請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10518
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃燦輝(Tsan-Hwei Huang) | |
dc.contributor.author | Chia-Chi Chiu | en |
dc.contributor.author | 邱家吉 | zh_TW |
dc.date.accessioned | 2021-05-20T21:35:55Z | - |
dc.date.available | 2010-08-18 | |
dc.date.available | 2021-05-20T21:35:55Z | - |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | 1. Bartom, N. (1973): Review of a new shear strength criterion for rock joints. Engineering Geology, 7, 287-332.
2. Cundall PA. (2000): Numerical experiments on rough joints in shear using a bonded particle model. In: Lehner FK, Urai JL, editors. Aspects of tectonic faulting. Berlin: Springer; 1–9. 3. E. Hoek, E.T. Brown (1990): Underground Excavations in rock. ,Spon Press. 4. G Grasselli, (2005): 3D Behaviour of bolted rock joints: experimental and numerical study. Int J Rock Mech Mining Sci. , 42: 13-24. 5. Hossein Jalalifar, AN Aziz. (2010): Experimental and 3D Numerical Simulation of Reinforced Shear Joints. Rock Mech Rock Eng. , 43: 95-103. 6. Itasca Consulting Group Inc. (2003): PFC3D (particle flow code in 3 dimensions) version 3.0. Minneapolis: Itasca. 7. Jaeger, J. C. (1960): Shear failure of anisotropic rocks. Geologic Magazine, 97(1), 65-79. 8. John Hadjigeorgiou, Kamran Esmaieli, Martin Grenon. (2009): Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model. Tunnelling and Underground Space Technology, , 24: 296-308. 9. N Cho, CD Martin, DC Sego. (2007): A clumped particle model for rock. Int J Rock Mech Min Sci. , 44: 997–1010. 10. ParkJ-W, SongJ-J. (2009): Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int J Rock Mech Mining Sci. , 46: 1315-1329. 11. Patton, F. D. (1966): Multiple model of shear failure in rock. In: Proc. 1st Congr. Of ISRM, Libson, 509-513. 12. PHSW Kulatilake, Bwalya Malama, Jialai Wang. (2001): Physical and particle flow modeling of jointed rock block behavior under uniaxial loading. Int J Rock Mech Mining Sci. , 38: 641-657. 13. Potyondy DO, Cundall PA. (2004): A bonded-particle model for rock. Int J Rock Mech Min Sci ., 41: 1329–1364 14. Ziping Huang, Einar Broch, Ming Lu. (2002): Cavern roof stability—mechanism of arching and stabilization by rockbolting. Tunneling and underground space technology. , 17: 249-261. 15. 日本隧道技術協會,日本隧道工程標準規範及解說-山岳工法篇,日本。 16. 李宏輝(2008):砂岩力學行為之微觀機制-以個別元素法探討,國立台灣大學土木工程學研究所博士論文。 17. 楊長義(1992):模擬規則節理岩體強度與變形性之研究,國立台灣大學土木工程學研究所博士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10518 | - |
dc.description.abstract | 岩栓為現代隧道工法中主要使用的支撐構件,主要用途為抵抗節理面滑動及穩定懸浮岩塊。岩栓抵抗節理面滑動的原理有兩種方式,一為利用岩栓本身的材料強度抵抗作用於節理面的剪力,另一則是利用岩栓的勁度束制節理面受剪膨脹的程度,間接使節理面的破壞模式由滑動破壞轉變節瘤剪斷破壞。
基於節理面受力剪動變形實為一界面分離的現象,欲有效評估岩栓支撐效果,採用之工具需具備描述節理面界面分離與受剪膨脹的特性。故本研究應用基於顆粒力學個別元素法發展的PFC3D軟體為工具,分由微觀尺度節理面受力變形的特性與宏觀尺度岩體整體變形特性出發,探討規則節理岩體的非線性與異向性行為。 本研究首先以單軸壓縮試驗結果為比較基礎,求得FPC3D模擬完整岩石的微觀參數;繼而模擬節理面受剪特性,經深入探討顆粒力學模式模擬平滑面的幾何引致摩擦問題後,釐清各微觀參數對於節理面剪力變形與剪脹曲線的影響,掌握PFC3D模擬節理面的關鍵技術;最後整合完整岩石與節理面模擬所得,建立節理岩體PFC3D數值模式。經比較物理模型試驗結果顯示模擬所得良好,本研究透過PFC3D程式可有效考慮規則節理岩體的非線性與異向性行為。 本研究繼而設計一系列數值模擬試驗,探討岩栓的抗剪與束制的支撐功效。透過分離抗剪與束制作用對剪動與剪脹曲線的影響,數值模擬有效釐清了節理面受剪過程岩栓的作用機制。未來若能進一步確認分析所得的徵觀參數,將可更深入評估岩栓束制節理面受剪的極限強度,有利於精緻化岩體工程的分析與設計。 | zh_TW |
dc.description.abstract | Rockbolt is the major support components of tunnel excavation. It is use to resist joint sliding and stable suspension rocks. There are two ways that how rockbolt resist joint sliding: resist shearing force by strength of materials, or constraining dilation of joint surface that surface behavior will change from sliding up to shearing off.
Because joint sliding is an interface-separated phenomenon, The tools we use must describe the feature of joint separated and dilation if we want to evaluate support effect. So this study using distinct element method simulation software PFC3D to investigate the nonlinear and anisotropic behavior of jointed rock mass from microscopic of joint deformation and macroscopic of rock deformation. This study first analysis the mechanics of intact rock with results of uniaxial compression test to observing the effects of parameters in PFC3D. Then we simulate behavior of smooth joint to observing the effects of geometry that induce friction problem in particle mechanics to predominate. key technology of simulating joint surface in PFC3D. Finally we combine the results to building jointed rock mass numerical model in PFC3D. The results of simulation is well, and we can consider the nonlinear and anisotropic behavior of regular jointed rock mass through PFC3D. After establish the application of DEM method to jointed rock mass, this study investigate effects of rockbolt constraining joint surface dilation through separating the support effects of anti-dilate and anti-shear. We clarify the mechanism of rockbolt during joint surface shearing by numerical simulation. In the future, we can deeply analysis the limit strength of joint which is constrained by rockbolt if we can establish parameters setting, and it will improve the analysis and design of engineering. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:35:55Z (GMT). No. of bitstreams: 1 ntu-99-R97521123-1.pdf: 9349672 bytes, checksum: f16fbf5c6a911741f3d62e4fb5e68ce1 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌 謝 II
摘 要 IV Abstract V 表目錄 X 圖目錄 XI 第一章 導論 1 1.1 研究背景與目的 1 1.2 研究方法與內容 1 第二章 前人研究 4 2.1 岩體分析常用之力學理論 4 2.1.1. 破壞準則 4 2.1.2. 剪力強度模式 5 2.2 節理岩體之模擬型式 7 2.2.1 完整岩石力學行為 7 2.2.2 節理面力學行為 12 2.2.3 節理岩體力學行為 14 2.3 岩栓模擬方式 18 第三章 節理岩體數值模型之建立 22 3.1 分析軟體簡介 22 3.2 完整岩石數值模型 24 3.2.1 模擬完整岩石之參數選擇 24 3.2.2 模擬完整岩石之強度 26 3.2.3 模擬完整岩石之破壞模式 32 3.3 節理面數值模型 38 3.3.1 模擬單一節理面行為之參數分析 38 3.3.2 模擬單一節理面之力學行為 38 3.3.3 模擬單一節理面之變形性 39 3.4 節理岩體數值模型 45 3.5 模擬節理岩體參數選擇流程 47 3.5.1 完整岩石參數設定 47 3.5.2 節理岩體參數設置 49 3.5.3 節理岩體之耦合性 50 第四章 節理岩體數值模型之驗證 51 4.1 模擬節理岩體方式對模型試驗結果之影響 51 4.1.1 切平面法與寬帶法對節理岩體之影響 53 4.1.2 寬帶大小對節理岩體之影響 56 4.1.3 顆粒數對節理岩體之影響 58 4.1.4 數值內在摩擦角對節理岩體之影響 62 4.1.5 模擬建議方式 65 4.2 模擬節理岩體與真實節理岩體及理論解之差異 66 4.2.1 節理是否存在 67 4.2.2 節理寬度影響 67 4.2.3 破裂模式與強度趨勢 68 4.2.4 數值內在摩擦角貢獻 73 第五章 岩栓與節理面互制行為討論 75 5.1 岩栓束制節理面之原理 75 5.2 岩栓束制數值模型之建立 78 5.2.1 岩栓模擬方式 78 5.2.2 數值模型探討之課題 79 5.2.3 岩栓束制數值模型之建立 81 5.3 束制行為模擬成果與討論 85 5.3.1 岩栓束制之影響程度 85 5.3.2 正向應力影響 88 5.3.3 介面材料強度影響 91 5.3.4 岩栓勁度影響 93 5.3.5 岩栓試驗成果歸納 95 第六章 結論與建議 99 6.1 結論 99 6.2 建議 100 附錄 論文口試-問題與答覆 102 參考文獻 105 | |
dc.language.iso | zh-TW | |
dc.title | 以個別元素法探討岩栓束制節理面剪脹之效應暨其對力學特性之影響 | zh_TW |
dc.title | Using distinct element method simulating constrain effect of rockbolts on joint dilation and associated mechanical effects | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 王泰典(Tai-Tien Wang) | |
dc.contributor.oralexamcommittee | 楊長義,李宏輝 | |
dc.subject.keyword | 岩栓,模擬岩體,個別元素法,節理岩體,PFC, | zh_TW |
dc.subject.keyword | rockbolt,simulate rock,DEM,jointed rock mass,PFC, | en |
dc.relation.page | 107 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 9.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。