請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10476
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林祥泰(Shiang-Tai Lin) | |
dc.contributor.author | Kuo-Yuan Tseng | en |
dc.contributor.author | 曾國源 | zh_TW |
dc.date.accessioned | 2021-05-20T21:32:34Z | - |
dc.date.available | 2010-08-18 | |
dc.date.available | 2021-05-20T21:32:34Z | - |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-18 | |
dc.identifier.citation | 1. Jerkiewicz, G., Soriaga, M.P. and Uosaki, K., Solid-Liquid Electrochemical Interfaces. ACS SYMPOSIUM SERIES 1997.
2. Verghese, N.K., Schmerbeck, T.J. and Allstot, D.J.,Simulation Techniques and Solutions for Mixed-Signal Coupling in Integrated Circuits. 1995: Kluwer Academic Publishers Norwell, MA, USA. 3. Jayalakshmi, M. and Balasubramanian K., Simple Capacitors to Supercapacitors - An Overview. International Journal of Electrochemical Science, 2008. 3(11): p. 1196-1217. 4. Zhang, Y., et al., Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 2009. 34(11): p. 4889-4899. 5. Allen, M.P. and Tildesley D.J., Computer Simulation of Liquids. 1987: Oxford. 6. Faulkner, L.R. and Bard A.J., Electrochemical Metods. 2nd ed. 2000: John Weily&Sons. 7. Gouy, L.G., Journal of Physics, 1910. 9: p. 457. 8. Chapman, D.L., Philosophical Magazine, 1913. 25: p. 475. 9. Stern, O., The theory of the electrolytic double shift. Zeitschrift Fur Elektrochemie Und Angewandte Physikalische Chemie, 1924. 30: p. 508-516. 10. Parsons, R., Primitive 4 State Model for Solvent at Electrode-Solution Interface. Journal of Electroanalytical Chemistry, 1975. 59(3): p. 229-237. 11. Parsons, R., Electrical Double-Layer in Non-Aqueous Solvents. Electrochimica Acta, 1976. 21(9): p. 681-686. 12. Spohr, E. and Heinzinger, K., Molecular-Dynamics Simulation of a Water Metal Interface. Chemical Physics Letters, 1986. 123(3): p. 218-221. 13. Spohr, E. and Heinzinger K., Computer-Simulations of Water and Aqueous-Electrolyte Solutions at Interfaces. Electrochimica Acta, 1988. 33(9): p. 1211-1222. 14. Watanabe, M., Brodsky, A.M. and Reinhardt, W.P.,Dielectric-Properties and Phase-Transitions of Water between Conducting Plates. Journal of Physical Chemistry, 1991. 95(12): p. 4593-4596. 15. Hermans, J., et al., A Consistent emprical potetial for water-protein interactions. Biopolymers, 1984. 23(8): p. 1513-1518. 16. Spohr, E., Toth G. and Heinzinger, K., Structure and dynamics of water and hydrated ions near platinum and, mercury surfaces as studied by MD simulations. Electrochimica Acta, 1996. 41(14): p. 2131-2144. 17. Spohr, E., Computer simulation of the structure of the electrochemical double layer. Journal of Electroanalytical Chemistry, 1998. 450(2): p. 327-334. 18. Spohr, E., Molecular simulation of the electrochemical double layer. Electrochimica Acta, 1999. 44(11): p. 1697-1705. 19. Spohr, E., Molecular dynamics simulations of water and ion dynamics in the electrochemical double layer. Solid State Ionics, 2002. 150(1-2): p. 1-12. 20. Spohr, E., Some recent trends in computer simulations of aqueous double layers. Electrochimica Acta, 2003. 49(1): p. 23-27. 21. Philpott, M.R. and Glosli, J.N., Screening of charged electrodes in aqueous-electrolytes. Journal of the Electrochemical Society, 1995. 142(2): p. L25-L28. 22. Philpott, M.R., Glosli, J.N., and Zhu, S.B., Molecular-Dynamics Simulation of adsorption in electric double-layers. Surface Science, 1995. 335(1-3): p. 422-431. 23. Philpott, M.R. and Glosli, J.N., Molecular dynamics simulation of interfacial electrochemical processes: Electric double layer screening, in Solid-Liquid Electrochemical Interfaces, G. Jerkiewicz, et al., Editors. 1997, Amer Chemical Soc: Washington. p. 13-30. 24. Sutmann, G., Structure formation and dynamics of water in strong external electric fields. Journal of Electroanalytical Chemistry, 1998. 450(2): p. 289-302. 25. Yeh, I.C. and Berkowitz, M.L. Structure and dynamics of water at water vertical bar Pt interface as seen by molecular dynamics computer simulation. Journal of Electroanalytical Chemistry, 1998. 450(2): p. 313-325. 26. Yeh, I.C. and Berkowitz, M.L., Effects of the polarizability and water density constraint on the structure of water near charged surfaces: Molecular dynamics simulations. Journal of Chemical Physics, 2000. 112(23): p. 10491-10495. 27. Yeh, I.C. and Berkowitz, M.L., Dielectric constant of water at high electric fields: Molecular dynamics study. Journal of Chemical Physics, 1999. 110(16): p. 7935-7942. 28. Fedorov, M.V. and Kornyshev, A.A., Ionic liquid near a charged wall: Structure and capacitance of electrical double layer. Journal of Physical Chemistry B, 2008. 112(38): p. 11868-11872. 29. Lockett, V., et al., Differential capacitance of the electrical double layer in imidazolium-based ionic liquids: Influence of potential, cation size, and temperature. Journal of Physical Chemistry C, 2008. 112(19): p. 7486-7495. 30. Yang, L., et al., Molecular Simulation of Electric Double-Layer Capacitors Based on Carbon Nanotube Forests. Journal of the American Chemical Society, 2009. 131(34): p. 12373-12376. 31. Kislenko, S.A., Samoylov, I.S. and Amirov, R.H. Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6]. Physical Chemistry Chemical Physics, 2009. 11(27): p. 5584-5590. 32. Vatamanu, J., Borodin, O. and Smith, G.D., Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Physical Chemistry Chemical Physics, 2010. 12(1): p. 170-182. 33. Ewald, P.P., The calculation of optical and electrostatic grid potential. Annalen Der Physik, 1921. 64(3): p. 253-287. 34. Eastwood, J.W., Hockney, R.W. and Lawrence, D.N., P3M3DP - The 3-dimensional periodic particle-particle-particle-mesh program. Computer Physics Communications, 1980. 19(2): p. 215-261. 35. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., The Missing Term in Effective Pair Potentials. Journal of Physical Chemistry, 1987. 91(24): p. 6269-6271. 36. Fennell, C.J., et al., Ion Pairing in Molecular Simulations of Aqueous Alkali Halide Solutions. Journal of Physical Chemistry B, 2009. 113(19): p. 6782-6791. 37. Dang, L.X., Mechanism and Thermodynamics of Ion Selectivity in Aqueous-Solutions of 18-Crown-6 Ether - a Molecular-Dynamics Study. Journal of the American Chemical Society, 1995. 117(26): p. 6954-6960. 38. Dang, L.X. and Pettitt, B.M., Chloride-Ion Pairs in Water. Journal of the American Chemical Society, 1987. 109(18): p. 5531-5532. 39. Dang, L.X., et al., Ion Solvation in Polarizable Water - Molecular-Dynamics Simulations. Journal of the American Chemical Society, 1991. 113(7): p. 2481-2486. 40. Leach, A., Molecular Modelling: Principles and Applications. 2nd Edition ed. 2001: Pearson Prentice Hall. 41. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/gaulaw.html#c1. 2007. 42. Wang, S., et al., Molecular Dynamic Simulations of Ionic Liquids at Graphite Surface. Journal of Physical Chemistry C, 2010. 114(2): p. 990-995. 43. Grahame, D.C., Differential Capacity of Mercury in Aqueous Sodium Fluoride Solutions .1. Effect of Concentration at 25-Degrees. Journal of the American Chemical Society, 1954. 76(19): p. 4819-4823. 44. Moussa, A.A. and Abouromi.Mm, Electrochemistry of Azide Ion .2. Differential Capacitance of Mercury in Aqueous Sodium Azide Solutions - Specific Adsorption of Azide Ion Compared with That of Halide Ions. Electrochimica Acta, 1970. 15(8): p. 1381-&. 45. Holmqvist, P., Double-Layer of Mercury in Contact with Potassium Fluoride Potassium Hydroxide Solutions. Journal of Electroanalytical Chemistry, 1977. 78(2): p. 341-345. 46. Nancolla.Gh, Reid, D.S. and Vincent, C.A., Double Layer at mercury-Formamide Interface. Journal of Physical Chemistry, 1966. 70(10): p. 3300. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10476 | - |
dc.description.abstract | 電化學電雙層電容,俗稱超級電容器,是儲存電能的元件之一,且其儲存的電量是傳統電容的數十至數百倍。
本研究以分子動態模擬研究不同電解質水溶液在平板間的電雙層結構,以及電容性質隨充電量與電解質種類與濃度的關係。 一般來說,水的介電係數隨外加電場增加而下降,因此電容也降低。 純水在極板施加高外加電場下,極板間水分子表現出介電飽和現象,並會呈現一個類似冰晶的結構變化。 但在弱外加電場下,半電極電容與外加電場並非單調的遞減關係。 透過數值微分電雙層電位差對表面電荷的函數,我們可計算電雙層的微分電容,並探討其電容值與離子種類以及溶液濃度的關係。 從不同氯化鈉濃度的微分電容曲線,可以看出濃度的增加的確可以提升電雙層電容,從純水的最大值約8microF/cm2增加到4M氯化鈉溶液約15microF/cm2。不同陰陽離子大小的微分電容會出現半徑越大,電容值越高,和實驗相同的定性趨勢。 透過多種不同分析方法,我們發現溶劑水分子對於微分電容值有相當大的影響力以及面對極板帶正電與負電會呈現不同微觀結構上的變化,並可以由此解釋微分電容曲線上不對稱的現象。 | zh_TW |
dc.description.abstract | Electrochemical double layer capacitors(ECs), also known as the super-capacitor, is an electrical energy storage device whose capacitance can be tens or hundreds times higher than that of the conventional ones. The electric double layer (EDL) structure and capacitance have been studied using flat electrodes with different aqueous electrolytes via classical molecular dynamics simulation. The change in molecular structure and the electrical properties of the electrolyte solutions are investigated by applying different charges to the electrodes. The dielectric constant of water decrease with applied electric field. At high applied electric fields, the water molecules may even align into highly ordered layer structure. At low applied electric fields, the differential capacitance were calculated by numerical differentiation of the obtained surface charge density vs. double layer potential curve. The value of differential capacitance for water is about
8 microF/cm2 and for 4M NaCl solution is 15 microF/cm2.The maximum of differential capacitance increase with concentration and size of ion, which is in qualitatively good agreement with experimental observations. The structure of water layer near the flat electrode surface is affected by the sign of charge of the electrode. The structure of water has a great influence on its screening capability, leading to the asymmetry behavior in the differential capacitance curve. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:32:34Z (GMT). No. of bitstreams: 1 ntu-99-R97524008-1.pdf: 4819896 bytes, checksum: 8c61e11622cff505cf5a45a001688283 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 ....................................................I 誌謝 ...............................................................II 摘要 ...............................................................IV 英文摘要 ...........................................................V 圖索引 ............................................................VI 表索引 ............................................................XII 目錄 .............................................................XIII 第一章 緒論 ........................................................1 1.1 電容器介紹與發展 ............................................1 1.2 電腦分子模擬 ................................................4 1.3 文獻回顧 ....................................................6 1.4 研究動機與概述 .............................................11 第二章 理論 .......................................................12 2.1 分子動態模擬.........................................12 2.2 位能、作用力與力場參數.......................................13 2.3 分析方法介紹................................................19 2.3.1 計算平板電容器內的電場分佈 ...........................19 2.3.2 計算平板電容器內的電位分佈 ...........................21 2.3.3 由MD計算結果計算溶液的介電常數 ......................22 2.3.4 由MD計算結果計算微分電容值 ..........................22 第三章 模擬計算細節 ...............................................24 3.1 Accelrys Material Studio .....................................24 3.2 LAMMPS ..................................................24 3.3 Method and Procedures .........................................24 3.4 建立微觀模型 ...............................................27 第四章 結果 ......................................................31 4.1 離子力場測試-RDF分析 .......................................31 4.2 純水系統 ...................................................36 4.2.1 純水系統在不同外加電場下的結構變化 ...................36 4.2.2 純水系統電場強度變化與介電常數計算 ...................43 4.2.3 純水系統電雙層電位分佈與微分電容 ......................47 4.3 氯化鈉水溶液不同濃度系統 ..................................52 4.3.1 不同離子濃度電場分佈與計算介電常數 ...................52 4.3.2 氯化鈉各濃度的極板電位分佈與微分電容值比較 ...........56 4.3.3 氯化鈉電解質各濃度的離子密度變化 .....................67 4.4 不同離子大小水溶液系統 .....................................71 4.4.1 不同陰陽離子大小的極板電位分佈與微分電容 .............71 4.4.2 2M不同大小離子溶液的離子分佈 ........................85 第五章 結論 .......................................................96 第六章 附錄 .......................................................97 第七章 參考文獻 ..................................................104 | |
dc.language.iso | zh-TW | |
dc.title | 以分子動態模擬研究奈米水溶液電雙層電容器 | zh_TW |
dc.title | Aqueous Electrolyte Electrical Double Layer Nanocapacitors via Molecular Dynamics Simulations | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 趙聖德(Sheng-Der Chao),郭錦龍(Chin-Lung Kuo) | |
dc.subject.keyword | 分子模擬,液態電解質,平板電容器,微分電容值, | zh_TW |
dc.subject.keyword | Molecular Dynamics Simulation,Differential capacitance., | en |
dc.relation.page | 107 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 4.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。