請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 繆希椿 | |
| dc.contributor.author | Bo-Shiou Lin | en |
| dc.contributor.author | 林伯修 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:34:38Z | - |
| dc.date.available | 2012-09-09 | |
| dc.date.available | 2021-05-20T21:34:38Z | - |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | Bauquet, A.T., Jin, H., Paterson, A.M., Mitsdoerffer, M., Ho, I.C., Sharpe, A.H., and Kuchroo, V.K. (2009). The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nature immunology 10, 167-175.
Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., and Becker, J. (1998). Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280, 275-286. Betz, B.C., Jordan-Williams, K.L., Wang, C., Kang, S.G., Liao, J., Logan, M.R., Kim, C.H., and Taparowsky, E.J. (2010). Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. The Journal of experimental medicine 207, 933-942. Blank, V., and Andrews, N.C. (1997). The Maf transcription factors: regulators of differentiation. Trends Biochem Sci 22, 437-441. Bohren, K.M., Nadkarni, V., Song, J.H., Gabbay, K.H., and Owerbach, D. (2004). A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279, 27233-27238. Cao, S., Liu, J., Chesi, M., Bergsagel, P.L., Ho, I.C., Donnelly, R.P., and Ma, X. (2002). Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-Maf fibrosarcoma. J Immunol 169, 5715-5725. Chen, D.Y., Chen, Y.M., Chen, H.H., Hsieh, C.W., Lin, C.C., and Lan, J.L. (2005). The associations of circulating CD4(+)CD25(high) regulatory T cells and TGF-beta with disease activity and clinical course in patients with adult-onset Still's disease. Connective tissue research. Chen, Q., Yang, W., Gupta, S., Biswas, P., Smith, P., Bhagat, G., and Pernis, A.B. (2008). IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29, 899-911. Dohmen, R.J. (2004). SUMO protein modification. Biochim Biophys Acta 1695, 113-131. Fantini, M.C., Rizzo, A., Fina, D., Caruso, R., Becker, C., Neurath, M.F., Macdonald, T.T., Pallone, F., and Monteleone, G. (2007). IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells. European journal of immunology 37, 3155-3163. Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature immunology 4, 330-336. Fu, S., Zhang, N., Yopp, A.C., Chen, D., Mao, M., Chen, D., Zhang, H., Ding, Y., and Bromberg, J.S. (2004). TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am J Transplant 4, 1614-1627. Fujiwara, K.T., Kataoka, K., and Nishizawa, M. (1993). Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8, 2371-2380. Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18, 2046-2059. Harada, M., Magara-Koyanagi, K., Watarai, H., Nagata, Y., Ishii, Y., Kojo, S., Horiguchi, S., Okamoto, Y., Nakayama, T., Suzuki, N., et al. (2006). IL-21-induced Bepsilon cell apoptosis mediated by natural killer T cells suppresses IgE responses. The Journal of experimental medicine 203, 2929-2937. Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., and Weaver, C.T. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature immunology 6, 1123-1132. Hiramatsu, Y., Suto, A., Kashiwakuma, D., Kanari, H., Kagami, S., Ikeda, K., Hirose, K., Watanabe, N., Grusby, M.J., Iwamoto, I., and Nakajima, H. (2010). c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-beta inhibits c-Maf-induced IL-21 production in CD4+ T cells. Journal of leukocyte biology 87, 703-712. Ho, I., Vorhees, P., Marin, N., Oakley, B., Tsai, S., Orkin, S., and Leiden, J. (1991). Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 10, 1187-1192. Ho, I.C., Hodge, M.R., Rooney, J.W., and Glimcher, L.H. (1996). The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973-983. Hodge, M.R., Chun, H.J., Rengarajan, J., Alt, A., Lieberson, R., and Glimcher, L.H. (1996). NF-AT-Driven interleukin-4 transcription potentiated by NIP45. Science 274, 1903-1905. Ivanov, II, McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133. Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382. Kataoka, K., Fujiwara, K.T., Noda, M., and Nishizawa, M. (1994a). MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 14, 7581-7591. Kataoka, K., Igarashi, K., Itoh, K., Fujiwara, K.T., Noda, M., Yamamoto, M., and Nishizawa, M. (1995). Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol 15, 2180-2190. Kataoka, K., Nishizawa, M., and Kawai, S. (1993). Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. J Virol 67, 2133-2141. Kataoka, K., Noda, M., and Nishizawa, M. (1994b). Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Molecular and cellular biology 14, 700-712. Kerppola, T.K., and Curran, T. (1994). A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149-3158. Killar, L., MacDonald, G., West, J., Woods, A., and Bottomly, K. (1987). Cloned, Ia-restricted T cells that do not produce interleukin 4(IL 4)/B cell stimulatory factor 1(BSF-1) fail to help antigen-specific B cells. J Immunol 138, 1674-1679. Kim, H.P., Korn, L.L., Gamero, A.M., and Leonard, W.J. (2005). Calcium-dependent activation of interleukin-21 gene expression in T cells. The Journal of biological chemistry 280, 25291-25297. Kim, J.I., Ho, I.C., Grusby, M.J., and Glimcher, L.H. (1999). The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745-751. King, C., Tangye, S.G., and Mackay, C.R. (2008). T follicular helper (TFH) cells in normal and dysregulated immune responses. Annual review of immunology 26, 741-766. Ko, L.J., Yamamoto, M., Leonard, M.W., George, K.M., Ting, P., and Engel, J.D. (1991). Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 11, 2778-2784. Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jager, A., Strom, T.B., Oukka, M., and Kuchroo, V.K. (2007). IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484-487. Leavenworth, J.W., Ma, X., Mo, Y.Y., and Pauza, M.E. (2009). SUMO Conjugation Contributes to Immune Deviation in Nonobese Diabetic Mice by Suppressing c-Maf Transactivation of IL-4. J Immunol. Lee, H., Takemoto, N., Kurata, H., Kamogawa, Y., Miyatake, S., O'Garra, A., and Arai, N. (2000). GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192, 105-115. Lighvani, A., Frucht, D., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B., Nguyen, B., Gadina, M., Sher, A., Paul, W., and O'Shea, J. (2001). T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A 98, 15137-15142. Lin, B.S., Tsai, P.Y., Hsieh, W.Y., Tsao, H.W., Liu, M.W., Grenningloh, R., Wang, L.F., Ho, I.C., and Miaw, S.C. (2010) SUMOylation attenuates c-Maf-dependent IL-4 expression. European journal of immunology. 40, 1174-1184. Mehta, D.S., Wurster, A.L., Weinmann, A.S., and Grusby, M.J. (2005). NFATc2 and T-bet contribute to T-helper-cell-subset-specific regulation of IL-21 expression. Proceedings of the National Academy of Sciences of the United States of America 102, 2016-2021. Melchior, F. (2000). SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol 16, 591-626. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A., and Coffman, R.L. (1986). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136, 2348-2357. Mullen, A.C., Hutchins, A.S., High, F.A., Lee, H.W., Sykes, K.J., Chodosh, L.A., and Reiner, S.L. (2002). Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nature immunology 3, 652-658. Muller, S., Hoege, C., Pyrowolakis, G., and Jentsch, S. (2001). SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2, 202-210. Muller, S., Ledl, A., and Schmidt, D. (2004). SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998-2008. Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K.T., and Kawai, S. (1989). v-maf, a viral oncogene that encodes a 'leucine zipper' motif. Proc Natl Acad Sci U S A 86, 7711-7715. Nurieva, R., Yang, X.O., Martinez, G., Zhang, Y., Panopoulos, A.D., Ma, L., Schluns, K., Tian, Q., Watowich, S.S., Jetten, A.M., and Dong, C. (2007). Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480-483. Ogino, H., and Yasuda, K. (1998). Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115-118. Ohbayashi, N., Kawakami, S., Muromoto, R., Togi, S., Ikeda, O., Kamitani, S., Sekine, Y., Honjoh, T., and Matsuda, T. (2008). The IL-6 family of cytokines modulates STAT3 activation by desumoylation of PML through SENP1 induction. Biochemical and biophysical research communications 371, 823-828. Ouyang, W., Lohning, M., Gao, Z., Assenmacher, M., Ranganath, S., Radbruch, A., and Murphy, K. (2000). Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27-37. Pandolfi, P.P., Roth, M.E., Karis, A., Leonard, M.W., Dzierzak, E., Grosveld, F.G., Engel, J.D., and Lindenbaum, M.H. (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11, 40-44. Park, H., Li, Z., Yang, X.O., Chang, S.H., Nurieva, R., Wang, Y.H., Wang, Y., Hood, L., Zhu, Z., Tian, Q., and Dong, C. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature immunology 6, 1133-1141. Pot, C., Jin, H., Awasthi, A., Liu, S.M., Lai, C.Y., Madan, R., Sharpe, A.H., Karp, C.L., Miaw, S.C., Ho, I.C., and Kuchroo, V.K. (2009). Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183, 797-801. Rengarajan, J., Mowen, K.A., McBride, K.D., Smith, E.D., Singh, H., and Glimcher, L.H. (2002). Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. The Journal of experimental medicine 195, 1003-1012. Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252-6258. Saitoh, H., Pu, R.T., and Dasso, M. (1997). SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem Sci 22, 374-376. Schraml, B.U., Hildner, K., Ise, W., Lee, W.L., Smith, W.A., Solomon, B., Sahota, G., Sim, J., Mukasa, R., Cemerski, S., et al. (2009). The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460, 405-409. Seeler, J.S., and Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4, 690-699. Shao, C., and Cobb, M.H. (2009). Sumoylation regulates the transcriptional activity of MafA in pancreatic beta cells. The Journal of biological chemistry 284, 3117-3124. Sherman, M.A., Nachman, T.Y., and Brown, M.A. (1999). Cutting edge: IL-4 production by mast cells does not require c-maf. J Immunol 163, 1733-1736. Szabo, S., Kim, S., Costa, G., Zhang, X., Fathman, C., and Glimcher, L. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669. Szabo, S., Sullivan, B., Stemmann, C., Satoskar, A., Sleckman, B., and Glimcher, L. (2002). Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295, 338-342. Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G., and Glimcher, L.H. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669. Szabo, S.J., Sullivan, B.M., Stemmann, C., Satoskar, A.R., Sleckman, B.P., and Glimcher, L.H. (2002). Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science (New York, N.Y 295, 338-342. Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276, 35368-35374. Tillmanns, S., Otto, C., Jaffray, E., Du Roure, C., Bakri, Y., Vanhille, L., Sarrazin, S., Hay, R.T., and Sieweke, M.H. (2007). SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Molecular and cellular biology 27, 5554-5564. Ting, C.N., Olson, M.C., Barton, K.P., and Leiden, J.M. (1996). Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474-478. Usui, T., Nishikomori, R., Kitani, A., and Strober, W. (2003). GATA-3 Suppresses Th1 Development by Downregulation of Stat4 and Not through Effects on IL-12Rbeta2 Chain or T-bet. Immunity 18, 415-428. Veldhoen, M., Uyttenhove, C., van Snick, J., Helmby, H., Westendorf, A., Buer, J., Martin, B., Wilhelm, C., and Stockinger, B. (2008). Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature immunology 9, 1341-1346. Wan, Y.Y., and Flavell, R.A. (2007). Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766-770. Wurster, A.L., Rodgers, V.L., Satoskar, A.R., Whitters, M.J., Young, D.A., Collins, M., and Grusby, M.J. (2002). Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. The Journal of experimental medicine 196, 969-977. Yang, X.O., Pappu, B.P., Nurieva, R., Akimzhanov, A., Kang, H.S., Chung, Y., Ma, L., Shah, B., Panopoulos, A.D., Schluns, K.S., et al. (2008). T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28, 29-39. Zhao, J. (2007). Sumoylation regulates diverse biological processes. Cell Mol Life Sci 64, 3017-3033. Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E., Leonard, W.J., and Littman, D.R. (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature immunology 8, 967-974. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10502 | - |
| dc.description.abstract | 轉錄因子的功能是藉由控制其生成、活性與降解來嚴格調控的,而SUMO化修飾是在轉錄後層級調控蛋白質的活性。c-Maf蛋白是屬於大Maf家族的鹼性白氨酸拉鍊蛋白,在第二或第十七型輔助T細胞上分別為介白素四與介白素二十一的專一性轉錄因子。我們藉由酵母雙雜交系統來尋找c-Maf的交互作用蛋白。我們發現兩個SUMO化修飾的關鍵酵素:Ubc9與PIAS1,可以與c-Maf蛋白交互作用。在T細胞中,PIAS1可以與c-Maf蛋白交互作用;這兩個SUMO化修飾的關鍵酵素也與c-Maf蛋白共同位於細胞核中。我們也確認c-Maf蛋白在活體外與活體內都可被SUMO修飾。c-Maf蛋白N端第33個離胺酸是SUMO蛋白的修飾位。SUMO化修飾會降低c-Maf蛋白對介白素四的轉錄活性,而無法被SUMO化修飾的c-Maf蛋白卻有較強的轉錄活性。同時,我們也發現c-Maf是介白素二十一的專一性轉錄因子。SUMO化修飾也會影響c-Maf蛋白相關之介白素二十一的產生。SUMO化修飾不會影響c-Maf蛋白的穩定性,但無法SUMO化修飾的c-Maf蛋白匯集到啟動子的能力卻較強。我們的結論是c-Maf蛋白的SUMO化修飾對其在輔助T細胞中的活性十分重要。 | zh_TW |
| dc.description.abstract | The function of transcription factor is tightly regulated by controlling their synthesis, activity and degradation. SUMOylation modulates target protein activity on post-translational level. c-Maf, the cellular homologue of v-Maf, is a basic-leucine zipper protein and belongs to the large Maf family. In helper T cells, c-Maf is the specific transcription factor of the IL-4 and IL-21 genes in type 2 T helper (Th2) and type 17 T helper (Th17) cells, respectively. In our study, we performed the yeast two-hybrid assay to identify the c-Maf interacting proteins. We found that c-Maf can interact with Ubc9 and PIAS1, the key enzymes of SUMOylation system. In T cells, c-Maf interacts with PIAS1 in primary T cells and also co-localizes with these two SUMO ligases in the nucleus. We also demonstrated that c-Maf can be SUMOylated in vitro and also in vivo. We identified the c-Maf SUMO acceptor site(s) by mutated the putative conjugating lysine residues. We demonstrated that N-terminal lysine-33 within the activation domain is the SUMO acceptor site for c-Maf. SUMO modification attenuates Wt-c-Maf transcriptional activity. Conversely, c-Maf SUMO deficient mutant is more potent to drive IL-4 production in Th2 cells. Furthermore, we showed that c-Maf, but not other transcription factor, transactivates IL-21 gene expression. SUMOylation also affects c-Maf dependent IL-21 production. In addition, SUMO deficient c-Maf does not alter the localization and the protein stability, but further enhances its recruitment to the Il4-promoter. We conclude that post-translational lysine-33 SUMOylation is critical for c-Maf activity in helper T cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:34:38Z (GMT). No. of bitstreams: 1 ntu-99-D91449003-1.pdf: 18093645 bytes, checksum: b0d6d37baed2615722c878023dfb7b28 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Table of contents
Table of contents…………...…..i List of Figures……………………………..……………...iv Appendix…......……..…………………..……………….....v 口試委員審定書……………...……….......vi Acknowledgement…………....vii 中文摘要……………...……….......ix Abstract……………...……….......x Chapter I Introduction……………….…...……..1 1.1 T helper cell lineages and their differentiation………………..1 1.2 Overview of c-Maf………….………………………..…..4 1.3 The functions of c-Maf in immune system……………..5 1.4 Post-translational modification by SUMOylation: a ubiquitin-like modification system……………………...……………………….…..7 1.5 Rationale and significance…………...………….……...9 Chapter II Materials and Methods……..……….……...11 Part 1. Materials………………11 2.1-1 Antibodies………………...11 2.1-2 Cell cultures and mice……...…………………...…..11 2.1-3 Chemicals and reagents……………………………..12 2.1-4 Cytokines………………12 2.1-5 kits……………………..13 2.1-6 Vectors………...……….…13 Part 2. Methods……………..…15 2.2-1 Immunoprecipitation assay……………………..…..15 2.2-2 Intracellular cytokine staining………………...….....16 2.2-3 In vitro Th cell differentiation………………......…..16 2.2-4 In vivo and In vitro SUMOylation assay……….…..17 2.2-5 Luciferase assay………………………..…………...17 2.2-6 Protein stability assay………………...……………..18 2.2-7 Quantitative real-time PCR…………………......…..18 2.2-8 Retroviral constructs and transduction……………………...………………..…..19 2.2-9 Statistical analysis…………...…………………………...……………………....19 2.2-10 Yeast two-hybrid assay…………………………….19 Chapter III Results…………………………...………….21 3.1 Screening the c-maf interacting proteins……………...21 3.2 c-Maf interacts with PIAS1 and Ubc9…………….......21 3.3 c-Maf is SUMOylated both in vitro and in vivo………....22 3.4 Lycine 33 is the dominant SUMO acceptor site of c-Maf………………………….24 3.5 SUMOylation attenuates c-Maf transactivity…………25 3.6 SUMOylation of c-Maf in Th2 clone and primary Th2 cells………………………26 3.7 SUMOylation suppresses c-Maf-dependent Il4 gene expression……......................26 3.8 DeSUMOylation enhances the recruitment of c-Maf to the Il4-promoter…………28 3.9 c-Maf, but not other transcription factors, transactivates Il-21 gene expression…...30 3.10 c-Maf indues IL-21 expression through proximal MARE site……………………31 3.11 c-Maf is SUMOylated in Th17 cells…………...….....32 3.12 SUMOylation deficient K33R c-Maf has more potent IL-21 gene transactivity…32 Chapter IV Discussions…………………………….…....34 Chapter V Figures and Tables………….……………….44 References………………....69 Appendix…………………..81 | |
| dc.language.iso | en | |
| dc.title | SUMO化修飾減弱c-Maf相關之介白素四與介白素二十ㄧ之表現 | zh_TW |
| dc.title | SUMOylation attenuates c-Maf-dependent IL-4 and IL-21 expression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 謝世良,許秉寧,賴明宗,司徒惠康 | |
| dc.subject.keyword | SUMO化修飾,c-Maf蛋白, | zh_TW |
| dc.subject.keyword | SUMOylation,c-Maf, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 17.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
