Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶源(Ching-Yuan Chang)
dc.contributor.authorYu-Wen Huangen
dc.contributor.author黃昱文zh_TW
dc.date.accessioned2021-05-20T21:43:09Z-
dc.date.available2012-08-16
dc.date.available2021-05-20T21:43:09Z-
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citationBrunauer, S., L.S. Deming, W.E. Deming and E. Teller, On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc., 62(7), 1723–1732 (1940).
Debellefontaine, H. and J.N. Foussard, Wet air oxidation for the treatment of industrial wastes chemical aspects, reactor design and industrial applications in Europe. Waste Manage., 20(1), 15-25 (2000).
Debellefontaine, H., M. Chakchouk, J.N. Foussard, D. Tissot and P. Striolo., Treatment of organic aqueous wastes: wet air oxidation and peroxide oxidation. Environ. Pollut., 92(2), 155-164 (1996).
Foussard, J.N., H. Debellefontaine and J. Besombes-Vailhe, Efficient elimination of organic liquid wastes: wet air oxidation. J. Environ. Eng., 115(2), 367 (1989).
Freedman, D.L., R.S. Shanley and R.J. Scholze, Aerobic biodegradation of 2,4-diaminotoluene, aminonitrotoluene isomers, and 2,4-diaminotoluene. J. Hazard. Mater., 49(1), 1-14 (1996).
Gad-Allah, T.A., K. Fujimura, S. Kato, S. Satokawa and T. Kojima, Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): Effect of carbon coating and calcination temperature. J. Hazard. Mater., 154(1-3), 572–577 (2008).
Goms, H.T., J.L. Figueiredo and J.L. Faria, Catalytic wet air oxidation of low molecular weight carboxylic acids using a carbon supported platinum catalyst. Appl. Catal. B-Environ., 27(4), 217-223 (2000).
Gribanov, N.M., E.E. Bibik, O.V. Buzunov and V.N. Naumov, Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J. Magn. Magn. Mater., 85(1-3), 7-10 (1990).
Hench, L.L. and J.K. West, The sol-gel process. Chem. Rev., 90(1), 33-72 (1990).
Ilyas, M. and M. Sadiq, Liquid-phase aerobic oxidation of benzyl alcohol catalyzed by Pt/ZrO2. Chem. Eng. Technol., 30(10), 1391-1397 (2007).
Joglekar, H.S., S.D. Samant and J.B. Joshi, Kinetics of wet air oxidation of phenol and substituted phenols. Water. Res., 25(2), 135 (1991).
Joshi, J.B., V.S. Mishra and V.V. Mahajani, Wet air oxidation. Ind. Eng. Chem. Res., 34(1), 2-48 (1995).
Karlin, K.D., Progress in inorganic chemistry, Vol. 51, 1st ed., Wiley-Interscience, Malden, MA, USA (2002).
Kim, K.D. and H.T. Kim, Formation of silica nanoparticles by hydrolysis of TEOS using a mixed semi-batch/batch method. J. Sol-gel Sci. Techn., 25(3), 183-189 (2002).
Klinghoffer, A.A., R.L. Cerro and M.A. Abraham, Catalytic wet oxidation of acetic acid using platinum on alumina monolith catalyst. Catal. Today, 40(1), 59-71 (1998).
Lei, L., X. Hu, H.P. Chu, G. Chen and P.L. Yue, Catalytic wet air oxidation of dying and printing wastewater. Water Sci. Technol., 35(4), 311-319 (1997).
Li, L., P.S. Chen and E.F. Gloyna, Generalized kinetic model for wet oxidation of organic compounds. AIChE J., 37(11), 1687-1697 (1991).
Lin, S.H. and S.J. Ho and C.L. Wu, Kinetics and performance characteristics of wet air oxidation of high-concentration wastewater. Ind. Eng. Chem. Res., 35(1), 307-314 (1996).
Luck, F., Wet air oxidation: past, present and future. Catal. Today, 53(1), 81-91 (1999)
Masende, Z.P.G., B.F.M. Kuster, K.J. Ptasinski, F.J.J.G. Janssen, J.H.Y. Katima and J.C. Schouten, Support and dispersion effects on activity of platinum catalysts during wet oxidation of organic wastes. Top. Catal., 33(1-4), 87-99 (2005).
Manríquez, M.E., T. López, R. Gómez and J. Navarrete, Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties. J. Mol. Catal. A: Chem., 220(2), 229-237 (2004).
Perkas, N., D.P. Minh, P. Gallezot, A. Gedanken and M. Besson, Platinum and ruthenium catalysts on mesoporous titanium and zirconium oxides for the catalytic wet air oxidation of model compounds. Appli. Catal. B-Environ, 59(1-2), 121–130 (2005).
Pesce, S.F. and D.A. Wunderlin, Biodegradation of 2,4 and 2,6-diaminotoluene by acclimated bacteria. Water Res., 31(7), 1601-1608 (1997).
Pray, H.A., C.E. Schweickert and B.H. Minnich, Solubility of hydrogen, oxygen, nitrogen, and helium in water. Ind. Eng. Chem., 44(5), 1146–1151 (1952).
Ramnani, S.P., S. Sabharwal, J. Vinod Kumar, K. Hari Prasad Reddy, K.S. Rama Rao and P.S. Sai Prasad, Advantage of radiolysis over impregnation method for the synthesis of SiO2 supported nano-Ag catalyst for direct decomposition of N2O. Catal. Commun., 9(5), 756–761 (2008).
Satoh, T., M. Akitaya, M. Konno and S. Saito, Particle size distributions produced by hydrolysis and condensation of tetraethylrthosilicate. J. Chem. Eng. Jpn., 30(4), 759-762 (1997).
Schwertmann, U. and R.M. Cornell, Iron oxides in the laboratory: Preparation and characterization, 1st ed., VCH, Weinheim, New York, USA (1991).
Tibiletti, D., F.C. Meunier, A. Goguet, D. Reida, R. Burcha, M. Boarob, M. Vicario and A. Trovarelli, An investigation of possible mechanisms for the water–gas shift reaction over a ZrO2-supported Pt catalyst. J. Catal., 244(2), 183-191 (2006).
Wang, C., X.M. Zhang, X.F. Qian, Y. Xie, W.Z. Wang and Y.T. Qian, Preparation of nanocrystalline nickel powders through hydrothermal-reduction method. Mater. Res. Bull., 33(12), 1747–1751 (1998).
Watanabe, T., M. Ono, T. Hirayama and S. Fukui, Studies on the oxidation products from 2,4-diaminotoluene by hydrogen peroxide and their mutagenicities. Mutat. Res. Lett., 225(1-2), 15-19 (1989).
White, K.D. and H.M. Do Luu, In-vitro detection of 2,4- and 2,6-TDA as degradation products of a polyesterurethane foam. Polym. Degrade. Stab., 42(3), 245-251 (1993)
Wright, J.D. and N.A.J.M. Sommerdijk, Sol-gel materials: Chemistry and applications, 1st ed., Taylor & Francis, Oxford, UK (2000).
Zou, H. and Y.S. Lin, Structural and surface chemical properties of sol-gel derived TiO2-ZrO2 oxides. Appl. Catal. A-Gen., 265(1), 35-42 (2004).
吳仲平,「以臭氧處理2,4-二胺基甲苯之研究」國立臺灣大學環境工程學研究所碩士論文,台北 (2002)。
吳憶伶,「磁性觸媒應用於催化溼式氧化程序處理水中溶解性污染物之研究」國立臺灣大學環境工程學研究所碩士論文,台北 (2009)。
許紫菱,「以奈米超順磁性二氧化鋯吸附處理陰離子溶液」國立臺灣大學環境工程學研究所碩士論文,台北 (2006)。
陳詩韻,「觸媒濕式催化分解DMP之硏究」國立灣大學環境工程學研究所碩士論文,台北 (2008)。
閻子峰,「奈米催化技術」,五南出版,台北 (2004)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10605-
dc.description.abstract本研究進行磁性微奈米觸媒之改質(Pt/ZrO2/Fe3O4, Pt/ZM)及雙金屬氧化物磁性觸媒(Pt/TiO2-ZrO2/SiO2/Fe3O4, Pt/T-ZSM)的合成,並應用於觸媒溼式催化氧化反應程序(catalytic wet air oxidation, CWAO)處理甲苯二胺(2,4-diaminotoluene, TDA),進而比較磁性顆粒的添加及不同觸媒對於WAO程序降解TDA及其中間副產物的效能。
本實驗所製備之Pt/ZM及Pt/T-ZSM皆具有優良的比表面積(86.04及111.32 m2 g-1),其飽和磁化量分別為 13.14及6.08 emu g-1,鉑金屬含量為2.59與1.75 wt. %。經由電子顯微鏡的觀察可知磁性觸媒粒徑皆小於100 nm,且反應前後皆保有超順磁性之特性,顆粒皆能有效的以高梯度磁性分離機加以固液分離並回收。
於溼式氧化反應中可知溫度為主要的操作參數,溫度越高則提供越多的能量降解有機物質。系統中只要提供足夠的氧氣量即可有效降解TDA及其副產物,壓力及轉速之影響小於溫度。
本實驗之水樣體積為500 mL,於WAO系統中反應三小時後,當溫度T = 523 K,氧氣分壓PO2 = 1.38 MPa,轉速Nr = 500 rpm, TDA初始濃度CTDAo = 500 mg L-1時,TDA降解效率(ηTDA)及TOC礦化效率(ηTOC)分別為99與75%。由此可知TDA於高溫氧化的條件下能快速的降解及有效的礦化。在CWAO系統中添加0.5 g Pt/T-ZSM於前條件時,ηTDA及ηTOC分別為99與83%。若觸媒的選擇為0.5 g Pt/ZM時,在相同反應條件下,則ηTDA及ηTOC分別為99與95%以上。有此可知觸媒的添加能有效的降低反應的活化能,增進反應速率對於降解TDA及其中間副產物能提供較佳的催化氧化效果,使得系統能在相同時間獲致較高的礦化效率。以觸媒單位質量Pt之處理效能加以比較時,Pt/T-ZSM與Pt/ZM礦化效率之比為1.29。結果顯示雙金屬觸媒優於單金屬觸媒。
zh_TW
dc.description.abstractThis study focuses on the synthesis of magnetic binary metal oxide catalyst (Pt/TiO2-ZrO2/SiO2/Fe3O4, Pt/T-ZSM) and the modified of magnetic catalyst (Pt/ZrO2/Fe3O4, Pt/ZM). These magnetic particles are used in the catalytic wet air oxidation process (CWAO) for the decomposition of 2,4-diaminotoluene (TDA). The performances for the treatment of TDA via WAO and CWAO systems are investigated.
The characteristics of Pt/ZM and Pt/T-ZSM prepared in this work are with BET specific surface areas of 86.04 and 111.32 m2 g-1, saturation magnetizations of 13.14 and 6.08 emu g-1 respectively, contents of platinum on the catalyst surface of 2.59 and 1.75 wt.%, diameters of particles are smaller than 100 nm. Further, the superparamagnetic properties of these catalyst are still held after the use in CWAO process.
In WAO system, the dominant operating parameter is temperature (T). The energy supply for the decomposition of contaminants increases with the increasing temperature. To ensure efficient oxidation, of course, the pressure of oxidant (PO2) should be sufficient for the reaction.
After three hours reaction time (t) in WAO, as T = 523 K, PO2 = 1.38 MPa, stirring speed Nr = 500 rpm and initial concentration of TDA (CTDAo) = 500 mg L-1,the decomposition efficiency of TDA (ηTDA) and mineralization efficiency of TOC (ηTOC) are 99 and 75%, respectively. It shows that TDA is nearly decomposed at the condition of high temperature with enough oxidant. For the case with 0.5 g Pt/T-ZSM in CWAO, at the same conditions as above,ηTDA and ηTOC are 99 and 83%, respectively. In the same reaction conditions with 0.5 g Pt/ZM, ηTDA and ηTOC are 99 and 95%, respectively. Thus, as the magnetic catalysts are employed in the WAO system, the CWAO process can lower the activation energy of reaction, promoting the reaction rate and giving a higher ηTOC at the same reaction time. Comparing the performances per mass of Pt for the two catalysts, the ratio of values of ηTOC of Pt/T-ZSM to Pt/ZM is 1.29, indicating the oxidation ability of binary metal oxide catalysts Pt/T-ZSM is better than that of single metal oxide catalyst of Pt/ZM.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:43:09Z (GMT). No. of bitstreams: 1
ntu-99-R97541129-1.pdf: 5700406 bytes, checksum: a48c4fd7f9599d52cff69531250072d8 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
符號說明 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究內容 2
1.3 研究目的 2
第二章 文獻回顧 4
2.1 溼式氧化法 4
2.1.1 溼式氧化法原理 4
2.1.2 反應機制與反應動力學 6
2.1.3 反應操作因子的影響 7
2.1.4 觸媒溼式催化氧化法 9
2.2 甲苯二胺 9
2.3 磁性觸媒製備方法 10
2.3.1 化學共沉澱法 10
2.3.2 溶膠凝膠法 10
2.3.3 含浸法 12
2.3.4 水熱還原法 12
第三章 實驗材料與設備及研究方法 15
3.1 實驗材料 15
3.1.1 實驗藥品 15
3.1.2 實驗氣體 16
3.2 實驗設備及分析儀器 16
3.2.1 磁性顆粒合成設備 16
3.2.2 溼式氧化反應設備 17
3.2.3 分析儀器 17
3.3 觸媒製備方法及步驟 18
3.3.1 Pt/ZSM合成步驟 19
3.3.2 Pt/ZM合成步驟 24
3.4 溼式氧化反應 26
3.4.1 反應程序 26
3.4.2 反應設備 26
3.4.3 反應條件 30
3.5 樣品分析 32
3.5.1 觸媒特性分析 32
第四章 結果與討論 38
4.1觸媒特性分析 38
4.1.1 顆粒形態 38
4.1.2 顆粒表面分析 39
4.1.3 元素定性及半定量分析 42
4.1.4 比表面積 45
4.1.5 晶型分析 53
4.1.6 磁滯曲線 56
4.2 溼式催化氧化反應程序降解TDA 62
4.2.1 反應溫度的影響 62
4.2.2 攪拌速率的影響 64
4.2.3 反應壓力與氧氣量的影響 64
4.2.4 無氧溼式反應對TDA的影響 66
4.2.5 表面無鉑金屬之磁性觸媒 70
4.2.6 磁性鉑觸媒與雙金屬氧化物磁性鉑觸媒 77
4.3 觸媒耐久性分析 86
4.3.1 顆粒形態 86
4.3.2 磁滯曲線 92
4.3.3 晶形結構分析 92
第五章 結論與建議 98
5.1 結論 98
5.1.1磁性觸媒之物理化學特性 98
5.1.2 溼式氧化反應程序 98
5.1.3 溼式氧化反應程序 99
5.2 建議 99
參考文獻 100
附錄A. EDS元素定性分析 A-1
附錄B. 實驗數據 B-1
附錄C. pH value C-1
附錄D. XRD圖譜資料庫 D-1
附錄E. 檢量線 E-1
dc.language.isozh-TW
dc.title雙金屬氧化物磁性觸媒合成並應用於溼式催化氧化甲苯二胺zh_TW
dc.titleSynthesis of Magnetic Binary Metal Oxide Catalyst and Its Application on Wet Air Oxidation Process for Decomposition of 2,4-Diaminotolueneen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張奉文,張瓊芬,邱浚祐
dc.subject.keyword雙金屬氧化物,磁性觸媒,溼式催化氧化,甲苯二胺,超順磁性,zh_TW
dc.subject.keywordBinary metal oxide,magnetic catalyst,catalytic wet air oxidation (CWAO),2,4-Diaminotoluene,superparamagnetic,en
dc.relation.page149
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf5.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved