Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10535
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor莊榮輝(Rong-Huay Juang)
dc.contributor.authorYi-Chun Liuen
dc.contributor.author劉怡君zh_TW
dc.date.accessioned2021-05-20T21:37:19Z-
dc.date.available2015-08-18
dc.date.available2021-05-20T21:37:19Z-
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-16
dc.identifier.citationAoki FY, Sitar DS (1988) Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet 14: 35-51
Büchen-Osmond CE, Columbia University, New York, USA (2006) International Committee on Taxonomy of Viruses Index of Viruses - Orthomyxoviridae. In: ICTVdB - The Universal Virus Database, version 4.
Basler CF, Aguilar PV (2008) Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res 79: 166-178
Bouvier NM, Palese P (2008) The biology of influenza viruses. Vaccine 26 Suppl 4: D49-53
Brown EG (2000) Influenza virus genetics. Biomed Pharmacother 54: 196-209
Chan AY, Vreede FT, Smith M, Engelhardt OG, Fodor E (2006) Influenza virus inhibits RNA polymerase II elongation. Virology 351: 210-217
Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7: 1306-1312
Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29: 155-165
Cros JF, Garcia-Sastre A, Palese P (2005) An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic 6: 205-213
Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E (2006) Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 80: 11911-11919
Deng T, Sharps J, Fodor E, Brownlee GG (2005) In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J Virol 79: 8669-8674
Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79: 2814-2822
Gatherer D (2009) The 2009 H1N1 influenza outbreak in its historical context. J Clin Virol 45: 174-178
Gendon Iu Z (2008) [Influenza pandemic: hypotheses and facts]. Zh Mikrobiol Epidemiol Immunobiol: 109-118
Gong J, Xu W, Zhang J (2007) Structure and functions of influenza virus neuraminidase. Curr Med Chem 14: 113-122
Hale BG, Barclay WS, Randall RE, Russell RJ (2008) Structure of an avian influenza A virus NS1 protein effector domain. Virology 378: 1-5
Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89: 2359-2376
Hemerka JN, Wang D, Weng Y, Lu W, Kaushik RS, Jin J, Harmon AF, Li F (2009) Detection and characterization of influenza A virus PA-PB2 interaction through a bimolecular fluorescence complementation assay. J Virol 83: 3944-3955
Horimoto T, Kawaoka Y (1995) Direct reverse transcriptase PCR to determine virulence potential of influenza A viruses in birds. J Clin Microbiol 33: 748-751
Huarte M, Sanz-Ezquerro JJ, Roncal F, Ortin J, Nieto A (2001) PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol 75: 8597-8604
Inglis SC, Brown CM (1981) Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus. Nucleic Acids Res 9: 2727-2740
Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72: 7367-7373
Kawaoka Y, Krauss S, Webster RG (1989) Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63: 4603-4608
Kilbourne ED, Cerini CP, Khan MW, Mitchell JW, Jr., Ogra PL (1987) Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees. J Immunol 138: 3010-3013
Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, Garcia-Sastre A, Young JA, Palese P, Shaw ML, Chanda SK (2010) Human host factors required for influenza virus replication. Nature 463: 813-817
Krug RM (1981) Priming of influenza viral RNA transcription by capped heterologous RNAs. Curr Top Microbiol Immunol 93: 125-149
LAmb RAea (1996) Orthomyxoviridae: The virus and their replicaton. Voirology, 3rd ed: 1353~1395
Lee CW, Jung K, Jadhao SJ, Suarez DL (2008) Evaluation of chicken-origin (DF-1) and quail-origin (QT-6) fibroblast cell lines for replication of avian influenza viruses. J Virol Methods 153: 22-28
Li X, Palese P (1994) Characterization of the polyadenylation signal of influenza virus RNA. J Virol 68: 1245-1249
Lupiani B, Reddy SM (2009) The history of avian influenza. Comp Immunol Microbiol Infect Dis 32: 311-323
Masunaga K, Mizumoto K, Kato H, Ishihama A, Toyoda T (1999) Molecular mapping of influenza virus RNA polymerase by site-specific antibodies. Virology 256: 130-141
Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101: 4620-4624
McDonald NJ, Smith CB, Cox NJ (2007) Antigenic drift in the evolution of H1N1 influenza A viruses resulting from deletion of a single amino acid in the haemagglutinin gene. J Gen Virol 88: 3209-3213
Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277: 45306-45314
Mukaigawa J, Nayak DP (1991) Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol 65: 245-253
Murphy P, Roberts ZM, Waner JL (1996) Differential diagnoses of influenza A virus, influenza B virus, and respiratory syncytial virus infections by direct immunofluorescence using mixtures of monoclonal antibodies of different isotypes. J Clin Microbiol 34: 1798-1800
Naffakh N, Tomoiu A, Rameix-Welti MA, van der Werf S (2008) Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annu Rev Microbiol 62: 403-424
Nagata K, Kawaguchi A, Naito T (2008) Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 18: 247-260
Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81: 1339-1349
Nayak DP, Hui EK, Barman S (2004) Assembly and budding of influenza virus. Virus Res 106: 147-165
Neumann G, Hughes MT, Kawaoka Y (2000) Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 19: 6751-6758
Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459: 931-939
Park YW, Katze MG (1995) Translational control by influenza virus. Identification of cis-acting sequences and trans-acting factors which may regulate selective viral mRNA translation. J Biol Chem 270: 28433-28439
Perez-Gonzalez A, Rodriguez A, Huarte M, Salanueva IJ, Nieto A (2006) hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol 362: 887-900
Perkins LE, Swayne DE (2002) Pathogenicity of a Hong Kong-origin H5N1 highly pathogenic avian influenza virus for emus, geese, ducks, and pigeons. Avian Dis 46: 53-63
Perkins LE, Swayne DE (2003) Comparative susceptibility of selected avian and mammalian species to a Hong Kong-origin H5N1 high-pathogenicity avian influenza virus. Avian Dis 47: 956-967
Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69: 517-528
Portela A, Digard P (2002) The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83: 723-734
Rameix-Welti MA, Tomoiu A, Dos Santos Afonso E, van der Werf S, Naffakh N (2009) Avian Influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. J Virol 83: 1320-1331
Rao P, Yuan W, Krug RM (2003) Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. EMBO J 22: 1188-1198
Resa-Infante P, Jorba N, Zamarreno N, Fernandez Y, Juarez S, Ortin J (2008) The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication. PLoS One 3: e3904
Rogers GN, D'Souza BL (1989) Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173: 317-322
Rott R (1992) The pathogenic determinant of influenza virus. Vet Microbiol 33: 303-310
Schroeder C, Heider H, Moncke-Buchner E, Lin TI (2005) The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J 34: 52-66
Sidorenko Y, Reichl U (2004) Structured model of influenza virus replication in MDCK cells. Biotechnol Bioeng 88: 1-14
Sieczkarski SB, Whittaker GR (2002) Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 76: 10455-10464
Soares IS, Rodrigues MM (1998) Malaria vaccine: roadblocks and possible solutions. Braz J Med Biol Res 31: 317-332
Subbarao K, Joseph T (2007) Scientific barriers to developing vaccines against avian influenza viruses. Nat Rev Immunol 7: 267-278
Subbarao K, Katz J (2000) Avian influenza viruses infecting humans. Cell Mol Life Sci 57: 1770-1784
Vreede FT, Brownlee GG (2007) Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol 81: 2196-2204
Webster RG, Rott R (1987) Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50: 665-666
Yankulov K, Todorov I, Romanowski P, Licatalosi D, Cilli K, McCracken S, Laskey R, Bentley DL (1999) MCM proteins are associated with RNA polymerase II holoenzyme. Mol Cell Biol 19: 6154-6163
Ye ZP, Baylor NW, Wagner RR (1989) Transcription-inhibition and RNA-binding domains of influenza A virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J Virol 63: 3586-3594
Zebedee SL, Lamb RA (1988) Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62: 2762-2772
莊榮輝 (1985) 水稻合成酶之研究。國立台灣大學農業化學研究所博士論文。.
何杰龍 (2006) 建立單株抗體庫以應用於臺灣家禽流行性感冒病毒之蛋白質體學研究。國立台灣大學微生物與生化學研究所博士班資格考論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10535-
dc.description.abstractRNA 聚合酶複合體在禽流感病毒複製過程扮演重要角色,由 PA, PB1與 PB2三個次單元所構成,負責轉錄與複製病毒 RNA,關係到禽流感病毒是否能順利複製病毒子代,感染更多宿主細胞,並決定其遺傳訊息是否能完整傳遞。相較於病毒表面封套上較易突變的醣蛋白 HA 與 NA,RNA 聚合酶複合體在各種病毒亞型間較保守,且其功能乃啟動於病毒感染早期,使其成為良好的抗流感藥物標的。
本論文根據本土禽流感病毒株 A/Chicken/Taiwan/2838V/00 (H6N1) 序列,經結構及免疫性預測,設計可能的抗原決定基,合成短鏈胜肽作為抗原,嘗試製備 RNA聚合酶各次單元體 (PA, PB1及 PB2) 之單株抗體。經酵素連結免疫吸附法 (ELISA) 及免疫染色法分析,確認得到具良好專一性的 PA 及 PB2單株抗體,此外亦得到 PB1之傳統抗血清。分析這些抗體特性,以競爭型 ELISA 初步確認 PA 及 PB2單株抗體之抗原決定位,並以免疫染色法測定 PA 及 PB2 之抗體型別。
為了觀察 RNA 聚合酶各次單元體,於受感染細胞中位移過程,我們使用抗體標定受 H6N1 亞型禽流感病毒株 (A/Wild duck/Ilan/2904/1999) 感染的 MDCK 細胞,確認 PA 及 PB2 單株抗體及 PB1 抗體,均可辨識被感染細胞上的原態抗原。此外,利用免疫共沉澱分析,發現 PA 及 PB1 皆可辨認一個約 53 kDa 大小的蛋白質。另一方面,使用免疫染色法定位 RNA 聚合酶各次單元體於二維電泳圖譜位置,結果 PA 單株抗體可於對應分子量及等電點辨認專一蛋白質點。
本論文所產抗體除了能作為專一性的檢測與觀察工具,更可能進一步應用於基礎研究,協助了解流感病毒 RNA 聚合酶的活化機制。
zh_TW
dc.description.abstractRNA polymerase is a protein complex composed of three subunits including PA, PB1 and PB2, which play essential roles for the replication of avian influenza virus genome. Compared with the glycoproteins on the viral envelope (haemagglutinin and neuraminidase), RNA polymerase complexe shows more conservative in the protein sequences among various virus subtypes. Moreover, the function of this enzyme complex is initiated in the early-stage of viral replication. This makes RNA polymerase an ideal target for the anti-influenza virus therapeutics.
In this study, we used synthetic peptides as antigen for the subunits of the avian influenza RNA polymerase complex (PA, PB1 and PB2) monoclonal anibodies preparation. The peptides were determined based on the structural analysis and the immunogenicity prediction from a local avian influenza virus A/Chicken/Taiwan/2838V/00 (H6N1) sequences.
The result of enzyme linked immunosorbent assay (ELISA) and Western blot analysis confirmed that the specificity of the monoclonal antibodies against PA and PB2, as well as the conventional antisera against PB1. The epitopes of these two monoclonal antibodies (anti-PA and anti-PB2) were estimated by using competitive ELISA. The isotypes of the antibodies were determined by Western blots. To follow the cellular movement of the RNA polymerase complexes in a living cell, MDCK cells were infected with the H6N1 virus (A/wild duck/Ilan/2904/1999). Then the target proteins were detected by indirect immunofluorescence assays. The results of indirect immunofluorescence assay shows these antibodies can recognize antigen in native form in infected cells. By using immunoprecipitation, a 53 kDa protein was identified as interacted with PA and PB1. On the other hand,the position of PA on the two-dimensional map was allocated by Western blot.
The antibodies produced in this work might be used as a specific probe for viral analysis in order to explore the activation mechanism in RNA replication.
 
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:37:19Z (GMT). No. of bitstreams: 1
ntu-99-R97b47211-1.pdf: 6925617 bytes, checksum: 526e5f8ce167a6e2334811254f965f38 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要..................................................3
ABSTRACT..................................................4
第一章 緒論...............................................5
1.1 簡介禽流感病毒 ........................................5
1.1.1 禽流感病毒的歷史背景.............................5
1.1.2 流感病毒之分類...................................7
1.1.3 流感病毒的構造與形態.............................8
1.1.4 流感病毒的基因體................................10
1.1.5 流感病毒的蛋白質簡介............................11
1.1.6 流感病毒的複製週期..............................13
1.1.7 流感病毒的變異..................................17
1.2 RNA 聚合?三聚體的重要性.............................19
1.2.1 RNA 聚合?複合體之功能..........................19
1.2.2 RNA 聚合?複合體之生成與運輸....................19
1.2.3 RNA 聚合?複合體與宿主因子作用..................20
1.3 研究動機與目的 .......................................23
第二章 材料與方法........................................24
2.1 病毒樣本處理方法.....................................24
2.1.1 雞胚培養病毒增殖...................................24
2.1.2 病毒樣本濃縮與純化.................................25
2.1.3 蛋白質定量.........................................25
2.2二維膠體電泳..........................................26
2.2.1 樣本處理(脫鹽及溶解)..............................26
2.2.2 第一維等電點聚焦...................................26
2.2.3 第二維 SDS-PAGE 膠體電泳...........................28
2.3抗體製備相關實驗......................................29
2.3.1 動物免疫法.........................................29
2.3.2 單株抗體製備 .......................................29
2.3.3 單株抗體大量製備...................................32
2.3.4 免疫球蛋白純化.....................................33
2.4 免疫學方法...........................................34
2.4.1 酵素免疫分析法.....................................34
2.4.1.1 一般酵素免疫分析法...............................34
2.4.1.2 競爭型酵素免疫分析法.............................35
2.4.2 免疫共沉澱法 .......................................35
2.4.3 單株抗體型別分析法.................................36
2.5 以禽流感病毒感染MDCK細胞.............................38
2.6 蛋白質生物素標定.....................................39
2.7 共軛焦顯微鏡分析.....................................40
第三章 結果..............................................41
3.1 禽流感病毒 RNA 次單元聚合?蛋白 PA、PB1 及 PB2 之抗體製備.......................................................42
3.1.1 以複合的結構與免疫性指標預測並設計抗原決定位....42
3.1.2 傳統免疫抗血清製備 .............................50
3.1.3 單株抗體製備....................................51
3.1.4 單株抗體大量製備................................52
3.2 禽流感病毒 RNA 次單元聚合?蛋白 PA 及 PB2 單株抗體特性分析.......................................................60
3.2.1 以酵素連結免疫吸附法檢定抗原決定基位置.............60
3.2.2 以競爭型酵素連結免疫吸附法進一步檢定可能的抗原決定基位置.......................................................60
3.2.3 PA 單株抗體型別檢定................................61
3.3 利用抗體觀察 RNA 聚合?各次單元體於受病毒感染的 MDCK 細胞內位移的情形...........................................67
3.3.1 以免疫螢光染色法觀察 MDCK 細胞中 PB1 及 PB2 位移...67
3.3.2 以免疫螢光染色法觀察 MDCK 細胞中 PB2 及 PA 位移....68
3.3.3 本研究利用抗體標定觀察 MDCK 細胞中 RNA 聚合?各次單元體,但尚無法得知其新生各次單元體組裝並位移至細胞核的過程.68
3.3.4 病毒感染 MDCK 細胞 24 小時後各次單元體訊號明顯減弱69
3.4 以 PA、PB1 及 PB2 抗體與雞胚尿囊濃縮液進行免疫共沉澱75
3.4.1 PA 及 PB1 抗體與雞胚尿囊濃縮液中約 53 kDa 分子作用並沉澱.......................................................75
3.4.2 免疫共沉澱所得結果可能為蛋白質降解所致.............76
3.5 PA、PB1 單株抗體可於二維電泳圖譜標定出單一明顯的蛋白質點.......................................................80
第四章 討論..............................................82
4.1 以合成胜?作為抗原製備的單株抗體可辨識原態分子..82
4.2 本文所產 PA 及PB2 單株抗體的抗原決定基與目前已知功能區域的關係...................................................83
第五章 結論..............................................86
第六章 參考資料..........................................87
問答錄...................................................92
附錄.....................................................96
dc.language.isozh-TW
dc.title利用禽流感病毒 RNA 聚合酶 PA 和 PB2 之單株抗體探討其細胞感染機制zh_TW
dc.titleExploring the cellular infection mechanism of avian influenza virus RNA polymerases PA and PB2 by monoclonal antibodiesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor王金和
dc.contributor.oralexamcommittee張世宗(Shih-Chung Chang),常怡雍,陳翰民
dc.subject.keyword禽流感病毒 (AIV),RNA 聚合&#37238,抗體,zh_TW
dc.subject.keywordavian influenza virus (AIV),RNA polymerases,antibodies,en
dc.relation.page106
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept微生物與生化學研究所zh_TW
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-99-1.pdf6.76 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved