Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州
dc.contributor.authorChun-Ting Chenen
dc.contributor.author陳俊廷zh_TW
dc.date.accessioned2021-05-20T21:36:34Z-
dc.date.available2015-08-17
dc.date.available2021-05-20T21:36:34Z-
dc.date.copyright2010-08-17
dc.date.issued2010
dc.date.submitted2010-08-16
dc.identifier.citation[1] Ascari, L., et al., Bio-inspired grasp control in a robotic hand with massive sensorial input. Biological Cybernetics, 2009. 100(2): p. 109-128.
[2] Bernardin, K., et al., A sensor fusion approach for recognizing continuous human grasping sequences using hidden Markov models. Ieee Transactions on Robotics, 2005. 21(1): p. 47-57.
[3] Bianco, R. and S. Nolfi, Evolving the neural controller for a robotic arm able to grasp objects on the basis of tactile sensors. Ai(Asterisk)Ia 2003: Advances in Artificial Intelligence, Proceedings, 2003. 2829: p. 375-384.
[4] Bianco, R. and S. Nolfi, Evolving the neural controller for a robotic arm able to grasp objects on the basis of tactile sensors. Adaptive Behavior, 2004. 12(1): p. 37-45.
[5] Dollar, A.M., et al., Contact sensing and grasping performance of compliant hands. Autonomous Robots, 2010. 28(1): p. 65-75.
[6] Edin, B.B., et al., Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. BRAIN RESEARCH BULLETIN, 2008. 75(6): p. 785-795.
[7] Kawasaki, H., et al., Virtual Robot Teaching Based on Motion Analysis and Hand Manipulability for Multi-Fingered Robot. Journal of Advanced Mechanical Design Systems and Manufacturing, 2009. 3(1): p. 1-12.
[8] Kawasaki, H., T. Komatsu, and K. Uchiyama, Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. Ieee-Asme Transactions on Mechatronics, 2002. 7(3): p. 296-303.
[9] Kawasaki, H., H. Shimomura, and Y. Shimizu, Educational-industrial complex development of an anthropomorphic robot hand 'Gifu hand'. Advanced Robotics, 2001. 15(3): p. 357-363.
[10] Mouri, T., H. Kawasaki, and S. Ito, Unknown Object Grasping Strategy Imitating Human Grasping Reflex for Anthropomorphic Robot Hand. Journal of Advanced Mechanical Design Systems and Manufacturing, 2007. 1(1): p. 1-11.
[11] Murakami, K., et al., A Decision Method for Placement of Tactile Elements on a Sensor Glove for the Recognition of Grasp Types. Ieee-Asme Transactions on Mechatronics, 2010. 15(1): p. 157-162.
[12] O'Malley, M.K. and R.O. Ambrose, Haptic feedback applications for Robonaut. Industrial Robot-an International Journal, 2003. 30(6): p. 531-542.
[13] Platt, R., A.H. Fagg, and R.A. Grupen, Null-Space Grasp Control: Theory and Experiments. Ieee Transactions on Robotics, 2010. 26(2): p. 282-295.
[14] Prats, M., P.J. Sanz, and A.P. del Pobil, Reliable non-prehensile door opening through the combination of vision, tactile and force feedback. Autonomous Robots, 2010. 29(2): p. 201-218.
[15] Roy, D., Estimation of grip force and slip behavior during robotic grasp using data fusion and hypothesis testing: Case study with a matrix sensor. Journal of Intelligent & Robotic Systems, 2007. 50(1): p. 41-71.
[16] Wettels, N., et al., Grip Control Using Biomimetic Tactile Sensing Systems. Ieee-Asme Transactions on Mechatronics, 2009. 14(6): p. 718-723.
[17] Morales, A., et al. An Experiment in the Use of Manipulation Primitives and Tactile Perception for Reactive Grasping. in Proceedings of the Robotics: Science & Systems. 2007.
[18] Felip, J. and A. Morales, Robust sensor-based grasp primitive for a three-finger robot hand, in Intelligent Robots and Systems. 2009.
[19] Raibert, M.H. and J.J. Craig, Hybrid Position/Force Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control, 1981.
[20] Bobrow, J.E. and B.W. McDonell, Modeling, identification, and control of a pneumatically actuated, force controllable robot. Ieee Transactions on Robotics and Automation, 1998. 14(5): p. 732-742.
[21] Cheah, C.C., S. Kawamura, and S. Arimoto, Stability of hybrid-position and force control for robotic manipulator with kinematics and dynamics uncertainties. Automatica, 2003. 39(5): p. 847-855.
[22] Fisher, W.D. and M.S. Mujtaba, HYBRID POSITION FORCE CONTROL - A CORRECT FORMULATION. International Journal of Robotics Research, 1992. 11(4): p. 299-311.
[23] Jeon, D. and M. Tomizuka, LEARNING HYBRID FORCE AND POSITION CONTROL OF ROBOT MANIPULATORS. Ieee Transactions on Robotics and Automation, 1993. 9(4): p. 423-431.
[24] Xiao, D., et al., Sensor-based hybrid position/force control of a robot manipulator in an uncalibrated environment. Ieee Transactions on Control Systems Technology, 2000. 8(4): p. 635-645.
[25] Yoshikawa, T., DYNAMIC HYBRID POSITION FORCE CONTROL OF ROBOT MANIPULATORS - DESCRIPTION OF HAND CONSTRAINTS AND CALCULATION OF JOINT DRIVING FORCE. Ieee Journal of Robotics and Automation, 1987. 3(5): p. 386-392.
[26] Yoshikawa, T., K. Harada, and A. Matsumoto, Hybrid position/force control of flexible-macro/rigid-micro manipulator systems. Ieee Transactions on Robotics and Automation, 1996. 12(4): p. 633-640.
[27] Yoshikawa, T. and A. Sudou, DYNAMIC HYBRID POSITION FORCE CONTROL OF ROBOT MANIPULATORS - ONLINE ESTIMATION OF UNKNOWN CONSTRAINT. Ieee Transactions on Robotics and Automation, 1993. 9(2): p. 220-226.
[28] Yoshikawa, T., T. Sugie, and M. Tanaka, DYNAMIC HYBRID POSITION FORCE CONTROL OF ROBOT MANIPULATORS - CONTROLLER-DESIGN AND EXPERIMENT. Ieee Journal of Robotics and Automation, 1988. 4(6): p. 699-705.
[29] Yoshikawa, T. and X.Z. Zheng, COORDINATED DYNAMIC HYBRID POSITION FORCE CONTROL FOR MULTIPLE ROBOT MANIPULATORS HANDLING ONE CONSTRAINED OBJECT. International Journal of Robotics Research, 1993. 12(3): p. 219-230.
[30] Ailon, A. and R. Ortega, AN OBSERVER-BASED SET-POINT CONTROLLER FOR ROBOT MANIPULATORS WITH FLEXIBLE JOINTS. Systems & Control Letters, 1993. 21(4): p. 329-335.
[31] Carelli, R., E.F. Camacho, and D. Patino, A NEURAL-NETWORK-BASED FEEDFORWARD ADAPTIVE CONTROLLER FOR ROBOTS. Ieee Transactions on Systems Man and Cybernetics, 1995. 25(9): p. 1281-1288.
[32] Cheah, C.C., et al., Approximate Jacobian control for robots with uncertain kinematics and dynamics. Ieee Transactions on Robotics and Automation, 2003. 19(4): p. 692-702.
[33] Cheah, C.C., S. Kawamura, and S. Arimoto, Feedback control for robotic manipulator with an uncertain Jacobian matrix. Journal of Robotic Systems, 1999. 16(2): p. 119-134.
[34] Elci, H., et al., Simple learning control made practical by zero-phase filtering: Applications to robotics. Ieee Transactions on Circuits and Systems I-Fundamental Theory and Applications, 2002. 49(6): p. 753-767.
[35] Fu, L.C., ROBUST ADAPTIVE DECENTRALIZED CONTROL OF ROBOT MANIPULATORS. Ieee Transactions on Automatic Control, 1992. 37(1): p. 106-110.
[36] Ghorbel, F.H., et al., Modeling and set point control of closed-chain mechanisms: Theory and experiment. Ieee Transactions on Control Systems Technology, 2000. 8(5): p. 801-815.
[37] Huang, S.N., K.K. Tan, and T.H. Lee, Adaptive friction compensation using neural network approximations. Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 2000. 30(4): p. 551-557.
[38] Jin, Y.C., Decentralized adaptive fuzzy control of robot manipulators. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics, 1998. 28(1): p. 47-57.
[39] Kelly, R., Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. Ieee Transactions on Automatic Control, 1998. 43(7): p. 934-938.
[40] Krebs, H.I., et al., Procedural motor learning in Parkinson's disease. Experimental Brain Research, 2001. 141(4): p. 425-437.
[41] Kuc, T.Y., K.H. Nam, and J.S. Lee, AN ITERATIVE LEARNING CONTROL OF ROBOT MANIPULATORS. Ieee Transactions on Robotics and Automation, 1991. 7(6): p. 835-842.
[42] Malki, H.A., et al., Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads. Ieee Transactions on Control Systems Technology, 1997. 5(3): p. 371-378.
[43] Ortega, R., A. Loria, and R. Kelly, A SEMIGLOBALLY STABLE OUTPUT-FEEDBACK (PID)-D-2 REGULATOR FOR ROBOT MANIPULATORS. Ieee Transactions on Automatic Control, 1995. 40(8): p. 1432-1436.
[44] Reyes, F. and R. Kelly, Experimental evaluation of model-based controllers on a direct-drive robot arm. Mechatronics, 2001. 11(3): p. 267-282.
[45] Sadegh, N. and K. Guglielmo, DESIGN AND IMPLEMENTATION OF ADAPTIVE AND REPETITIVE CONTROLLERS FOR MECHANICAL MANIPULATORS. Ieee Transactions on Robotics and Automation, 1992. 8(3): p. 395-400.
[46] Sadegh, N., et al., A UNIFIED APPROACH TO THE DESIGN OF ADAPTIVE AND REPETITIVE CONTROLLERS FOR ROBOTIC MANIPULATORS. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 1990. 112(4): p. 618-629.
[47] Tayebi, A., Adaptive iterative learning control for robot manipulators. Automatica, 2004. 40(7): p. 1195-1203.
[48] Tomei, P., ADAPTIVE PD CONTROLLER FOR ROBOT MANIPULATORS. Ieee Transactions on Robotics and Automation, 1991. 7(4): p. 565-570.
[49] Tomei, P., A SIMPLE PD CONTROLLER FOR ROBOTS WITH ELASTIC JOINTS. Ieee Transactions on Automatic Control, 1991. 36(10): p. 1208-1213.
[50] Watanabe, K., et al., Feedback control of an omnidirectional autonomous platform for mobile service robots. Journal of Intelligent & Robotic Systems, 1998. 22(3-4): p. 315-330.
[51] Whitcomb, L.L., A.A. Rizzi, and D.E. Koditschek, COMPARATIVE EXPERIMENTS WITH A NEW ADAPTIVE CONTROLLER FOR ROBOT ARMS. Ieee Transactions on Robotics and Automation, 1993. 9(1): p. 59-70.
[52] Ziegler, J.B. and N.B. Nichols, Optimum settings for automatic controllers, in ASME Transactions. 1942.
[53] http://digital.ni.com/public.nsf/allkb/6C861751839981A286256D14001C1AAB.
[54] Bicchi, A., ON THE CLOSURE-PROPERTIES OF ROBOTIC GRASPING. International Journal of Robotics Research, 1995. 14(4): p. 319-334.
[55] Bicchi, A., Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. Ieee Transactions on Robotics and Automation, 2000. 16(6): p. 652-662.
[56] Ding, D., Y.H. Liu, and S.G. Wang, Computation of 3-D form-closure grasps. Ieee Transactions on Robotics and Automation, 2001. 17(4): p. 515-522.
[57] Li, J.W., H. Liu, and H.G. Cai, On computing three-finger force-closure grasps of 2-D and 3-D objects. Ieee Transactions on Robotics and Automation, 2003. 19(1): p. 155-161.
[58] Liu, Y.H., Qualitative test and force optimization of 3-D frictional form-closure grasps using linear programming. Ieee Transactions on Robotics and Automation, 1999. 15(1): p. 163-173.
[59] Nguyen, V.-D. Constructing Stable Grasps in 3D. in Robotics and Automation. 1987.
[60] Nguyen, V.-D. Constructing force-closure grasps in 3D. in Robotics and Automation. 1987.
[61] Nguyen, V.D. Constructing Stable force-closure grasps. in Robotics and Automation. 1986.
[62] Nguyen, V.D., CONSTRUCTING FORCE-CLOSURE GRASPS. International Journal of Robotics Research, 1988. 7(3): p. 3-16.
[63] Ponce, J. and B. Faverjon, ON COMPUTING 3-FINGER FORCE-CLOSURE GRASPS OF POLYGONAL OBJECTS. Ieee Transactions on Robotics and Automation, 1995. 11(6): p. 868-881.
[64] Ponce, J., et al., On computing four-finger equilibrium and force-closure grasps of polyhedral objects. International Journal of Robotics Research, 1997. 16(1): p. 11-35.
[65] Trinkle, J.C., ON THE STABILITY AND INSTANTANEOUS VELOCITY OF GRASPED FRICTIONLESS OBJECTS. Ieee Transactions on Robotics and Automation, 1992. 8(5): p. 560-572.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10526-
dc.description.abstract本文主要的目的在設計一三爪機械手的驅動控制與感測系統,使其能夠驅動控制三爪機械手各關節移動的位置及輸出的力量,達到抓握物體的目的,並且利用感測系統所收集的力量資訊,得到抓握時的實際受力情況,以及受外力影響時,能做即時的判斷,使整個抓握動作更加穩定。
在這篇論文中,我們首先針對位置及力量的馬達控制器去做設計。本研究使用微處理器組成馬達的控制器,在馬達位置控制中,我們考慮了適性的PD控制器(adaptive PD controller),而力量的控制則是利用單純的PID控制器,此外並參考了基本的力量/位置混和控制的架構將兩控制器整合在一起。接下來感測系統的的設計,是由市面上所受的壓力感測器及其它材料所組成,使其能夠有多軸向的力量感測機制,並且將其裝置在三爪機械手的指尖部分,這也就是本研究的三爪機械手所配置的感測系統。
為了使具驅動控制及感測系統的三爪機械手能夠展示其應用,本論文也在硬體及軟體方面做設計,在硬體方面,使用XY平台做虛擬的手臂,並且設計符合系統的載台能夠連結三爪機械手的整個驅動控制系統並且固定於XY平台。軟體方面,則主要利用Labview為主要架構,在Labview的程式內,除了能夠控制三爪機械手的位置及力量輸出外,還有接收並統整感測系統資訊的功用。除此之外,還可以利用Labview連接MATLAB做比較複雜的運作,如抓握物體的體論,如force-closure。
zh_TW
dc.description.abstractIn this work, we design and implement a control and sensing system for a three-finger robot hand. The system effectively controls the joint angles and forces of the hand. Then, the grasping capability of the hand is demonstrated using the system. The MSP430f1611 is employed as the microcontroller for the position and force feedback control circuit. For the position control, the adaptive PD controller is employed, while the traditional PID controller is used for the force control. In addition, using the force/position hybrid control method, the aforementioned two controllers are integrated. We adapt the commercially-available pressure sensor elements to build a multi-axis sensing system.
The required platform for the demonstration of control and sensing system are also developed. We use an xy table to emulate the arm of a robot hand. The developed control/driving/sensing circuit boards are attached on the xy table. Labview is employed as the software platform for the high-level control commands. Furthermore, the codes developed in Labview is connected with Matlab for computing with other control algorithms, such as the force closure. Moreover, with the measured force data collected by sensing system, it is demonstrated that the hand can be real-time controlled to steadily grasping a object.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:36:34Z (GMT). No. of bitstreams: 1
ntu-99-R97522709-1.pdf: 4159589 bytes, checksum: 9ec9f97c5920c4e7e3e390abd877a83a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌 謝 I
摘 要 II
Abstract III
圖目錄 VII
表目錄 XI
第一章 緒 論 1
1.1. 前言 1
1.2. 研究動機及目的 2
1.3. 文獻回顧[1-18] 3
1.4. 論文架構 12
第二章 基礎理論 13
2.1. 力量/位置混合控制(Hybrid Position/ Force Control) 13
2.2. 比例-積分-微分 控制器(PID controller) 14
2.2.1. 比例-積分-微分 控制器理論 14
2.2.2. 適應的PD控制器(adaptive PD controller) 17
2.2.3. 參數調整演算法(tuning algorithm) 19
2.3. 外形閉合(form-closure)與力量閉合(force-closure) 21
2.4. 剪應力量測原理 25
第三章 驅動控制與感測系統 29
3.1. 馬達控制電路板 30
3.2. 手掌電路板 39
3.3. Labview 41
3.4. Matlab 42
3.5. 感測系統設計 43
3.5.1. Flexiforce撓性壓力感測器 43
3.5.2. 電阻量測電路 45
第四章 硬體架設與實驗 49
4.1. 硬體架設 49
4.1.1. PMC手指模組 49
4.1.2. 三軸移動平台 51
4.1.3. 手指裝載平台 52
4.2. 位置控制實驗與量測 54
4.2.1. 實驗架設 54
4.2.2. 實驗數據及討論 55
4.3. 力量控制實驗與量測 57
4.3.1. 實驗架設 58
4.3.2. 實驗數據及討論 61
4.4. 感測系統實驗 63
4.4.1. 實驗架設 63
4.4.2. 實驗數據與討論 65
第五章 應用展示 68
5.1. 位置控制及抓取展示 68
5.2. 量測抓取物重量展示 71
第六章 結論與未來展望 74
6.1. 結論 74
6.2. 未來展望 75
參考文獻 76
dc.language.isozh-TW
dc.title三爪機械手之控制驅動與感測系統之開發與應用展示zh_TW
dc.titleDevelopment of control and sensing system for three-finger robot hand and demonstrationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾同慶,陳國聲,蘇裕軒
dc.subject.keyword三爪機械手,馬達控制系統,觸覺感測器,抓握,zh_TW
dc.subject.keywordthree-finger robot hand,motor control system,tactile,grasp,en
dc.relation.page83
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf4.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved