 實驗材料 36 3.1.5 密封膜 36 3.1.6 氣體壓力調控設備 36 3.1.7 塗佈設備 36 3.2 微流道及接合拉伸試片備製 37 3.2.1 接合拉伸試驗試片 37 3.2.2 微流道試片製備 37 3.2.2.1 乾膜光阻之光微影製程 37 3.2.2.2 PDMS翻模 38 3.2.2.3 微熱壓製程 40 3.3 實驗方法 40 3.3.1 製程原理與步驟 40 3.3.2 製程特性分析 41 3.3.3 量測設備 41 3.3.3.1 微結構量測 41 3.3.3.2 試片表面性質檢測 42 3.3.3.3 接合強度量測 42 3.4 本章結論 42 第四章 製程開發實驗結果探討 57 4.1 製程初步實驗探討 57 4.2 二氧化碳輔助熱融合接合製程開發參數探討 58 4.2.1 製程溫度探討 58 4.2.2 二氧化碳壓力探討 59 4.2.3 滲入時間探討 60 4.2.4 持壓壓力探討 60 4.3 二氧化碳輔助熱融合接合製程問題探討 61 4.4 兩段式二氧化碳輔助熱融合接合製程 63 4.4.1 兩段式製程實驗結果探討 64 4.5 本章結論 65 第五章 表面狀態接合實驗結果探討 83 5.1 異分子量PMMA表面狀態探討 83 5.2 異分子量PMMA表面層接合初步實驗 83 5.2.1 熱融合接合製程 84 5.2.2 二氧化碳輔助熱融合接合製程 84 5.3 PMMA表面層接合之影響 85 5.3.1 製程溫度探討 85 5.3.2 二氧化碳滲入壓力探討 86 5.4 二氧化碳滲入影響 86 5.5 本章結論 88 第六章 製程應用於封裝微流體元件 95 6.1 微流體元件製作 95 6.1.1 微熱壓微流道結構 95 6.1.2 雷射雕刻微流道結構 96 6.2 封裝製程對微結構之影響 96 6.2.1 封裝參數設置 96 6.2.2 封裝製程對微結構之保護性 97 6.2.2.1 熱融合接合製程 97 6.2.2.2 二氧化碳輔助接合製程 98 6.3 接合密封性測試 98 6.4 本章結論 99 第七章 結論與未來研究方向 107 7.1 研究成果總結 107 7.2 未來研究方向 108 參考文獻 109 附錄 A 拉伸試片接合狀況 A-1 | |
dc.language.iso | zh-TW | |
dc.title | 二氧化碳輔助熱融合PMMA接合製程開發研究 | zh_TW |
dc.title | Development of Carbon Dioxide Assisted Thermal Fusion PMMA Bonding Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝國煌(Kuo-Huang Hsieh),王安邦(An-Bang Wang) | |
dc.subject.keyword | 二氧化碳,聚甲基丙烯酸甲酯,表面改質,微流體元件, | zh_TW |
dc.subject.keyword | carbon dioxide,poly-methyl methacrylate,surface modification,microfluidic device, | en |
dc.relation.page | 122 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 42.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。