請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 尤春風(Chun-Fong You) | |
| dc.contributor.author | Yu-Ming Tsao | en |
| dc.contributor.author | 曹育銘 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:47:54Z | - |
| dc.date.available | 2010-08-06 | |
| dc.date.available | 2021-05-20T21:47:54Z | - |
| dc.date.copyright | 2010-08-06 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-04 | |
| dc.identifier.citation | [1]Alhanaty M, and Bercovier M. 2001. Curve and surface fitting and design by optimal control methods. Computer-Aided Design 33(2): 167-182.
[2]Avriel M. 1976. Nonlinear Programming: Analysis and Methods. Prentice-Hall. [3]CATIA. http://www.3ds.com/ [4]De Boor C. 1972. On calculating with B-splines. Journal of Approximation Theory 6(1): 50-62. [5]Dembo RS, Eisenstat SC, and Steihaug T. 1982. Inexact Newton methods. SIAM Journal Numerical Analysis 19(2): 400-408. [6]Drummond LM Graňa, and Svaiter BF. 2005. A steepest descent method for vector optimization. Journal of Computational Applied Mathematics 175(2): 395-414. [7]Du WH, and Schmitt FJM. 1990. On the G1 continuity of piecewise Bezier surfaces: a review with new results. Computer-Aided Design 22(9): 556-573. [8]Faux ID, and Pratt MJ. 1979. Computational Geometry for Design and Manufacture. Rainbow-Bridge Book Co. Etd. [9]Hartley HO. 1961. The modified Gauss-Newton method for the fitting of nonlinear regression functions by least squares. Technometrics 3(2): 269-280. [10]Hu YP, and Sun TC. 1997. Moving a B-spline surface to a curve– a trimmed surface matching algorithm. Computer-Aided Design 29(6): 449-455. [11]Imageware. http://www.iwsinc.com/ [12]ISO 10303-203. 1994. Product data representation and exchange part203: Application protocol: Configuration controlled design. [13]ISO 10303-214. 1994. Product data representation and exchange part214: Application protocol: Core data for automotive mechanical design process. [14]Kahmann J. 1983. Continuity of curvature between adjacent Bezier patches. In “Surfaces in Computer Aided Geometric Design”, Barnhill RE, and Boehm W, 65-75. [15]Kennedy J, and Eberhart R. 1995. Particle swarm optimization. proceedings of IEEE International Conference on Neural Networks, IV, 1942-1948. [16]Moreton HP, and Sequin CH. 1992. Functional optimization for fair surface design. Proceedings of the 19th annual conference on Computer Graphics and Interactive Techniques, 167-176. [17]Piegl L, and Tiller W. 1997. The NURBS book. 2nd ed. Springer. [18]Qi L, and Sun J. 1993. A nonsmooth version of Newton’s method. Mathematical Programming 58(3): 353-367. [19]Schwaab M, Biscaia EC, Monteiro JL, and Pinto JC. 2008. Nonlinear parameter estimation through particle swarm optimization. Chemical Engineering Science 63(6): 1542-1552. [20]Ueng WD, Lai JY, and Tsai YC. 2007. Unconstrained and constrained curve fitting for reverse engineering. The International Journal Advanced Manufacturing Technology 33(11-12): 1189-1203. [21]Ye X, Liang Y, and Nowacki H. 1996. Geometric continuity between adjacent Bezier patches and their construction. Computer Aided Geometric Design 13(6): 521-548. [22]尤春風,Spring Solid System實體模型系統,國立台灣大學實體模型系統實驗室。 [23]尤春風,SpringSolidCAD電腦輔助設計系統,國立台灣大學實體模型系統實驗室。 [24]陳見宜,2008,B-spline曲面G2連續性之自動調整,國立台灣大學機械工程學研究所碩士論文。 [25]蔡耀震,2009,逆向工程之曲面連續性理論與曲面模型自動化重建技術發展,國立中央大學機械工程研究所博士論文。 [26]薛乃綺,2006,從鈑金結構市場看汽車售後零件產業之發展,機械工業雜誌 280: 72-80。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10662 | - |
| dc.description.abstract | 隨著工業發展自動化、效率化之追求,電腦輔助設計已於工業界占據重要地位。因應產品之仿製作業需求,於電腦輔助設計中更衍生逆向工程作業項。由產品外形的點資料掃描,經過一連串分割、鋪面、曲面調整等演算,於電腦中重建產品CAD模型,進一步遞送分析及製程規劃。
本研究著力於逆向工程領域中的曲面連續性調整作業。針對鋪面輸出之曲面搭接間隙,進行修正調整,求取曲面與曲面的銜接平順性。研究探討上,以B-spline參數曲面為調整目標,藉由對B-spline曲面基底資訊探討,並引入數值方法,對曲面搭接連續性進行最佳化調整作業,目標於最終輸出符合G1、G2連續性之曲面資料。 | zh_TW |
| dc.description.abstract | With the pursuit of automatic and efficiently industrial development, computer aided design has been played an important role in the industry. In response to the requirements of the work of imitation, reverse engineering is generated. Measuring the shape of products and a series of calculation including segmentation, surface reconstruction and surface adjustment are the steps of the reverse engineering process. Finally, we can reconstruct and analyze the CAD model of products and plan the product’s manufacture procedure.
This research focus on continuity adjustment of surfaces in reverse engineering. In order to reach the smoothness of adjacent surfaces, the output of surface reconstruction has been adjusted and modified. This research implements the optimal continuity adjustment of surfaces by using the numerical methods and discussing the basic information of B-spline surfaces which are the main adjust target of the research. The final goal is to export surfaces, that fit G1 and G2 continuity. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:47:54Z (GMT). No. of bitstreams: 1 ntu-99-R97522602-1.pdf: 5761023 bytes, checksum: 923d7a9e02575baf013e3eaac9953c38 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 導論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 文獻回顧 6 1.3.1 NURBS基礎資料 6 1.3.2 曲面搭接連續性資料 8 1.3.3 最佳化調整資料 9 1.4 研究內容 10 1.5 論文架構 12 第二章 B-spline曲面搭接邊界連續條件 13 2.1 B-spline曲面數學模型 13 2.2 位置連續(G0 continuity) 18 2.3 切平面連續(G1 continuity) 20 2.4 曲率連續(G2 continuity) 25 第三章 數值方法 31 3.1 數值方法介紹 32 3.1.1 牛頓法(Newton method) 33 3.1.2 最速下降法(steepest descent method) 35 3.1.3 粒子群優化(particle swarm optimization, PSO)演算法 38 3.2 數值方法於曲面搭接連續性調整之銜接應用 40 3.3 案例探討曲面搭接連續性調整 42 3.3.1 雙曲面搭接 43 3.3.2 等同邊界參數四曲面田字形搭接 46 第四章 曲面搭接連續性調整實作 49 4.1 曲面資料 49 4.1.1 曲面資料建構-雙曲面搭接案例 50 4.1.2 曲面資料建構-四曲面搭接案例 53 4.1.3 曲面資料應用-調控指令接收 54 4.1.4 曲面資料應用-誤差資訊擷取 55 4.2 調整實作前處理 60 4.3 調整實作 62 4.3.1 雙曲面搭接調整 63 4.3.2 四曲面田字形搭接調整 65 4.3.3 序列曲面搭接調整 67 第五章 實例驗證與討論 69 5.1 數值方法實作討論 69 5.2 搭接連續性調整驗證 74 5.2.1 序列曲面搭接 75 5.2.2 四曲面田字形搭接 79 5.2.3 剪切曲面搭接 83 5.3 結果討論 86 5.3.1 實作成果討論 86 5.3.2 目標函數選用探討 88 第六章 結論與未來展望 90 6.1 研究成果與結論 90 6.2 未來展望 92 參考文獻 94 附錄A 數學化描述B-spline曲面搭接連續關係式 97 A.1 G1連續關係式 98 A.2 G2連續關係式 99 附錄B 曲面搭接連續性調整實作之參數銜接程序 103 B.1 解析求解 107 B.2 數值求解 109 作者簡歷 110 | |
| dc.language.iso | zh-TW | |
| dc.title | B-spline曲面搭接連續性調整 | zh_TW |
| dc.title | Continuity Adjustment of B-spline Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊勝雄(Sheng-Xiong Zhuang),陳俊銘(Jyun-Ming Chen) | |
| dc.subject.keyword | 逆向工程,連續性,B-spline曲面,數值方法,最佳化連續性調整,G1連續,G2連續, | zh_TW |
| dc.subject.keyword | reverse engineering,continuity,B-spline surface,numerical methods,Optimal continuity adjustment,G1 continuity,G2 continuity, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 5.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
